Precessing NR simulations

Harald Pfeiffer, CITA

ICTS Program on Numerical Relativity
ICTS/TIFR Bengaluru
June 26, 2013

Today's goal:

* How does one compute these?
* Where are we in terms of parameter space exploration?

Special feature

per Sathya’s request

Spinning NR-AR comparison

* SpinTaylorT4 w/ 2.5 PN spin andWRONG X2 $2=+-0.5$
- Thanks, Ajith!
* Numerical Relativity: $q=8, X_{1}=-0.5 / 0 /+0.5 . \quad X_{2}=0$

Har

$\mathrm{q}=8$ spinning PN-NR comparison

* PRELIMINARY: COMPARISON PERFORMED THIS MORNING
* Procedure
- Extract $\varphi(\mathrm{t})$ from time-domain waveform

$$
h_{22}(t)=A(t) \exp (-i \phi(t))
$$

- Compute frequency

$$
\omega(t)=\frac{\phi(t)}{d t}
$$

- Eliminate time t, to yield

$$
\phi(\omega)
$$

PRELIMINARY RESULTS

Harald Pfeiffer ICTS @ Bangalore Jun 2I, 2013

Background NR

SXS collaboration

Simulation of eXtreme Spacetimes

- Goal: Simulate compact object binaries to satisfy LIGO's data-analysis needs
- Cornell, Caltech, CITA,WashU, Fullerton, Oberlin
- Work presented here involves:

Numerics: L. Buchman', T. Chu ${ }^{2}$, L. Kidder ${ }^{3}$, S. Lau ${ }^{4}$, G. Lovelace ${ }^{5}$, A. Mroue ${ }^{2}$, S. Ossokine ${ }^{2}$, R. Owen ${ }^{6}$, M. Scheel ${ }^{1}$, B. Szilagyi ${ }^{1}$, N. Taylor ${ }^{1}$, S. Teukolsky ${ }^{2}$

Analysis: M. Boyle³, D. Brown ${ }^{7}$, A. Buonanno ${ }^{8}$, I. MacDonald ${ }^{1}$,
S. Nissanke ${ }^{1}$, Y. Pan 8, A. Taracchini ${ }^{8}$

I Caltech, 2 CITA, 3 Cornell, 4 Albuquerque, 5 Fullerton, 6 Oberlin, 7 Syracuse, 8 Maryland

Techniques I: Generalized Harmonic

- Einstein's equations

$$
0=R_{a b}\left[g_{a b}\right]=-\frac{1}{2} \square g_{a b}+\nabla_{(a} \Gamma_{b)}+\text { lower order terms, } \quad \Gamma_{a}=-g_{a b} \square x^{b} .
$$

- Generalized harmonic coordinates $g_{a b} \square x^{b} \equiv H_{a}\left(x^{a}, g_{a b}\right)$ (Friedrich 1985, Pretorius 2005; H = 0 used since 1920's)

$$
\square g_{a b}=\text { lower order terms. }
$$

\Rightarrow Constraint $C_{a} \equiv H_{a}-g_{a b} \square x^{b}=0$

- Constraint damping (Gundlach, et al., Pretorius, 2005)

$$
\begin{gathered}
\square g_{a b}=\gamma\left[t_{(a} C_{b)}-\frac{1}{2} g_{a b} t^{c} C_{c}\right]+\text { lower order terms } \\
\partial_{t} C_{a} \sim-\gamma C_{a} .
\end{gathered}
$$

II. Boundary conditions

* Constraint preserving
* Nearly transparent to outgoing radiation

Lindblom, Scheel, Kidder, Owen, Rinne 2006

III: Spectral methods

* Expand in basis-functions, solve for coefficients

$$
u(x, t)=\sum_{k=1}^{N} \tilde{u}(t)_{k} \Phi_{k}(x)
$$

*Compute derivatives analytically

$$
u^{\prime}(x, t)=\sum_{k=1}^{N} \tilde{u}(t)_{k} \Phi_{k}^{\prime}(x)
$$

* Compute nonlinearities in physical space

Spectral

Finite differences

Why spectral methods?

