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Covering radius and diameter

M a closed, orientable hyperbolic 3-manifold

diamM = max
P,Q∈M

dist(P,Q)

For P ∈ M,

covPM = max
Q∈M

dist(P,Q)

So

diamM = max
P∈M

covPM.

In particular, a lower bound for minP∈M covPM is a lower bound

for diamM.
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Covering radius and rank of π1

For any ε > 0, and for Mn hyperbolic, define

Mthick(ε) = {x ∈ M : injxM ≥
ε

2
}.

Work of Zassenhaus, Margulis, Thurston shows there is a

constant ε = ε(n) > 0 such that for any closed, orientable,

hyperbolic Mn, each component of M −Mthick(ε) is diffeomorphic

to S1×Dn−1. In particular, π1(Mthick(ε))→ π1(M) is surjective.

Let S be a maximal set of points separated pairwise by distance

≥ ε/4. Elementary arguments show the balls of radius ε/4 about

points of Mthick = Mthick(ε) cover Mthick(ε), are contractible, and

all their finite intersections are contractible. So Leray ⇒ nerve K

of the covering

{ball
ε/4

(x) : x ∈ S}

is homotopy-equivalent to Mthick(ε).
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Covering radius and rank of π1, cont’d

On the other hand, the balls of radius ε/8 about the points of S

are pairwise disjoint,

so

VolM ≥ #(S) · βn(ε/8)

where βn(r) is the volume of a ball of radius r in Hn. It grows like

constant·e(n−1)r . (For example, β3(r) = π(sinh(2r)− 2r).)

So

#(S) ≤
VolM

βn(ε/8)
.

So the number of vertices of K is bounded linearly by VolM. It’s

also possible to bound the order of the link of a vertex in the

1-skeleton in terms of n (and ε = ε(n)). So we get a linear bound

on the rank of π1(M) in terms of VolM.
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Covering radius and rank of π1, cont’d
The volume can in turn be related to the minimum covering

radius:

Proposition

If M is a closed hyperbolic n-manifold, we have

VolM ≤ βn( min
P∈M

covPM).

To prove this, set R = minP∈M covP(M), and let π : Hn → M be

a locally isometric covering map.

Choose P ∈ M with covP(M) = R; choose p ∈ π−1(P) ⊂ H3.

Set B = closed ball of radius R centered at p. Then π maps B

onto M.

So

VolM ≤ VolB = βn(R),

and the proposition is proved.
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Covering radius and rank of π1, cont’d

Since βn(R) grows like constant·e(n−1)R , it follows that

rankπ1(M) ≤ Cn exp((n − 1)R),

where R = minP∈M covPM, and Cn is a constant for each

dimension n.

This result implies that the lim sup of the quantity

(rankπ1(M)) exp(−(n − 1)R), as M varies over the closed

hyperbolic manifolds of a fixed dimension n, is finite. The result

appears to be “qualitatively sharp” in the sense that this lim sup

is strictly positive for any n.

For n = 3, using Meyerhoff’s explicit Margulis constant

ε = 0.104, one can show that

rankπ1(M) ≤ C exp(2R),

where C is about 106.
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Covering radius and rank of π1, cont’d

If M3 is orientable, and if H1(M;Zp) has rank at least 4 for some

prime p (or more generally if π1(M) has no two-generator

subgroup of finite index), one can use the value ε = log 3 by the

log 3 theorem, and obtain

rankπ1(M) ≤ C ′ exp(2R),

where C ′ is about 103.

In particular this implies that for any closed, orientable hyperbolic

3-manifold M we have

dimZ2 H1(M;Z2) ≤ C ′ exp(2R),

where C ′ is about 103.

The main result I’ll be discussing is an improvement of this, and

uses some difficult topology.
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The main geometrical result

Recall that V8 = 3.66 . . . denotes the volume of a regular ideal

hyperbolic octahedron in H3.

Geometrical Theorem
Let M be a closed, orientable hyperbolic 3-manifold, and let R

denote the minimum covering radius of M. Then

dimZ2 H1(M;Z2) ≤ B e2R ,

where

B =
94π

V8
+ 27 = 107.600 . . . .
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94π

V8
+ 27 = 107.600 . . . .
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Some topological definitions

The geometrical theorem stated above will be proved using a

purely topological result.

The following definition is needed for

the statement of the topological result.

Let G be a finitely generated group. I will say that elements

x1, . . . , xk of G are independent if x1, . . . , xk freely generate a free

subgroup of G . If S is a finite generating set for G , I will define

the index of freedom of S , denoted If (S), to be the largest

integer k such that S contains k independent elements. I will

define the index of freedom of G , denoted If (G ), by

If (G ) = min
S

If (S),

where S ranges over all finite generating sets for G .

