Precessing NR simulations

Harald Pfeiffer, CITA

ICTS Program on Numerical Relativity ICTS/TIFR Bengaluru June 26, 2013

Today's goal:

- How does one compute these?
- Where are we in terms of parameter space exploration?

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Special feature per Sathya's request

Harald Pfeiffer NRDA/Amaldi July 11, 2011

Spinning NR-AR comparison

- * SpinTaylorT4 w/ 2.5 PN spin and WRONG χ_2 =+-0.5
 - Thanks, Ajith!
- * Numerical Relativity: q=8, χ_1 =-0.5 / 0 / +0.5. χ_2 =0

Thursday, June 27, 13

q=8 spinning PN-NR comparison

PRELIMINARY: COMPARISON PERFORMED THIS MORNING

Procedure

• Extract $\phi(t)$ from time-domain waveform

$$h_{22}(t) = A(t) \exp(-i\phi(t))$$

Compute frequency

$$\omega(t) = \frac{\phi(t)}{dt}$$

• Eliminate time t, to yield

 $\phi(\omega)$

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

PRELIMINARY RESULTS

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Background NR

Harald Pfeiffer NRDA/Amaldi July 11, 2011

SXS collaboration Simulation of eXtreme Spacetimes

- Goal: Simulate compact object binaries to satisfy LIGO's data-analysis needs
- Cornell, Caltech, CITA, WashU, Fullerton, Oberlin
- Work presented here involves:

Numerics: L. Buchman¹, T. Chu², L. Kidder³, S. Lau⁴, G. Lovelace⁵, A. Mroue², S. Ossokine², R. Owen⁶, M. Scheel¹, B. Szilagyi¹, N. Taylor¹, S. Teukolsky² <u>Analysis:</u> M. Boyle³, D. Brown⁷, A. Buonanno⁸, I. MacDonald¹, S. Nissanke¹, Y. Pan⁸, A. Taracchini⁸ *I Caltech, 2 CITA, 3 Cornell, 4 Albuquerque, 5 Fullerton, 6 Oberlin, 7 Syracuse, 8 Maryland*

Techniques I: Generalized Harmonic

Einstein's equations

 $0 = R_{ab}[g_{ab}] = -\frac{1}{2}\Box g_{ab} + \nabla_{(a}\Gamma_{b)} + \text{lower order terms}, \qquad \Gamma_a = -g_{ab}\Box x^b.$

Generalized harmonic coordinates g_{ab} \[\] x^b \[\] H_a(x^a, g_{ab})
 (Friedrich 1985, Pretorius 2005; H = 0 used since 1920's)

 $\Box g_{ab} =$ lower order terms.

 \Rightarrow Constraint $C_a \equiv H_a - g_{ab} \Box x^b = 0$

Constraint damping (Gundlach, et al., Pretorius, 2005)

 $\Box g_{ab} = \gamma \left[t_{(a}C_{b)} - \frac{1}{2}g_{ab}t^{c}C_{c} \right] + \text{lower order terms}$

$$\partial_t C_a \sim -\gamma C_a$$
.

II. Boundary conditions

Constraint preserving
 Nearly transparent to outgoing radiation

Lindblom, Scheel, Kidder, Owen, Rinne 2006

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

III: Spectral methods

Expand in basis-functions, solve for coefficients

$$u(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi_k(x)$$

Compute derivatives analytically

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)$$
• Compute nonlinearities in physical space

Spectral

Finite differences

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Why spectral methods?

\clubsuit Smooth solutions \Rightarrow exponential convergence

HP et al, 2002

... but more difficult than finite differences

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

V. Solve constraints

HP ea 02,03

Lovelace ea 08

Spins above ~0.8 ... 0.9 require special techniques

$$0 = \tilde{\nabla}^{2}\psi - \frac{1}{8}\tilde{R}\psi - \frac{1}{12}K^{2}\psi^{5} + \frac{1}{8}\psi^{-7}\tilde{A}^{ij}\tilde{A}_{ij},$$

$$0 = \tilde{\nabla}_{j}\left(\frac{\psi^{7}}{2(\alpha\psi)}(\tilde{L}\beta)^{ij}\right) - \frac{2}{3}\psi^{6}\tilde{\nabla}^{i}K$$

