Numerical simulations of binary black holes

Harald Pfeiffer

Canadian Institute for Theoretical Astrophysics

ICTS Colloquium
 ICTS/TIFR Bengaluru Jul 4, 2013

Binary Black Holes

$$
L_{\max }=10^{23} L_{\odot} \sim L_{\text {universe }}
$$

* at distance IOGpc

$$
\Phi_{\max } \sim 10^{4} \Phi_{\text {Moon }}
$$

* No electro-magnetic emission
- Only gravitational radiation
(Courtesy J. Centrella, Goddard)

Black hole

* Made entirely of warped space-time
- Curvature of space
- Slowing of flow of time
- Dragging of space around BH

Courtesy Kip Thorne

Black hole

* Made entirely of warped space-time
- Curvature of space
- Slowing of flow of time
- Dragging of space around BH
* Causal structure changes
- Tipping of light-cones
- Event horizon

$$
A_{\mathrm{EH}}=4 \pi r_{S}^{2}, \quad r_{S}=\frac{2 G M}{c^{2}}=3 \frac{M}{M_{\odot}} \mathrm{km}
$$

X-ray binaries

ESO/L. Calçada/M.Kornmesser

* $M_{\text {partner }}=5-30 M_{\text {Sun }}$
* Orbit too tight for star, object to massive for Neutron star. Stellar mass Black Hole.

Center of the Milky Way

Ghez et al.

ESO/S. Gillessen et al.

* $4.1 \times 10^{6} \mathrm{M}_{\text {sun }}$ within size of solar system

Harald Pfeiffer ICTS Colloquium Bangalore Jul 4, 2013

Center of the Milky Way

Ghez et al.

* $4.1 \times 10^{6} \mathrm{M}_{\text {sun }}$ within size of solar system

S0-I02 P = II.5yr Meyer ea 12

Gravitational waves

* Perturbations of space-time itself, traveling at speed of light

Gravitational waves

* Generated by time-varying quadrupole moments

$$
\begin{gathered}
Q_{i j}=\sum_{\mathrm{A}} x_{A}^{i} x_{A}^{j} M_{A} \\
h_{i j} \sim \frac{2 G}{c^{4} r} \ddot{Q}_{i j} \sim \frac{G}{c^{4} r} E_{\text {kin,bulk }}
\end{gathered}
$$

- Large masses. Fast, asymmetric motion

* Black Hole binaries

$$
h_{i j} \sim 4 \times 10^{-22}\left(\frac{r}{100 \mathrm{Mpc}}\right)^{-1}\left(\frac{v}{0.3 c}\right)^{2}\left(\frac{M}{10 M_{\odot}}\right)
$$

Ground-based GW detectors

Stellar mass black hole binaries

Supermassive black hole binaries

eLISA

Pulsar timing arrays
Colliding Galaxies ArpI 57 ESO

Numerical Relativity

Motivation

* Astrophysics: What happens when
- ... stars collapse?
- ... compact objects collide?
* Elucidate Properties of GR
- critical collapse
- higher-dimensional gravity
* Aid GW detectors

LIGO's many numerical relativity needs

CITA-ICAT * Signal detection

- Template bank for searched parameter-space state-of-the-art: aligned spin binaries
- signal characteristics to inform X^{2} vetoes
* Detection efficiency (event rates)
- Some waveforms elsewhere in parameter space e.g. precessing systems; eccentric systems
* Parameter estimation

- Especially accurate waveform models in all parameters being estimated

$$
M_{1}, M_{2}, \vec{S}_{1}, \vec{S}_{2}, e, \ldots, \mathrm{RA}, \mathrm{dec}
$$

* Properties of EM \& v counterparts Primary input of NR:
-What should telescopes look for?