* Smooth solutions \Rightarrow exponential convergence

HP et al, 2002
... but more difficult than finite differences

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

IV: Domain-decomposition

0°

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

IV: Domain-decomposition

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.htm

IV: Domain-decomposition

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

IV: Domain-decomposition

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.htm

V. Solve constraints

* Spins above ~ 0.8... 0.9 require special techniques

$$
\begin{array}{rlr}
0 & =\tilde{\nabla}^{2} \psi-\frac{1}{8} \tilde{R} \psi-\frac{1}{12} K^{2} \psi^{5}+\frac{1}{8} \psi^{-7} \tilde{A}^{i j} \tilde{A}_{i j}, & \text { HP ea 02,03 } \\
0 & =\tilde{\nabla}_{j}\left(\frac{\psi^{7}}{2(\alpha \psi)}(\tilde{\mathbb{L}} \beta)^{i j}\right)-\frac{2}{3} \psi^{6} \tilde{\nabla}^{i} K & \text { Cook, HP 03, } 04 \\
& -\tilde{\nabla}_{j}\left(\frac{\psi^{7}}{2(\alpha \psi)} \tilde{u}^{i j}\right), & \text { Lovelace ea 08 } \\
0 & =\tilde{\nabla}^{2}(\alpha \psi)-(\alpha \psi)\left[\frac{\tilde{R}}{8}+\frac{5}{12} K^{4} \psi^{4}+\frac{7}{8} \psi^{-8} \tilde{A}^{i j} \tilde{A}_{i j}\right] \\
& +\psi^{5}\left(\partial_{t} K-\beta^{k} \partial_{k} K\right), & (37 \mathrm{c}) \tag{37c}
\end{array}
$$

VI. Define Spin

- In axisymmetry anglar momentum rigourously defined e.g. via the Hamiltonian that generates the rotation (Brown \&York, 1993; isolated/dynamical horizon framework)

$$
J=\frac{1}{8 \pi} \oint_{\mathcal{S}}\left(K_{i j}-g_{i j} K\right) \phi^{i} S^{j} d A
$$

- ϕ^{i} rotational Killing vector s^{i} unit-normal to \mathcal{S} in Σ $g_{i j}$ metric in Σ
$K_{i j}$ extrinsic curvature of Σ in M
- \mathcal{S} sphere at $\infty \Rightarrow$ ADM angular momentum
- \mathcal{S} 2-sphere at finite distance \Rightarrow quasilocal spin

Spin in non-axisymmetric spacetimes

- Would like to define "spin" in absence of axisymmetry.
- Choose "approximate Killing vector" ϕ^{i}; evaluate

$$
J_{\phi}=\frac{1}{8 \pi} \oint_{\mathcal{S}}\left(K_{i j}-g_{i j} K\right) \phi^{i} s^{j} d A
$$

- Q: How to choose ϕ^{i} ?
- ϕ^{i} coordinate rotation, $\vec{\phi}=x \hat{e}_{y}-y \hat{e}_{x}$ (depends on coordinate system)
- Integrate Killing transport equation (Dreyer et al, 2003) (depends on integration path; ϕ^{i} not smooth)
- A variational approach

Variational approx. Killing vectors

- Require $D_{A} \phi^{A}=0 \Rightarrow \phi^{A}=\varepsilon^{A B} \partial_{B} z$ for some potential z. (A, B: coordinates within \mathcal{S}, D_{A} derivative within \mathcal{S})

Cook \& Whiting 07
Owen 07
Lovelace, Chu, HP,
Owen 08

- Minimize functional

$$
\mathcal{I}=\oint_{\mathcal{S}}\left(D_{(A} \phi_{B)}\right)\left(D^{(A} \phi^{B)}\right) d A+\lambda\left(\oint_{\mathcal{S}} \phi_{A} \phi^{A} d A-N\right)
$$

- Results in generalized Eigenvalue problem

$$
\left(D^{2}+{ }^{2} R\right) D^{2} z+\left(D_{A}^{2} R\right) D^{A} z=\lambda D^{2} z
$$

- Spectral expansion $z(\theta, \varphi)=\sum_{l=1}^{L} \sum_{|m| \leq 1} A^{l m} Y_{l m}(\theta, \varphi)$ results in matrix-equation for coefficients $A^{\prime m}$:

$$
\Rightarrow M^{l m}{ }_{l^{\prime} m^{\prime}} A^{l^{\prime} m^{\prime}}=\lambda N^{\prime m}{ }_{l^{\prime} m^{\prime}} A^{l^{\prime} m^{\prime}}
$$

Example

- The three smallest eigenvalues correspond to rotations

$$
\begin{array}{r}
z \\
\times \quad \mathrm{y}
\end{array}
$$

VII Control BH properties

* Fix BH-distance, Omega, radial velocity
* Iteratively solve the initial-value problem, to adjust
- black hole masses (2 DoF)
- black hole spins (6 DoF)
- center of rotation (2 DoF)

Buchman, HP, Scheel, Szilagyi I206.30I5

VIII Control orbital eccentricity

* Initial data parameters Ω_{0}, v_{r} (or p_{t}, p_{r}) determine orbital eccentricity and phase at periastron
* Unique values for zero eccentricity

HP ea 07, Boyle ea 07, Buchman ea 12

Large-scale eccentricity removal

Mroue, HP arxivl210.2958

Large-scale eccentricity removal

* Iterative eccentricity removal works, but is tedious.