$$- \tilde{\nabla}_{j}\left(\frac{\psi^{7}}{2(\alpha\psi)}\tilde{u}^{ij}\right),$$

$$0 = \tilde{\nabla}^{2}(\alpha\psi) - (\alpha\psi)\left[\frac{\tilde{R}}{8} + \frac{5}{12}K^{4}\psi^{4} + \frac{7}{8}\psi^{-8}\tilde{A}^{ij}\tilde{A}_{ij}\right]$$

$$+ \psi^{5}(\partial_{t}K - \beta^{k}\partial_{k}K),$$

$$(37b)$$

ICTS @ Bangalore Jun 21, 2013

Harald Pfeiffer

VI. Define Spin

In axisymmetry anglar momentum rigourously defined e.g. via the Hamiltonian that generates the rotation (Brown & York, 1993; isolated/dynamical horizon framework)

$$J=\frac{1}{8\pi}\oint_{\mathcal{S}}\left(K_{ij}-g_{ij}K\right)\phi^{i}s^{j}dA$$

- φⁱ rotational Killing vector
 sⁱ unit-normal to S in Σ
 g_{ij} metric in Σ
 K_{ij} extrinsic curvature of Σ in M
- S sphere at $\infty \Rightarrow$ ADM angular momentum
- S 2-sphere at finite distance \Rightarrow quasilocal spin

Spin in non-axisymmetric spacetimes

- Would like to define "spin" in absence of axisymmetry.
- Choose "approximate Killing vector" φⁱ; evaluate

$$J_{\phi} = \frac{1}{8\pi} \oint_{\mathcal{S}} \left(K_{ij} - g_{ij} K \right) \phi^{i} s^{j} dA$$

- Q: How to choose ϕ^i ?
 - ϕ^i coordinate rotation, $\vec{\phi} = x\hat{e}_y y\hat{e}_x$ (depends on coordinate system)
 - Integrate Killing transport equation (Dreyer et al, 2003) (depends on integration path; φⁱ not smooth)
 - A variational approach

Variational approx. Killing vectors

- Require $D_A \phi^A = 0 \Rightarrow \phi^A = \varepsilon^{AB} \partial_B z$ for some potential z. (A, B: coordinates within S, D_A derivative within S)
- Cook & Whiting 07 Owen 07 Lovelace, Chu, HP, Owen 08

Minimize functional

$$\mathcal{I} = \oint_{\mathcal{S}} (D_{(A}\phi_{B)}) (D^{(A}\phi^{B)}) \, dA + \lambda \left(\oint_{\mathcal{S}} \phi_{A}\phi^{A} \, dA - N \right)$$

Results in generalized Eigenvalue problem

$$\left(D^2 + {}^2R\right)D^2z + \left(D_A{}^2R\right)D^Az = \lambda D^2z$$

• Spectral expansion $z(\theta, \varphi) = \sum_{l=1}^{L} \sum_{|m| \le l} A^{lm} Y_{lm}(\theta, \varphi)$ results in matrix-equation for coefficients A^{lm} :

$$\Rightarrow M^{lm}{}_{l'm'}A^{l'm'} = \lambda N^{lm}{}_{l'm'}A^{l'm'}$$

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Example

The three smallest eigenvalues correspond to rotations

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

VII Control BH properties

- Fix BH-distance, Omega, radial velocity
- Iteratively solve the initial-value problem, to adjust
 - black hole masses (2 DoF)
 - black hole spins (6 DoF)
 - center of rotation (2 DoF)

VIII Control orbital eccentricity

* Initial data parameters Ω_0, v_r (or p_t, p_r) determine orbital eccentricity and phase at periastron

Unique values for zero eccentricity

HP ea 07, Boyle ea 07, Buchman ea 12

Mroue, HP arxiv1210.2958

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Iterative eccentricity removal works, but is tedious.

Mroue, HP arxiv1210.2958

Iterative eccentricity removal works, but is tedious.

• Let's get over with it!

Mroue, HP arxiv1210.2958

Iterative eccentricity removal works, but is tedious.

• Let's get over with it!

Mroue, HP arxiv1210.2958

Iterative eccentricity removal works, but is tedious.