Tools for computing waveforms

* Early inspiral
- Post-Newtonian calculations
- Late inspiral \& Merger
- Computer simulations
* Ringdown
- Perturbation theory
- Computer simulations

Aanatomy of a waveform

* Modulated amplitude
* Higher temporal harmonics
* Dependence on inclination
* Modified phasing

A brief history of black hole simulations

Solving Einstein Equations - Basic idea

* Goal: Space-time metric gab satisfying

$$
R_{a b}\left[g_{a b}\right]=0
$$

* Split spacetime into space and time
* Evolution equations

$$
\begin{gathered}
\partial_{t} g_{i j}=\ldots \\
\partial_{t} K_{i j}=\ldots
\end{gathered}
$$

* Constraints

$$
\begin{aligned}
R\left[g_{i j}\right]+K^{2}-K_{i j} K^{i j} & =0 \\
\nabla_{j}\left(K^{i j}-g^{i} K\right) & =0
\end{aligned}
$$

cf. Maxwell's equations

$$
\begin{aligned}
\partial_{t} \vec{E} & =\nabla \times \vec{B} \\
\partial_{t} \vec{B} & =-\nabla \times \vec{E} \\
\nabla \cdot \vec{E} & =0 \\
\nabla \cdot \vec{B} & =0
\end{aligned}
$$

Solving Einstein Equations - Basic idea

* Goal: Space-time metric gab satisfying

$$
R_{a b}\left[g_{a b}\right]=0
$$

* Split spacetime into space and time
* Evolution equations

$$
\begin{aligned}
\partial_{t} g_{i j} & =\ldots \\
\partial_{t} K_{i j} & =\ldots
\end{aligned}
$$

* Constraints

$$
\begin{aligned}
R\left[g_{i j}\right]+K^{2}-K_{i j} K^{i j} & =0 \\
\nabla_{j}\left(K^{i j}-g^{i j} K\right) & =0
\end{aligned}
$$

cf. Maxwell's equations

$$
\begin{aligned}
\partial_{t} \vec{E} & =\nabla \times \vec{B} \\
\partial_{t} \vec{B} & =-\nabla \times \vec{E} \\
\nabla \cdot \vec{E} & =0 \\
\nabla \cdot \vec{B} & =0
\end{aligned}
$$

Solving Einstein Equations - Basic idea

* Goal: Space-time metric gab satisfying

$$
R_{a b}\left[g_{a b}\right]=0
$$

* Split spacetime into space and time
* Evolution equations

$$
\begin{aligned}
\partial_{t} g_{i j} & =\ldots \\
\partial_{t} K_{i j} & =\ldots
\end{aligned}
$$

* Constraints

$$
\begin{aligned}
R\left[g_{i j}\right]+K^{2}-K_{i j} K^{i j} & =0 \\
\nabla_{j}\left(K^{i j}-g^{i j} K\right) & =0
\end{aligned}
$$

cf. Maxwell's equations

$$
\begin{aligned}
\partial_{t} \vec{E} & =\nabla \times \vec{B} \\
\partial_{t} \vec{B} & =-\nabla \times \vec{E} \\
\nabla \cdot \vec{E} & =0 \\
\nabla \cdot \vec{B} & =0
\end{aligned}
$$

Solving Einstein Equations - Basic idea

* Goal: Space-time metric gab satisfying

$$
R_{a b}\left[g_{a b}\right]=0
$$

* Split spacetime into space and time
* Evolution equations

$$
\begin{aligned}
\partial_{t} g_{i j} & =\ldots \\
\partial_{t} K_{i j} & =\ldots
\end{aligned}
$$

* Constraints

$$
\begin{aligned}
R\left[g_{i j}\right]+K^{2}-K_{i j} K^{i j} & =0 \\
\nabla_{j}\left(K^{i j}-g^{i j} K\right) & =0
\end{aligned}
$$

cf. Maxwell's equations

$$
\begin{aligned}
\partial_{t} \vec{E} & =\nabla \times \vec{B} \\
\partial_{t} \vec{B} & =-\nabla \times \vec{E} \\
\nabla \cdot \vec{E} & =0 \\
\nabla \cdot \vec{B} & =0
\end{aligned}
$$

Why is this hard?

* Singularities inside Black holes
* Constraints difficult to preserve
* Coordinate freedom
- How does one choose coordinates for a space-time one does not know yet?
* Challenging numerical issues
- 20-50 variables
- I0,000 FLOP / grid-point / time-step
- Different length scales, high accuracy requirements

The Two-Body Problem in Geometrodynamics

Susan G. Hahn
International Business Machines Corporation, New York, New York

AND
Richard W. Lindquist

The numerical calculations were carried out on an IBM 7090 electronic computer. The parameters a and μ_{0} were both set equal to unity; the mesh lengths were assigned the values $h_{1}=0.02, h_{2}=\pi / 150 \approx 0.021$, yielding a 51×151 mesh. The calculations of all unknown functions, including a great number of input-output operations and some built-in checking procedures, took approximately four minutes per time step. Different check routines indicated that results close to the point $\mu=0, \eta=0$ lost accuracy fairly quickly. Since these would, in the long run, influence meshpoints further away, the computations were stopped after the 50th time step, when the total time elapsed was approximately 1.8. Some of the results are shown in Table I.