In addition, the statement of the topological result uses the

notations χ(X ) and kish(M,F ), which were defined in my second

talk.
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The main topological result

Topological Theorem

Let M be a closed, orientable hyperbolic 3-manifold. Then there

is a (possibly empty and possibly disconnected) incompressible

surface F ⊂ M such that

188 · χ(kish(M,F )) + 54 · If (π1(M)) ≥ dimZ2 H1(M,Z2).



Deducing the geometrical theorem from the topological

theorem
The geometrical theorem is proved by combining the topological

theorem with the following two results.

Proposition A

For any complete, orientable hyperbolic 3-manifold M, we have

min
x∈M

covx (M) ≥
1

2
log(2If (π1(M))− 1).

I’ll discuss the proof in a moment. This immediately implies:

Corollary

Suppose that M is a complete, orientable hyperbolic 3-manifold.

Set R = minx∈M covx (M). Then

If (π1(M) ≤
1

2
e2R + 1.
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Deducing the geometrical theorem from the topological

theorem, cont’d

Here is the second result needed to pass from the topological

theorem to the geometrical theorem:

Lemma B
Suppose that M is a complete, orientable hyperbolic 3-manifold.

Set R = minx∈M covx (M). Then for any incompressible surface

F ⊂ M, we have

χ(kish(M,F )) ≤
π

V8
(sinh(2R)− 2R).
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Proof of Proposition A

Given M = H3/Γ, P ∈ M, k = If (π1(M))

Must show

covP(M) ≥
1

2
log(2k − 1).

Choose p ∈ H3 lying above P

D ⊂ H3 = Dirichlet domain centered at p

S = { face-pairings of D} a generating set for Γ

So S contains k independent elements x1, . . . , xk .

By the log(2k − 1) Theorem we have

dist(p, xj · p) ≥ log(2k − 1) for some j ∈ {1, . . . , k}.
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Proof of Proposition A, concluded

Set H = plane containing one of the faces of D paired by xj

Set q = point of intersection of H with the line joining p to xj

Set Q = image of q in M

Definition of Dirichlet domain now implies that

dist(P,Q) = dist(p, q) =
1

2
dist(p, xj · p) ≥

1

2
log(2k − 1)

and hence

covP(M) ≥
1

2
log(2k − 1).
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Proof of Lemma B

By the proposition from the beginning of the talk we have

VolM ≤ VolB = π(sinh(2R)− 2R).

But by Agol-Storm-Thurston we have

VolM ≥ V8χ(kish(M,F ).

So

V8χ(kish(M,F ) ≤ π(sinh(2R)− 2R),

which gives the conclusion.
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Some ingredients in the proof of the topological theorem

Recall the statement:

Topological Theorem

Let M be a closed, orientable hyperbolic 3-manifold. Then there

is a (possibly empty and possibly disconnected) incompressible

surface F ⊂ M such that

188 · χ(kish(M,F )) + 54 · If (π1(M)) ≥ dimZ2 H1(M,Z2).

One ingredient is the following result:

Proposition C

For any compact, orientable, irreducible, atoroidal 3-manifold N,

we have χ(N) < If (π1(N)).
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Some ingredients in the proof of the topological

theorem, cont’d

Proposition C has the

Corollary

Let M be a closed, orientable hyperbolic 3-manifold, and let G be

a finitely generated subgroup of π1(M). Then χ(G ) < If (G ).

This Corollary follows from Proposition C via the compact core

theorem (Scott-S.): if M̃ denotes the covering space of M defined

by the subgroup G , there is a compact, irreducible submanifold N

of M̃ such that the inclusion homomorphism π1(N)→ π1(M̃) is

an isomorphism. Apply Proposition C to this N.
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Some ingredients in the proof of the topological

theorem, cont’d

Idea of proof of Proposition C:

The characters of SL2(C)-representations of π1(N) are identified

with points of a complex affine algebraic set X (N), the character

variety of N. The minimum (complex) dimension of any

component of X (N) is 3χ(N).

Set c = χ(N). Suppose x1, . . . , xm generate G
.

= π1(N). Need to

show at least c + 1 of the xi are independent. Use induction on

N; easy for N = 1. Suppose m > 1, set G ′ = 〈x1, . . . , xm〉.
Compact core theorem ⇒ G ′ = π1(N ′) for some N ′. If G is a

free product G ′ ? 〈xm〉 then χ(N ′) = c − 1. Induction hypothesis

⇒ x1, . . . , xc independent after re-indexing. So x1, . . . , xc , xN
independent and done.
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Some ingredients in the proof of the topological

theorem, cont’d

If G not a free product, can use a relation to show lowest

dimension of a component of X (N) exceeds lowest dimension of a

component of X (N ′) by < 3,

so 3c = 3χ(N) < 3χ(N ′) + 3, hence

χ(N ′) ≥ c . Induction hypothesis ⇒ at least c + 1 of the xi are

independent, so done in this case too.