- Let's get over with it!
- Eccentricity reduce...

Mroue, HP arxiv1210.2958

Iterative eccentricity removal works, but is tedious.

- Let's get over with it!
- Eccentricity reduce...
 - 40 non-spinning

Mroue, HP arxiv1210.2958

Iterative eccentricity removal works, but is tedious.

• Let's get over with it!

Eccentricity reduce...

- 40 non-spinning
- 190 single-spin

Mroue, HP arxiv1210.2958

Iterative eccentricity removal works, but is tedious.

• Let's get over with it!

Eccentricity reduce...

- 40 non-spinning
- 190 single-spin
- 300 double-spin

Mroue, HP arxiv1210.2958

Iterative eccentricity removal works, but is tedious.

• Let's get over with it!

Eccentricity reduce...

- 40 non-spinning
- 190 single-spin
- 300 double-spin
- 130 random spin directions

Mroue, HP arxiv1210.2958

Eccentricity in precessing BH-BH

With enough care, iterative eccentricity removal works!

Buonnano, Kidder, Mroue, HP, Tarraccini, 10

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

IX. Precession & Dual-Frames

 Map excision boundaries onto BH-location

$$x^{\overline{\imath}} = a(t)R(t)_j^{\overline{\imath}}x^j + T^{\overline{\imath}}(t)$$

- Measure location of BHs, and adjust dynamically:
 - Expansion factor a(t)
 - Translation T(t)
 - Rotation R(t)

Precession & Dual-Frames

Early technique: Pitch & Yaw

• Rotate about y-axis, then about z-axis

$$R = \begin{pmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta\\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

Works for moderate precession

Polar singularity breaks Pitch&Yaw

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013
Solution: Quaternions

Represent rotation without preferred axis/singularity

• Unit-Quaternions represent rotations

$$\mathbf{q} = [q_0, \vec{q}] = q_0 + iq_1 + jq_2 + kq_3$$

$$R_{\mathbf{q}}\vec{v}:\mathbf{q}[0,\vec{v}]\mathbf{q}^* = [0, R_{\mathbf{q}}\vec{v}]$$

Represent control-system without preferred axis

- Control instantaneous frequency $\vec{\Omega}(t)$ of grid w.r.t inertial frame
- Update rotation matrix via

$$\frac{d\mathbf{q}(t)}{dt} = \frac{1}{2}\mathbf{q}(t)[0,\vec{\Omega}(t)]$$

Ossokine, Kidder, HP arxiv1304.3067

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Test: inclined PN inspirals

Test: inclined PN inspirals

X: Merger & Ringdown

* Mark Scheel, Bela Szil

- Szilagyi, Lindblom, Scheel 08. Many additions since then
 - Hemberger ea, 1211.6079

Close to merger

- Switch domain-decomposition
- Active gauge conditions
- Adaptive Mesh Refinement

After common horizon

 Switch to distorted concentric shells

Computational grid, mass-ratio 8

XI. Wave-extraction and extrapolation

Mike Boyle

• Careful extrapolation with many consistency-checks

Nick Taylor, et al (in prep):

• Cauchy-Characteristic Extraction & comparison with extrapolation

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Mroue ea, arXiv: 1304.6077

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Boyle et al 2007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Boyle et al 2007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Boyle et al 2007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Boyle et al 2007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Thursday, June 27, 13

Or do they?

- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle et al 2007

Or do they?

NR & PN agree!

- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle et al 2007

Unequal mass, non-spinning BH-BH

L. Buchman, HP, M. Scheel, B. Szilagyi, 1206.3015

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

q=1,2,3,4 (15 orbits), q=6 (20 orbits)

q=6 space-time diagram of AH's, colored by R

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Waveforms

Mass-ratios q=1,2,3,4,6. 15 orbits (20 for q=6)

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Accuracy

Sum of irreducible masses ~I part in 10⁶

(non-)effect of artificial outer boundary

Necessary Length of Numerical Waveforms

MacDonald, Nissanke, HP, 2011 MacDonald, Mroue, HP, ... 2012

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

PN NR comparison

* Match at Mω=0.1, compute phase-difference over preceding 8 GW-cycles

MacDonald ea, arXiv:1210.3007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