50 Years of BBH: The beginnings

BBH Grand Challenge I994-98

Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision

G.B. Cook, ${ }^{1}$ M.F. Huq, ${ }^{2}$ S. A. Klasky, ${ }^{3}$ M.A. Scheel, ${ }^{1}$ A. M. Abrahams,,${ }^{4,5}$ A. Anderson, ${ }^{6}$ P. Anninos, ${ }^{4}$
T. W. Baumgarte, ${ }^{4}$ N.T. Bishop, ${ }^{7}$ S. R. Brandt, ${ }^{4}$ J. C. Browne, ${ }^{2}$ K. Camarda, ${ }^{8}$ M. W. Choptuik, ${ }^{2}$ R.R. Correll, ${ }^{2,9}$ C.R. Evans, ${ }^{6}$ L.S. Finn, ${ }^{10}$ G.C. Fox, ${ }^{3}$ R. Gómez, ${ }^{11}$ T. Haupt, ${ }^{3}$ L. E. Kidder, ${ }^{10}$ P. Laguna, ${ }^{8}$ W. Landry, ${ }^{1}$ L. Lehner, ${ }^{11}$ J. Lenaghan, ${ }^{6}$ R. L. Marsa, ${ }^{2}$ J. Masso, ${ }^{4}$ R. A. Matzner, ${ }^{2}$ S. Mitra, ${ }^{2}$ P. Papadopoulos, ${ }^{8}$ M. Parashar, ${ }^{2}$ L. Rezzolla, ${ }^{4}$ M.E. Rupright, ${ }^{6}$ F. Saied, ${ }^{4}$ P.E. Saylor, ${ }^{4}$ E. Seidel, ${ }^{4}$ S.L. Shapiro, ${ }^{4}$ D. Shoemaker, ${ }^{2}$ L. Smarr, ${ }^{4}$ W. M. Suen, ${ }^{12}$
B. Szilágyi, ${ }^{11}$ S.A. Teukolsky, ${ }^{1}$ M.H.P.M. van Putten, ${ }^{1}$ P. Walker, ${ }^{4}$ J. Winicour, ${ }^{11}$ and J. W. York, Jr. ${ }^{6}$

* Single Black Hole
-60M in time
-6M motion in space

50 Years of BBH: Foundations for success

50 Years of BBH: The breakthroughs

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius ${ }^{1,2, *}$
${ }^{1}$ Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA
${ }^{2}$ Department of Physics, University of Alberta, Edmonton, AB T6G 2 Jl Canada (Received 6 July 2005; published 14 September 2005)

We describe early success in the evolution of binary black-hole spacetimes with a numerical code based on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is capable of evolving binary systems for enough time to extract information about the orbit, merger, and gravitational waves emitted during the event. As an example we show results from the evolution of a binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter $a \approx 0.70$. At present, lack of resolution far from the binary prevents an accurate estimate of the energy emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is radiated as gravitational waves during the final orbit and ringdown.
 and angular momentum

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius ${ }^{1,2, *}$

Technology, Pasadena, California 91125, USA berta, Edmonton, AB T6G 2 Jl Canada ished 14 September 2005)
black-hole spacetimes with a numerical code based
anc are that with cuffinient recolution thic onheme is

50 Years of BBH: Modern age

Courtesy Carlos Lousto,

 updated by HPHarald Pfeiffer IC
LIGO

2007-
Ajith, AEI, Jena
phenom GW models

EOB GW models
2011
Schmidt ea;
Boyle ea
Radiation aligned
frame
Time

Early days of BH-BH sims

Spin=0 BH-BH kicks Gonzalez, Sperhake, Brügmann, Hannam, Husa 07

BH-BH superkicks Campanelli ea 07
$\mathrm{v}_{\text {max }} \sim 3500 \mathrm{~km} / \mathrm{sec}$

(in-)validating PN Boyle...HP ea 07

The two approaches to $\mathrm{BH}-\mathrm{BH}$

Puncture initial-data (Brandt\&Brügmann 97)