The idea of using the character variety for this kind of argument

is due to Agol, and seems to give stronger results of this kind

than homological arguments used earlier by Jaco-S. and others.
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Some ingredients in the proof of the topological

theorem, cont’d

Roughly speaking, the theorem says that if n = dimZ2 H1(M,Z2)
“big” (in a multiplicative sense) in comparison with If (π1(M)),

then there is a (possibly empty and possibly disconnected)

incompressible surface F ⊂ M such that χ(kish(M,F )) is not

“very small” in comparison with dimZ2 H1(M,Z2).

Here is a very fuzzy sketch of the proof, under a strong

simplifying assumption that will emerge in the course of the

sketch. Let S be a generating set for π1(M) such that

If (S) = If (π1(M)). Set d = bn/2c, choose elements

x (1), . . . , x (d) of S whose images in V = H1(M;Z2) are linearly

independent, and set G = 〈x (1), . . . , x (d)〉 ≤ π1(M). The

definitions imply that If (G ) is ≤ If (M) and is therefore “small”

compared with n (and hence compared with d). So by

Proposition C, the compact core N of the covering corresponding

to G has χ(N) very small compared with d .
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Some ingredients in the proof of the topological

theorem, cont’d

ASSUME that N embeds in M via the covering map.

Using that

χ(N) is small compared with rankH1(N;Z2), can cut N along

disks and annuli to get a submanifold N ′ such that F0 = ∂N ′ is

incompressible, χ(kish(M,F0)) ≥ χ(N ′), and χ(N ′) is small

compared with rankH1(N ′;Z2). If χ(kish(M,F0)) is not very

small in comparison with n, take F = F0. Now suppose

χ(kish(M,F0)) is very small in comparison with n, and for

simplicity suppose F0 is connected and separates M. Let A and B

denote the images of the homology of the components of M − F0
in V . After doing a little linear algebra, can find an integer d ′

close to n/2 and elements x
(1)
1 , . . . , x

(d ′)
1 of S whose images in V

are linearly independent, and such that the subspace of V

spanned by these images meets A and B in subspaces having at

most half the dimensions of A and B respectively.
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Some ingredients in the proof of the topological

theorem, cont’d

Repeat the above construction with the x
(i)
1 in place of the x (i) to

get a manifold N1

which we again assume embeds in M. Isotop

N1 so ∂N1 meets F0 transversally in a minimal number of curves.

Set N∗1 = N1 \ X where X is a standard neighborhood of F0.

(Note N∗1 is disconnected.) Repeat cut-and-paste construction

with N∗1 in place of N to get N ′1, and set F1 = F0 ∪ ∂N ′1. If

χ(kish(M,F1)) is not very small in comparison with n, take

F = F0. If χ(kish(M,F1)) is very small in comparison with n,

continue.
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Some ingredients in proof of top. theorem, cont’d
This sketch shows that “desingularizing” an immersed surface in

M, i.e. replacing it with an embedded surface having similar

properties, is another major step in the proof of the Topological

Theorem.

While many classical results in 3-manifold theory,

beginning with Dehn’s Lemma, treat the problem of

desingularizing surfaces, the particular result needed here is new:

Proposition D

Let M be compact, orientable, irreducible, atoroidal 3-manifold.

Let G be a finitely generated subgroup of π1(M). Let T denote

the image of G under the natural homomorphism

π1(M)→ H1(M;Z2). Assume that dim T ≤ (dim H1(M;Z2))− 2.

Then there is a (possibly disconnected) compact, 3-dimensional

submanifold B of M, having incompressible boundary, such that

dim T + dim T̆ − dim(T ∩ T̆ ) ≤ χ(G )− χ(B),

where T̆ denotes the image of the inclusion homomorphism

H1(B;Z2)→ H1(M;Z2).
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Some ingredients in proof of top. theorem, cont’d
Proposition D is proved by combining the

Papakyriakpoulos-Shapiro-Whitehead method of double coverings

with the following result:

Theorem
Let M be a compact, orientable, irreducible 3-manifold. Let G be

a finitely generated, freely indecomposable subgroup of π1(M),

and set p = χ(G ). Then M has a compact, irreducible

submanifold M0 such that

1 i : ∂M0 is incompressible;

2 the image of i contains a conjugate of G ; and

3 χ(M0) ≤ p.

Remarkably, the proof of this requires the celebrated theorem

(proof recently completed by Agol) that π1 of a hyperbolic

3-manifold is LERF (or subgroup separable in the language of

Mahan Mj’s talk). This means that every finitely generated

subgroup is an intersection of finite-index subgroups.
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