PN NR comparison

* Match at M ω =0.1, compute phase-difference down to M ω =0.05

MacDonald ea, arXiv:1210.3007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Length requirements for NR

Must switch to NR early enough to avoid large PN errors

Length: Parameter estimation

44

- Start NR so early that different PN approximants cannot be distinguished by LIGO
- need <u>much</u> longer **NR** waveforms
 - Hannam ea 2010
 - Ohme ea 2011
 - Boyle 2011
 - MacDonald ea 2011
 - Damour ea 2011

Thursday, June 27, 13

Harald Pfeiffer

Length: Parameter estimation

New 30 orbit equal-mass, zero spin simulation

Length-Statements depend on λ

Non-spinning, unequal masses

Estimated impact of 4-PN

TaylorT4 phase-evolution

$$\frac{dx}{dt} = \frac{64c^3\nu}{5GM}x^5\left(1 + \sum_k A_k x^k\right)$$

Longer NR-waveforms: Alternatives

Option I: Longer NR?

• Can **not** perform long enough sims

Option 2: Live with it

 $\frac{T}{M} \approx 5\nu^{3/5} (2\pi N)^{8/5}$

- Ohme ea 2011: Systematic errors δM/M~0.1%, δ(S/M²)~ 0.1
- Option 3: Wait for 4PN
 - Buys us a factor of 2

Option 4: Relax rigor

- Only $\delta h \underline{tangential}$ to signal-manifold causes systematic errors (\rightarrow Ilya Mandel's talk). Give up on testing GR with orthogonal δh
- Fit PN or EOB to improve agreement with NR Introduces <u>dependence</u> between NR and analytical waveforms, which may bias accuracy estimate of model.

Exploring Parameter Space & Precession

Harald Pfeiffer NRDA/Amaldi July 11, 2011

Waveform Catalog Efforts

-2000-1000t/M

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

0.3 SpEC q=1

BAM FAU

BAM HHB S25

BAM HHB S75

MayaKranc e0

LazEv

0

-0.3

0.3

-0.3

0.3

-0.3

0.3

0

-0.3

0.3

0

-0.3

0.3

0

-0.3

Lack of parameter space coverage

BH-BH simulations are hard

• World-wide NINJA-2 collaboration computed 40 spin-alinged systems (no precession at all)