BSSN w/ moving punctures
(Campanelli ea 06, Baker ea 06)

Quasi-equilibrium excision initial-data (Cook 02, Cook\&HP 04)

$$
\begin{aligned}
g_{i j} & =e^{4 \phi} \tilde{g}_{i j}, \\
\tilde{\Gamma}^{i} & =\tilde{g}^{j k} \tilde{\Gamma}_{j k}^{i} \\
\partial_{t} \phi & =\cdots \\
\partial_{t} \tilde{g}_{i j} & \approx-\tilde{A}_{i j} \\
\partial_{t} \tilde{A}_{i j} & \approx-\Delta \tilde{g}_{i j} \\
\partial_{t} \tilde{\Gamma}^{i} & =\partial_{t}\left(\tilde{g}^{j k} \tilde{\Gamma}_{j k}^{i}\right)
\end{aligned}
$$

Finite differences w/ AMR
(RIT,AEI, GATech,
Goddard, Jena, Palma, „Cardiff, Perimeter)

Generalized Harmonic w/ constraint damping
(Gundlach ea 05, Pretorius 05)

Multi-domain spectral methods SpEC
SXS collaboration (Cornell-
Caltech-CITA-Washington State Univ-
California State Univ Fullerton)

The two approaches to $\mathrm{BH}-\mathrm{BH}$

Finite differences w/ AMR (RIT,AEI, GeorgiaTech, Jena, Palma, Cardiff, Perimeter)

Conventional wisdom:

-- Robust, "easy"
-- Many short simulations
-- Lower accuracy, higher cost

More recent:

-- longer and more accurate sims

Multi-domain spectral methods
SpEC (Cornell-Caltech-CITA-wsU-CsuF)
Conventional wisdom:
-- Less robust,"difficult"
-- Few long simulations
-- Higher accuracy, lower cost

More recent:

-- mergers becoming routine

Some recent BH-BH technical advances

Mass-ratio I:I00

Simulation:
Carlos Lousto
Yosef Zlochower

Visualization:
Hans-Peter Bischof

CCRG
RIT

Copyright - CCR's - 2010

Two orbits, starting @ ISCO
 Lousto, Zlochower I I

Spins above the Bowen-York limit

Lovelace, Scheel, Szilagyi II,
Lovelace ea II

* Puncture-data limit: $S / M^{2}<0.93$
* First complete BBH simulation above 0.93 limit!
- Equal mass, equal spins anti-parallel to orbital L

Importance of $\mathrm{S} / \mathrm{M}^{2}>0.93$

* Observational evidence for BH's with S/M²~0.998
* Expansion parameter around extremality

$$
\varepsilon_{\mathrm{spin}} \equiv \sqrt{1-\chi^{2}}
$$

- 0.93 is far from extremal!

Cauchy-characteristic Extraction

- h(t) at Scri+
* Post-processing tool for any Cauchy evolution (open source)

Reisswig ea 09 , Reisswig ea IO, Babiuc ea IOII.4223, Babiuc ea II06.484।

Radiation-aligned minimally-rotating frame

* Decompose radiation in a good frame, not an inertial frame
* Schmidt ea 201I, O'Shaugnessy ea 201 I , Boyle ea 20 II :
- Polar axis of Ylm-decomposition along dominant emission direction

$$
q=6, \square A=0.9, \square B=0.3,8 \text { orbits }
$$

Figures courtesy Mike Boyle \& Larry Kidder

SXS collaboration

Simulation of eXtreme Spacetimes

- Solve Einstein's equations accurately enough for LIGO's needs
- Cornell, Caltech, CITA, Fullerton, Oberlin, WSU
- Work presented here involves:

Numerics: L. Buchman', T. Chu², L. Kidder ${ }^{3}$, S. Lau ${ }^{4}$, G. Lovelace ${ }^{5}$, A. Mroue ${ }^{2}$, S. Ossokine ${ }^{2}$, R. Owen ${ }^{6}$, M. Scheel', B. Szilagyi', N.Taylor ${ }^{1}$, S. Teukolsky ${ }^{2}$

Analysis: M. Boyle³, D. Brown ${ }^{7}$, A. Buonanno ${ }^{8}$, I. MacDonald ${ }^{2}$,
S. Nissanke ${ }^{1}$, Y. Pan 8, A. Taracchini ${ }^{8}$