Mroue, HP arxivl210.2958

Large-scale eccentricity removal

* Iterative eccentricity removal works, but is tedious.
- Let's get over with it!

Mroue, HP arxivl210.2958

Large-scale eccentricity removal

* Iterative eccentricity removal works, but is tedious.
- Let's get over with it!

Mroue, HP arxivl210.2958

Large-scale eccentricity removal

* Iterative eccentricity removal works, but is tedious.
- Let's get over with it!
* Eccentricity reduce...

Mroue, HP arxivl2|0.2958

Large-scale eccentricity removal

* Iterative eccentricity removal works, but is tedious.
- Let's get over with it!
* Eccentricity reduce...
- 40 non-spinning

Mroue, HP arxivl210.2958

Large-scale eccentricity removal

* Iterative eccentricity removal works, but is tedious.
- Let's get over with it!
* Eccentricity reduce...
- 40 non-spinning
- 190 single-spin

Mroue, HP arxivl210.2958

Large-scale eccentricity removal

* Iterative eccentricity removal works, but is tedious.
- Let's get over with it!
* Eccentricity reduce...
- 40 non-spinning
- 190 single-spin
- 300 double-spin

Mroue, HP arxivl210.2958

Large-scale eccentricity removal

* Iterative eccentricity removal works, but is tedious.
- Let's get over with it!
* Eccentricity reduce...
- 40 non-spinning
- 190 single-spin
- 300 double-spin
- I30 random spin directions

Mroue, HP arxivl210.2958

Eccentricity in precessing $\mathrm{BH}-\mathrm{BH}$

* With enough care, iterative eccentricity removal works!

Buonnano, Kidder, Mroue, HP, Tarraccini, IO

IX. Precession \& Dual-Frames

* Map excision boundaries onto BH -location

$$
x^{\bar{\imath}}=a(t) R(t)_{j}^{\bar{\imath}} x^{j}+T^{\bar{\imath}}(t)
$$

* Measure location of BHs,
 and adjust dynamically:
- Expansion factor a(t)
- Translation $\mathrm{T}(\mathrm{t})$
- Rotation R(t)

Precession \& Dual-Frames

* Early technique: Pitch \& Yaw
- Rotate about y-axis, then about z-axis

$$
R=\left(\begin{array}{rrr}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

* Works for moderate precession

Polar singularity breaks Pitch\&Yaw

Solution: Quaternions

* Represent rotation without preferred axis/singularity
- Unit-Quaternions represent rotations

$$
\begin{aligned}
& \mathbf{q}=\left[q_{0}, \vec{q}\right]=q_{0}+i q_{1}+j q_{2}+k q_{3} \\
& R_{\mathbf{q}} \vec{v}: \mathbf{q}[0, \vec{v}] \mathbf{q}^{*}=\left[0, R_{\mathbf{q}} \vec{v}\right]
\end{aligned}
$$

* Represent control-system without preferred axis
- Control instantaneous frequency $\vec{\Omega}(t)^{\text {pf grid w.r.t inertial frame }}$
- Update rotation matrix via

$$
\frac{d \mathbf{q}(t)}{d t}=\frac{1}{2} \mathbf{q}(t)[0, \vec{\Omega}(t)]
$$

Ossokine, Kidder, HP arxivl304.3067

Test: inclined PN inspirals

Orbital periods

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013
Ossokine, Kidder, HP arxiv| 304.3067

Test: inclined PN inspirals

Orbital periods

Harald Pfeiffer ICTS @ Bangalore Jun 2I, 2013
Ossokine, Kidder, HP arxiv/304.3067

X: Merger \& Ringdown

* Mark Scheel, Bela Szil
- Szilagyi, Lindblom, Scheel 08. Many additions since then
- Hemberger ea, I2 I I. 6079
* Close to merger
- Switch domain-decomposition
- Active gauge conditions
- Adaptive Mesh Refinement
* After common horizon
- Switch to distorted concentric shells