	1 - 1 / 1	14.8 14	
= 1.0 _X = -0.95	BAM q = 1.0 χ = -0.85	BAMg=1.0 x=-0.75	8AM q = 1.0 χ = -0.5
MMMMM	WWW/WW/	1////www.www.	
= 1.0 x = -0.44	Liama q = 1.0 χ = -0.4	BAMq=1.0 x=-0.25	Liama q = 1.0 χ = -0.2
WWW MWW	~~~~~	10000000000000000000000000000000000000	·/////////////////////////////////////
$q = 1.0 \chi = 0.0$	GATech $q = 1.0 \chi = 0.0$	Liama q = 1.0 x = 0.0	SpEC q = 1.0 x = 0.0
MANNA MILL	WWW.9	10000000000000000000000000000000000000	
to toot			
q=1.0 x = 0.2	Liama q = 1.0 x = 0.2	BAMq = 1.0 x = 0.25	GAllech g = 1.0 x = 0.4
WWWWWW Phil	100000 ANNO ANNO ANN	NAMA NAMA NAMA NAMA NAMA NAMA NAMA NAMA	10000000000000000000000000000000000000
the last			
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		BANG - 10 X-05	
A A A A A A A A A A A A A A A A A A A	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A A A A A A A A A A A A A A A A A A A	VVVVVVVVII AMMON
10 - 0.75	Outwide a 10 x = 08	BAMe=10 x=0.85	UNC 0 = 10 × = 0.85
A A A A A A A A A A A A A A A A A A A	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0			A A A A A A A A A A A A A A A A A A A
W9WWWWW9W	·····		
9 10 x = 0.9	SpEC q = 1.0 x = 0.97		-2000.0 -1000.0
4-10 x - 09	SpEC q = 1.0 x = 0.97		-2000.0 -1000.0 1M
9-10, -09 MWWW/M	speC q = 1.0 x = 0.97		-2000.0 -1000.0 t/M
9-10, -09 MeW19 0 -1000.0 0	$5ye^{i}C_{R} = 10 \chi = 0.07$	$0.0 = \chi_2 = 0$	-2000.0 -1000.0 5M
9-10-100.0 0 5M	1000000 + 100000 100000 + 100000	$1 = \chi_2 = 0$ Uama q = 2.0	-2000.0 -1000.0 5M
9-10, -09 MWWWWAR 0 -1000.0 0 5M	$10^{-1000.0}$ $10^{-1000.0}$ $10^{-2000.0}$ $10^{-1000.0}$	$\chi_2 = 0$	-2000.0 -1000.0 5M 5pEC q = 2.0
A - 10 x - 09 MeW - 10 0 - 1000.0 0 5M - 20 - 20 - 20	$5eEC q = 10 \chi = 0.07$ $MWWWWWWWWWWWWWW 0 -2000.0 -1000.0 tM q \neq 1, \chi0.047ech q = 20WWWWWWWWWWWWW$	$ \begin{array}{c} 0.0 \\ = \chi_2 = 0 \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	-2000.0 -1000.0 50 50 50 50 6 6 4 50 50 50 50 50 50 50 50 50 50 50 50 50
4 - 1.0 x - 0.9 MeW Me 0 - 1000.0 0 5M -2.0 WWWW/e -3.0 -3.0 WWW/e	$s_{p}e^{i}c_{q} = 1.0 \times -0.07$ $MWWWWWWWWWWW 0 -2000.0 -1000.0 tM q \neq 1. \chi_{1}Q_{M} free h q = 2.0MWWWWWWWWWWWWWW$	0.0 = χ ₂ = 0 Liama q = 2.0 MMM φ WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	-2000.0 -1000.0 5M 59EC q = 20 COMONIC - 40 LEAN q = 40
4 - 1.0 x - 0.9 WeW - 19 0 - 1000.0 0 ±M -2.0 WWWWE	speCq = 10 χ = 0.97 NVWWWWWWWW 0 -2000.0 -1000.0 1M q ≠ 1, χ; 0x0exhq = 20 NVWWWWWWW SpECq = 3.0 NVWWWWWWW	0.0 = χ ₂ = 0 Llama q = 20 MMM q = 40 EAM q = 40	-2000.0 -1000.0 5M SeEC e = 2.0
4.0 ¹ 40	speC q = 10 χ = 0.97 NVWWWWWWWWWW 0 -2000.0 1000.0 1M q ≠ 1, χ 0xfrein q = 20 VVVVVVVVVV/q spEC q = 3.0 SpEC q = 6.0	0.0 = χ ₂ = 0 Uama q = 2.0 WWW & WWW & W	-2000.0 -1000.0 5M 56EC q = 20
4.0 VAVIAN ANIA	speCq = 10 χ = 0.97 WWWWWWWWWWW 0 -2000.0 1000.0 1000.0 y ≠ 1, χ; 0xfrein q = 20 0xfrein q = 20 0xfrein q = 20 0xfrein q = 20 0xfrein q = 20 x spECq = 30 x spECq = 60 x	0.0 = χ ₂ = 0 Uama q = 2.0 VVVVVA	-2000.0 -1000.0 50EC q - 20