I Caltech, 2 CITA, 3 Cornell, 4 Albuquerque, 5 Fullerton, 6 Oberlin, 7 Syracuse, 8 Maryland

Techniques I: Generalized Harmonic

- Einstein's equations

$$
0=R_{a b}\left[g_{a b}\right]=-\frac{1}{2} \square g_{a b}+\nabla_{(a} \Gamma_{b)}+\text { lower order terms, } \quad \Gamma_{a}=-g_{a b} \square x^{b} .
$$

- Generalized harmonic coordinates $g_{a b} \square x^{b} \equiv H_{a}\left(x^{a}, g_{a b}\right)$ (Friedrich 1985, Pretorius 2005; H = 0 used since 1920's)

$$
\square g_{a b}=\text { lower order terms. }
$$

\Rightarrow Constraint $C_{a} \equiv H_{a}-g_{a b} \square x^{b}=0$

- Constraint damping (Gundlach, et al., Pretorius, 2005)

$$
\begin{gathered}
\square g_{a b}=\gamma\left[t_{(a} C_{b)}-\frac{1}{2} g_{a b} t^{c} C_{c}\right]+\text { lower order terms } \\
\partial_{t} C_{a} \sim-\gamma C_{a} .
\end{gathered}
$$

Techniques II: Spectral methods

* Expand in basis-functions, solve for coefficients

$$
u(x, t)=\sum_{k=1}^{N} \tilde{u}(t)_{k} \Phi_{k}(x)
$$

* Compute derivatives exactly

$$
u^{\prime}(x, t)=\sum_{k=1}^{N} \tilde{u}(t)_{k} \Phi_{k}^{\prime}(x)
$$

*Compute nonlinearities in physical space

Finite differences

Numerics III: Black Hole Excision

Artificial boundary inside horizon

Techniques IV: Domain-decomposition

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Techniques IV: Domain-decomposition

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Techniques IV: Domain-decomposition

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Techniques IV: Domain-decomposition

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.htm

IV: Merger \& Ringdown

* Mark Scheel, Bela Szilagyi

Szilagyi, Lindblom, Scheel 08. Many additions since then

- Hemberger ea, I2 II. 6079
* Close to merger

- Switch domain-decomposition
- Active gauge conditions
- Adaptive Mesh Refinement
* After common horizon
- Switch to distorted concentric shells

Scale

* Spectral Einstein Code
- 500,000 lines
- In development since 2000
- ~50 person years
- Used in ~ 80 publications
* Per simulation
- tens of CPU-years (100,000 CPU-hours)
- months of wall-clock time

A waveform, at last!

Boyle ea 07, Scheel ea 09

Phase accuracy

-Rapid convergence due to spectral methods
-Allows long \& numerous simulations

Unequal masses, no spin

Buchman, HP, Scheel, Szilagyi, 20I2

Accuracy

* Sum of irreducible masses
~ 1 part in 10^{6}

* (non-)effect of artificial outer boundary

Buchman, HP, Scheel, Szilagyi, 2012

Validate post-Newtonian

* NR \& PN agree!

Boyle, ... HP ea, 2007

Validate post-Newtonian

* NR \& PN agree!

Boyle, ... HP ea, 2007

Validate post-Newtonian

* NR \& PN agree!

Boyle, ... HP ea, 2007

Validate post-Newtonian

* NR \& PN agree!

Boyle, ... HP ea, 2007

Validate post-Newtonian

* NR \& PN agree!
* Or do they?
- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle, ... HP ea, 2007

Validate post-Newtonian

* NR \& PN agree!
* Or do they?
- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle, ... HP ea, 2007

Validate post-Newtonian

* NR \& PN agree!
* Or do they?
- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

MacDonald, Mroue, HP ea, 2012

Validate post-Newtonian

* NR \& PN agree!
* Or do they?
- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

MacDonald, Mroue, HP ea, 2012

Length of NR simulations

* Must switch to NR early enough to avoid large PN errors

Length of NR simulations

* Desire: Start NR so early that different PN versions cannot be distinguished by LIGO
* need much longer NR waveforms
- Hannam ea 2010
- Ohme ea 201I
- Boyle 201I
- MacDonald ea 201I
- Damour ea 201I