Spectral grid

Hemberger, Scheel, Kidder, Szilagyi, ... arXiv:I2 I I. 6079
Harald Pfeiffer ICTS @ Bangalore Jun

Computational grid, mass-ratio 8

Hemberger, Scheel, Kidder, Szilagyi, ... arXiv: I 2 I I. 6079
Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

XI. Wave-extraction and extrapolation

- Mike Boyle
- Careful extrapolation with many consistency-checks
* Nick Taylor, et al (in prep):
- Cauchy-Characteristic Extraction \& comparison with extrapolation

Convergence test

(

Mroue ea, arXiv:I304.6077

post-Newtonian -- NR comparison

* NR \& PN agree!

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!
* Or do they?
- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!
* Or do they?
- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle et al 2007

Unequal mass, non-spinning BH-BH

L. Buchman, HP,
M. Scheel, B. Szilagyi, I206.3015

$q=I, 2,3,4$ (I5 orbits), $q=6$ (20 orbits)

$\mathrm{q}=6$ space-time diagram of AH's, colored by R

Waveforms

* Mass-ratios $q=1,2,3,4,6$. 15 orbits (20 for $q=6$)

Accuracy

* Sum of irreducible masses
~ 1 part in 10^{6}

Need higher resolution to resolve tidal heating :(

* (non-)effect of artificial outer boundary

Necessary Length of Numerical Waveforms

MacDonald, Nissanke, HP, 20II MacDonald, Mroue, HP, ... 2012

PN NR comparison

* Match at $M \omega=0.1$, compute phase-difference over preceding 8 GW-cycles

MacDonald ea, arXiv: 1210.3007

PN NR comparison

* Match at $M \omega=0 . I$, compute phase-difference down to $M \omega=0.05$

MacDonald ea, arXiv:I2 10.3007

Length requirements for NR

* Must switch to NR early enough to avoid large PN errors

Length: Parameter estimation

* Start NR so early that different PN approximants cannot be distinguished by LIGO
* need much longer NR waveforms
- Hannam ea 2010
- Ohme ea 201I
- Boyle 201I
- MacDonald ea 201I
- Damour ea 201I

MacDonald, Nissanke, HP 20II
Harald Pfeiffer ICTS @ Bangalore Jun 2I, 2013

Length: Parameter estimation

* New 30 orbit equal-mass, zero spin simulation
- Confirm previous results
- Long enough for one choice of parameters

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Length-Statements depend on λ

* Non-spinning, unequal masses

MacDonald, Mroue, HP in prep (similar results in Ohme ea, 201I)

Estimated impact of 4-PN

CITA-ICAT

* TaylorT4 phase-evolution $\quad \frac{d x}{d t}=\frac{64 c^{3} \nu}{5 G M} x^{5}\left(1+\sum_{k} A_{k} x^{k}\right)$

MacDonald, M̈̈roue, HP (in prep)

Longer NR-waveforms:Alternatives

* Option I: Longer NR?
- Can not perform long enough sims $\quad \frac{T}{M} \approx 5 \nu^{3 / 5}(2 \pi N)^{8 / 5}$
* Option 2: Live with it
- Ohme ea 201I: Systematic errors $\delta M / M \sim 0.1 \%, \delta\left(S / M^{2}\right) \sim 0.1$
* Option 3: Wait for 4PN
- Buys us a factor of 2
* Option 4: Relax rigor
- Only $\delta \mathrm{h}$ tangential to signal-manifold causes systematic errors (\rightarrow llya Mandel's talk). Give up on testing GR with orthogonal δh
- Fit PN or EOB to improve agreement with NR Introduces dependence between NR and analytical waveforms, which may bias accuracy estimate of model.

Exploring Parameter Space \& Precession

Waveform Catalog Efforts

Ninjal (2008)

Results from the first NINJA project

Ninja2 (2012)

Lack of parameter space coverage

* BH-BH simulations are hard
- World-wide NINJA-2 collaboration computed 40 spin-alinged systems (no precession at all)

Ajith ea, 1211.5319
Harald Pfeiffer ICTS @ Bangalore Jun 2I, 2013

NR-AR

* 9 NR groups
* Very ambitious goals:
- Significantly improved length and accuracy requirements for BSSN
- Many mergers for SpEC/SXS
* Extensive error-analysis and cross-comparison
* Unified GW extrapolation Identified and fixed vast number of problems in
various' NR groups
computational approaches
- Resolution
- Wave-extraction
- eccentricity removal