4.0 × 100.0 0	speC q = 1.0 χ = 0.97 WWWWWWWWWWW 0 -2000.0 -1000.0 tM g ≠ 1, χ; 0x0exin q = 20 WWWWWWW SpEC q = 3.0 WWWWWW SpEC q = 6.0 WWWWWW	0.0 = χ ₂ = 0 Uama q = 2.0 WWW/A/WW/A/W/A/W/A/W/A/W/A/W/A/W/A/W/A/	$\begin{array}{c} -2000.0 & -1000.0 \\ & 5000.0 & -1000.0 \\ & 5000.0 & -1000.0 \\ & 0.000.0 & -1000.0 \\ & 0.000.0 & -1000.0 \\ & 0.000.0 & -1000.0 \\ & 0.000.0 \\ & 0$
4.0 -1000.0 0 -10 -1000.0 0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	SpEC q = 10 x = 0.97 MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	0.0 = χ ₂ = 0 Uame q = 20 WWW/Φ/WW/Φ/ ΒΑΜ q = 40 RT q = 10.0 RT q = 10.0 0.0 -2000.0 -1000.0 EM	$\begin{array}{c} -2000.0 & -1000.0 \\ & 5000.0 & -1000.0 \\ & 5000.0 & -1000.0 \\ & & & & & & & & & & \\ & & & & & & & $
-20 -30 -1000.0 0 -30 -30 -30 -30 -30 -30 -30 -30 -30 -3	SpeC q = 10 x = 0.97 MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW 0 -2000.0 -1000.0 1M g ≠ 1, χ; Oxflexin q = 20 WWWWWWWWW SpEC q = 3.0 WWWWWW SpEC q = 3.0 WWWWWW SpEC q = 6.0 WWWWWW SpEC q = 6.0 WWWWW M SpEC q = 5.0 MWWWWW SpEC q = 5.0 MWWWWW SpEC q = 5.0 MWWWWW SpEC q = 5.0 MWWWWWW SpEC q = 5.0 MWWWWWWWW SpEC q = 5.0 MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	0.0 0.0 1 = χ ₂ = 0 Liama q = 2.0 MMM q = 4.0 RIT q = 10.0 RIT q = 10.0 0.0 -2000.0 -1000.0 bM	$\begin{array}{c} -2000.0 & -1000.0 \\ & 5000.0 & -1000.0 \\ & 5000.0 & -1000.0 \\ & 0$
4.0 x - 0.9 We we	$s_{PECq = 10 \times -0.97}$	0.0 0.0 1 χ ₂ = 0 Llama q = 2.0 MAM q = 4.0 RT ų = 10.0 0.0 -2000.0 -1000.0 UM	$\begin{array}{c} -2000.0 & -1000.0 \\ & 506C q = 20 \\ \hline \\ & 0000.0 & -1000.0 \\ \hline \\ & 0000.0 & -1000.0 \\ & 50M \\ \hline \\ & q \neq 1, \ \chi_1 = \chi_2 = \\ \hline \\ & 0476ch q = 20 \ \chi = 0.2 \\ \hline \\ & 0000.0 & -1000.0 \\ \hline \\ & 000$
-20 -30 0 -1000.0 0 5M	$speC_{q} = 10 \times -0.97$	0.0 = χ ₂ = 0 Liama q = 2.0 MMM q = 4.0 BAM q = 4.0 RT q = 10.0 RT q = 10.0 0.0 -2000.0 -1000.0 bM	$\begin{array}{c} -2000.0 & -1000.0 \\ & 506C q = 2.0 \\ & & & \\ & $
4.0 0 -1000.0 0 10 -1000.0 0	$speC_{q} = 10 \times -0.97$ $MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW$	0.0 1 = χ ₂ = 0 Ulama q = 2.0 VVVVV & VVVVV & VVVV EAM q = 4.0 0.0 -2000.0 -1000.0 VM PAU q = 3.0 χ ₁ = 04 χ ₂ = 0.6 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	$\begin{array}{c} -2000.0 & -1000.0 \\ & 5000.0 & -1000.0 \\ & 50000.0 & -1000.0 \\ & 0.000.0 & -1000.0 \\ & 5000.0 & -1000.0 \\ &$
	- 10 x - 0.96 - 10 x - 0.44 - 10 x - 0.44 - 10 x - 0.44 - 10 x - 0.44 - 10 x - 0.04 - 10 x - 0.2 - 10 x - 0.44 - 10 x	= 10 x = 0.95 AVWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	= 10 x = -0.95 BAM q = 10 x = -0.85 BAM q = 10 x = -0.75 AVWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Ajith ea, 1211.5319