MacDonald, Nissanke, HP 20II

Non-spinning, unequal masses

MacDonald, Mroue, HP ea 2012 (similar results in Ohme ea, 201I)

Exploring Parameter Space \& Precession

Completed Waveform Catalog Efforts

Ninjal (2008)

Ailott + 77 co-authors

Ninja2 (2012)

Ajith +47 co-authors

$q \neq 1, \chi_{1}=\chi_{2}=0$					
0.3	$\begin{gathered} \text { BAMa }=2.0 \\ \text { OMMOMMMB } \end{gathered}$				
0.3 0.0 0.3	$\text { BAMa }=3.0$	SpEC $a=3.0$ $M M M O M W M W M\|\mid$	BAMa $=4.0$ MMMMOMMMMWMMM\|		
0.3 0.0 0.3				$\begin{aligned} & -2000.0{ }_{\mathrm{t} / \mathrm{M}^{-1000.0}} \begin{array}{l} 0.0 \\ q \neq 1, \chi_{1}=\chi_{2}=\chi \end{array} \end{aligned}$	
	$-2000.0{\mathrm{t} / \mathrm{M}^{-1000.0}}^{\frac{1}{2}} 0.0$	$\begin{array}{cc} -2000.0 \\ \mathrm{t}^{-1000.0} \\ \chi_{1} & \neq \chi_{2} \end{array}$	-2000.0 t / M 0.3 0.0 -0.3	GATéch $\mathrm{q}=2.0 x_{1}^{1}=0.2$ AMMMAMMMMMM\|	
0.3 0.0 0.3				$\begin{array}{cc} -2000.0 \\ t / M^{-1000.0} & 0.0 \\ \hline \end{array}$	
	$\begin{array}{cc} -2000.0 \\ t / M^{-1000.0} & 0.0 \\ \hline \end{array}$	$\begin{array}{cc} -2000.0 \\ t M \end{array}$	$\begin{array}{ccc} -2000.0 \\ t M \end{array}$		

Lack of parameter space coverage

* BH-BH simulations are hard
- World-wide NINJA-2 collaboration computed 40 spin-alinged systems (no precession at all)

Ajith ea, 1211.5319
Harald Pfeiffer ICTS Colloquium Bangalore Jul 4, 2013

Precessing waveforms

Code improvements (Quaternions)

Ossokine, Kidder, HP I304.3067

Kidder \& SXS

Harald Pfeiffer ICTS Colloquium Bangalore Jul 4, 2013

Exploring parameter space

* 700 configurations quasi-circularized (Mroue, HP I2I0.2958)
* I7I simulations completed
- Mroue ea, arXiv:I304.6077

Abdul H. Mroué, ${ }^{1}$ Mark A. Scheel, ${ }^{2}$ Béla Szilágyi, ${ }^{2}$ Harald P. Pfeiffer, ${ }^{1,3}$ Michael Boyle, ${ }^{4}$ Daniel A. Hemberger, ${ }^{4}$ Lawrence E. Kidder, ${ }^{4}$ Geoffrey Lovelace,,${ }^{5,2}$ Serguei Ossokine, ${ }^{1,6}$ Nicholas W. Taylor, ${ }^{2}$ Anıl Zenginoğlu, ${ }^{2}$ Luisa T. Buchman, ${ }^{2}$ Tony Chu, ${ }^{1}$ Evan Foley, ${ }^{5}$ Matthew Giesler, ${ }^{5}$ Robert Owen, ${ }^{7}$ and Saul A. Teukolsky ${ }^{4}$

I7I waveform catalog

 —
 1

 \qquad $+$ 1

 $\frac{1}{1}$, 0105 - +

$\frac{1}{2000} \frac{1}{4000} \quad \frac{1}{6000} \quad 18000$

3 years, 50 Mio CPU-hours

Examples of precessing binaries

Mass-ratio 3 spins $0.5 \& 0$

Mroue ea, arXiv: I 304.6077

Orientation-dependence of waveform

Mroue ea, arXiv:I304.6077

Alternative study: Georgia Tech

* Pekowsky ea I304.3I76, continuing sequence of papers
- 191 generic BBH waveforms
- precessing waveform $=$ [non-precessing waveform] \times [Rotation]
- IMRPhenomB fits to better than 95% for 200 Msun<M<2500Msun
- At low masses, GW's can measure BH-BH properties
- At high masses, GW's can measure remnant properties