NR AR error analysis

NR-AR parameter space coverage

* 25 Waveforms
(orange dots)
- 5 precessing
- I7 spinning

NRAR: NR vs. AR comparison

* Aligned-spin waveforms:
* Comparisons with analytical models
* Overlap integration starts at f_low, NR

Harald Pfeiffer ICTS @ Bangalore Jun 2I, 20
PRELI
hursday, June 27, 13

SXS waveform catalog

* 700 configurations quasi-circularized (Mroue, HP I2I0.2958)
* I7I simulations completed
- Mroue ea, arXiv:I304.6077

Abdul H. Mroué, ${ }^{1}$ Mark A. Scheel, ${ }^{2}$ Béla Szilágyi, ${ }^{2}$ Harald P. Pfeiffer, ${ }^{1,3}$ Michael Boyle, ${ }^{4}$ Daniel A. Hemberger, ${ }^{4}$ Lawrence E. Kidder, ${ }^{4}$ Geoffrey Lovelace,,${ }^{5,2}$ Serguei Ossokine, ${ }^{1,6}$ Nicholas W. Taylor, ${ }^{2}$ Anıl Zenginoğlu, ${ }^{2}$ Luisa T. Buchman, ${ }^{2}$ Tony Chu, ${ }^{1}$ Evan Foley, ${ }^{5}$ Matthew Giesler, ${ }^{5}$ Robert Owen, ${ }^{7}$ and Saul A. Teukolsky ${ }^{4}$

I7I waveform catalog

 1

-

-1

 $\begin{array}{ccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2000 & 4000 & 6000 & 8000 & 10000 & 12000\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 1 \\ 2000 & 4000 & 6000 & 8000\end{array}$

Examples of precessing binaries

Mass-ratio 3 spins $0.5 \& 0$

Orientation-dependence of waveform

Mroue ea, arXiv: I 304.6077

Uses

Non-spinning BH-BH

* Basis for EOBNR

Non-spinning BH-BH

* Basis for EOBNR
* test \& improve EOBNR with more and longer waveforms

Non-spinning BH-BH

* Basis for EOBNR
* test \& improve EOBNR with more and longer waveforms
* construct NR-only template banks
- Brown, Cannon, Kumar, MacDonald, HP + SXS
- H8: Prayush Kumar

Ilana MacDonald (CITA)

Spinning black holes

* Test \& refine formulae for remnant properties
- Dan Hemberger et al in prep
* Aligned Spin EOB-models
- CIO:A.Taracchini

$q=I$, equal \& aligned spins
(courtesy Dan Hemberger)

Very long waveforms

* $q=3, X_{A}=0.5,33$ orbits

Cumulative phase-error smaller than
I5-orbit non-spinning
 simulation (!)
Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Very long, precessing waveforms

\hat{L}_{PN} vs. \hat{L}_{NR}

$$
\mathrm{q}=1.5 \quad \mathrm{X}_{\mathrm{A}}=0.5
$$

2 precession cycles
work by Sergei Ossokine (CITA)

CIO: Serguei Ossokine

Modest precession

* 32 runs with random mass-ratio $\mathrm{I}<\mathrm{q}<2$, random spins $\mathrm{X}<0.5$

Varying eccentricity

- Investigate when e $=0$ becomes noticeable
* Periastron Advance
- CIO:Tanja Hinderer

$$
\mathrm{M}_{\mathrm{A}} / \mathrm{M}_{\mathrm{B}}=1.5, \quad \chi_{\mathrm{A}}=0.5, \quad \chi_{\mathrm{B}}=0
$$

$$
\mathrm{e}=8 \times 10^{-5}
$$

$$
\mathrm{e}=2 \times 10^{-4}
$$

$$
e=2 \times 10^{-3}
$$

- =2x10

Caveats

Convergence of some runs

* Spectral Adaptive-Mesh-Refinement
- instrumental for mergers \& efficiency.
* Not as well understood as "old" code
- some runs affected
* Decided to keep the waveforms anyway

Higher modes, GW extrapolation

* Higher modes extracted
- BUT: much less experience and testing of higher modes compared to $(2,2)$ mode.

Waveform extrapolation works fine

- BUT: our experience based on non-precessing waveforms. Problems may arise.

Challenges

Expanding parameter space coverage

* Most spinning runs at $\mathrm{q}<2$

* So far, pushing parameters was always difficult
- Each arrow I-2years hard work