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

NR-AR

9 NR groups

- Very ambitious goals:
 - Significantly improved length and accuracy requirements for BSSN
 - Many mergers for SpEC/SXS
- Extensive error-analysis and cross-comparison
- Unified GW extrapolation Identified and fixed vast number of problems in various' NR groups computational approaches
 - Resolution
 - Wave-extraction
 - eccentricity removal

NR AR error analysis

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

NR-AR parameter space coverage

25 Waveforms (orange dots)

- 5 precessing
- 17 spinning

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

- Aligned-spin waveforms:
- Comparisons with analytical models

Overlap integration starts at f low, NR

Thursday, June 27, 13

Harald Pfeiffer

SXS waveform catalog

700 configurations quasi-circularized (Mroue, HP 1210.2958)

I7I simulations completed

- Mroue ea, arXiv:1304.6077
- Abdul H. Mroué,¹ Mark A. Scheel,² Béla Szilágyi,² Harald P. Pfeiffer,^{1,3} Michael Boyle,⁴ Daniel A. Hemberger,⁴ Lawrence E. Kidder,⁴ Geoffrey Lovelace,^{5,2} Serguei Ossokine,^{1,6} Nicholas W. Taylor,² Anıl Zenginoğlu,² Luisa T. Buchman,² Tony Chu,¹ Evan Foley,⁵ Matthew Giesler,⁵ Robert Owen,⁷ and Saul A. Teukolsky⁴

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013
171 waveform catalog

0009 0032 0038 0041 0043 0044 0046 0054 0057 0059 0062 0109 0111 0122 0147 0151 0154
0030 0051 0052 0053 10156 0159 0167 1
00106 016 0117 0118 0119 0120 0121 0123 016
0042 0137 0138 0139 0140 0141 0142 0144 0145 0146 0148 0149 0162
0025 0026 0028 0029 0039 0060 0077 0078 0102 0102 0171
0014 0037 0056 0061 0153 0157 0158 0160 0166
0065 0093 0093 0099

3 years, 50 Mio CPU-hours

Mroue ea, arXiv:1304.6077

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Examples of precessing binaries

Mroue ea, arXiv:1304.6077

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Orientation-dependence of waveform

Mroue ea, arXiv: 1304.6077

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Non-spinning BH-BH

····· q=1 ····· q=2 - Scheel ea 2007 ····· q=3 Buchman ea 2012 ····· q=4 -12000 -8000 -4000 0 t/M

Basis for EOBNR

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Non-spinning BH-BH

Basis for EOBNR

 test & improve EOBNR with more and longer waveforms

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Non-spinning BH-BH

Basis for EOBNR

 test & improve EOBNR with more and longer waveforms

construct <u>NR-only</u> <u>template banks</u>

- Brown, Cannon, Kumar, MacDonald, HP + SXS
- H8: Prayush Kumar

Ilana MacDonald (CITA)

Harald Pfeiffer

Spinning black holes

 E_{rad}

Error

-1.0

Test & refine formulae for remnant properties

> • Dan Hemberger et al in prep

Aligned Spin **EOB-models** CI0:A.Taracchini

0.0002 0.0000 • -0.0002-0.0004▼ r=0.001353 1.0 0.0006 -0.50.5 0.0 Initial spin, χ_i q=1, equal & aligned spins (courtesy Dan Hemberger) ICTS @ Bangalore Jun 21, 2013

0.12

0.11

0.10

0.09

0.08

0.07

0.06

0.05

0.04

▼ 0.0006

0.0004

Very long waveforms

* q=3, χ_A=0.5, 33 orbits

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Cumulative phase-error smaller than I 5-orbit non-spinning simulation (!)

Very long, precessing waveforms

2 precession cycles

work by Sergei Ossokine (CITA)

CIO: Serguei Ossokine

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Modest precession

* 32 runs with random mass-ratio 1 < q < 2, random spins $\chi < 0.5$

Varying eccentricity

Investigate when
e≠0 becomes
noticeable

Periastron Advance
CI0:Tanja Hinderer

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Convergence of some runs

- instrumental for mergers & efficiency.
- Not as well understood as "old" code
 - some runs affected
- Decided to keep the waveforms anyway

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Higher modes, GW extrapolation

Higher modes extracted

• BUT: much less experience and testing of higher modes compared to (2,2) mode.

Waveform extrapolation works fine

• BUT: our experience based on non-precessing waveforms. Problems may arise.

Challenges

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Expanding parameter space coverage

Most spinning runs at q<2</p>

So far, pushing parameters was <u>always</u> difficult

• Each arrow 1-2years hard work