Expanding parameter space coverage

* Most spinning runs at $q<2$

* So far, pushing parameters was always difficult
- Each arrow I-2years hard work

Waveform modeling

Discretely spaced NR

Continuous model

Phenomenological, aligned spins

* Unequal-mass, aligned spins (Ajith ea 201I) "IMRPhenomC"
- 2-dim waveform family (mass-ratio, effective spin)
$\bullet(2,2)$ mode calibrated against 24 sims (BAM, Ccatie, Llama)
* Two stages:
I.construct TaylorTI+NR hybrids
2.fit model to hybrids

$$
\begin{aligned}
& A(f) \equiv C f_{1}^{-7 / 6} \begin{cases}f^{\prime-7 / 6}\left(1+\sum_{i=2}^{3} \alpha_{i} v^{i}\right) & \text { if } f<f_{1} \\
w_{m} f^{\prime-2 / 3}\left(1+\sum_{i=1}^{2} \epsilon_{i} v^{i}\right) & \text { if } f_{1} \leq f<f_{2} \\
w_{r} \mathcal{L}\left(f, f_{2}, \sigma\right) & \text { if } f_{2} \leq f<f_{3},\end{cases} \\
& \Psi(f) \equiv 2 \pi f t_{0}+\varphi_{0}+\frac{3}{128 \eta v^{5}}\left(1+\sum_{k=2}^{7} v^{k} \psi_{k}\right) .
\end{aligned}
$$

Harald Pfeiffer ICTS Colloquium Bangalore Jul 4, בוטו

$\mathrm{EOB}+\mathrm{NR}$

* Effective one body
- Buonanno, Damour 1999; many papers since
* Inspiral-Merger-Ringdown waveform model based on
-Effective Hamiltonian to capture conservative dynamics

$$
H=\mu \sqrt{p_{r}^{2}+A(r)\left[1+\frac{p_{r}^{2}}{r^{2}}+2(4-3 \nu) \nu \frac{p_{r}^{4}}{r^{2}}\right]}, \quad A(r)=\sum_{k=0}^{4} \frac{a_{k}(\nu)}{r^{k}}+\frac{a_{5}(\nu)}{r^{5}}
$$

- Radiation reaction terms

$$
\begin{aligned}
\frac{d p_{r}}{d t} & =-\frac{\partial H}{\partial p_{r}}+a_{\mathrm{RR}}^{r} \frac{\dot{r}}{r^{2} \Omega} \widehat{\mathcal{F}}_{\phi} \\
\frac{d p_{\varphi}}{d t} & ==0-\frac{v_{\Omega}^{3}}{\nu V_{\phi}^{6}} F_{4}^{4}\left(V_{\phi} ; \nu, v_{\text {pole }}\right), \quad \text { using 4-PN term } \mathcal{F}_{8, \nu=0}+\nu A_{8}
\end{aligned}
$$

- Attach ringdown modes
\star Fit parameters to NR simulations

EOB for aligned spins

* EOB w/ aligned spins "SEOBNRvl"
- Taracchini ea 2012
- $(2,2)$ mode calibrated against
- 7x SpEC
- Teukolsky code
* Prototype-model:
- Recalibration with more NR sims

Taracchini ea 2012
Harald Pfeiffer ICTS Colloquium Bangalore Jul 4, 2013

Precessing EOB model

* Pan, Buonanno, Tarracchini, \& SpEC (in prep)
* Evolve EOB orbital dynamics w/ precession

$$
\Phi(t), \vec{L}(t), \vec{S}_{1}(t), \vec{S}_{2}(t)
$$

* Compute aligned-spin SEOBNRvI waveforms
* Rotate into precessing frame
- Note: EOB tuned only with
- Non-spinning $q=1,2,3,4,6$ and Teukolsky code
- Equal-mass, aligned spins: $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=(0.44,0.44),(-0.44,0.44)$

Precessing EOB model: NR comparison

Purely NR template bank

* BH-BH waveforms scale invariant

Standard template bank

NR-only template bank MacDonald

Purely NR template bank

* BH-BH waveforms scale invariant

NR-only template bank MacDonald

With 26 NR runs, each 40 orbits: Cover M> I2Msun Kumar, MacDonald, ea (in prep)

The end. Thank you!

