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The Mostow rigidity theorem asserts that a finite-volume

hyperbolic manifold of dimension ≥ 3 is determined up to

isometry by its topological type.

It follows that any geometrically defined invariant of such a

manifold is a topological invariant. Natural examples are the

volume, the diameter, and the minimum injectivity radius.

A very natural example is to relate these geometrically defined

invariants to classical topological invariants such as homology.

Relating the geometry of a manifold to its homology is a very

classical theme in differential geometry.
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Volumes

Thurston showed, using results due to Jorgensen and Gromov,

that the set of (finite) volumes of hyperbolic 3-manifolds, as a

subset of R+, is well-ordered (by the usual order relation on R).

Its ordinal type is ωω.

This shows that the class of hyperbolic

3-manifolds is very rich.

Thus the finite volumes of hyperbolic 3-manifolds are in natural

bijective correspondence with ordinal numbers less than ωω.

This means that the results below, which relate volume to the

rank of homology, may be thought of either in terms of real

numbers or in terms of ordinals. (The real number corresponding

to a given ordinal is not known, but can typically being bounded

above by some number R, explicitly producing a rich enough class

of manifolds with volumes < R.)
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Some sample results

In the following statements,

• M will be a closed, orientable hyperbolic 3-manifold,

• V will denote the volume of M,

• α < ωω will denote the ordinal corresponding to V , and

• rp will denote the rank of H1(M;Zp) for any prime p.

Theorem (Agol-Culler-S.)

If V ≤ 1.22 then rp ≤ 2 for every odd prime p, and r2 ≤ 3.

In particular this result applies when α ≤ 3, because there are

three known volumes less than 1.22.

The bound on rp is sharp when p = 5.
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Theorem (Culler-S.)

If V ≤ 3.08 then r2 ≤ 5.

In particular this result applies when α ≤ 8ω, because there are

eight known volumes which are less than 3.08 and are known to

correspond to limit ordinals.

This result does not appear to be sharp. Among examples that we

know of with V ≤ 3.08, the largest value of r2 that occurs is 3.

Theorem (Culler-S.)

If V ≤ 3.44 then r2 ≤ 7.

In particular this result applies when α ≤ 42ω, because there are

42 known volumes which are less than 3.44 and are known to

correspond to limit ordinals.

Again this result does not appear to be sharp.
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k-free groups

The rank of a finitely generated group is defined to be the

minimal cardinality of a generating set of the group.

A group Γ is said to be k-free, where k is a given positive integer,

if every finitely generated subgroup of Γ having rank at most k is

free.

When π1(M) ∼= Γ is k-free, the log(2k − 1) theorem can

sometimes be used to deduce geometric information about M.

On the other hand, k-freeness of π1(M) can be related to more

familiar topological invariants of M (such as homology). Both of

these connections involve novel uses of ideas from classical

topology.
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Displacement Cylinders

Let P be a point of a compact hyperbolic 3-manifold M = H3/Γ,

and let p be a point of H3 that maps to P under the quotient

map.

Let λ > 0 be given. There is a hyperbolic ball of radius λ/2 about

P if and only if dist(p, γ · p) ≥ λ for every element γ 6= 1 of Γ.

Every non-trivial element of Γ lies in a unique maximal cyclic

subgroup. Hence P is the center of a hyperbolic ball of radius

λ/2 if and only if

p /∈
⋃
C

Zλ(C ),

where C ranges over the maximal cyclic subgroups of Γ, and

Zλ(C ) : = {z ∈ H3 : dist(z , γ · z) < λ for some γ ∈ C − {1}}.

Hence M contains a ball of radius λ/2 if and only if the sets

Zλ(C ) fail to cover H3.
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Displacement Cylinders, cont’d

This illustrates the relevance of the family of sets (Zλ(C )),

indexed by the maximal cyclic subgroups of Γ, to studying the

geometry of M.

Each Zλ(C ) is a “cylinder” in the following sense: there exist a

hyperbolic line AC (the common “axis” of the non-trivial

elements of C ) and a number r depending on C and λ such that

Zλ(C ) = {z ∈ H3 : dist(z ,AC ) < r}.
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Displacement Cylinders, cont’d

If we take λ = log(2k − 1), the log(2k − 1) theorem implies

(formally) that if Γ is k-free and if C1, . . . ,Ck are maximal cyclic

subgroups of Γ such that

Zλ(C1) ∩ · · · ∩ Zλ(Ck) 6= ∅

then the free group generated by C1, . . . ,Ck has rank < k .

(Recall the relevant part of the log(2k − 1) Theorem: Let k ≥ 2

be an integer and let F be a discrete subgroup of Isom+(H3)
which is freely generated by elements x1, . . . , xk . Let p be any

point of H3. Then for some i ∈ {1, . . . , k} we have

dist(p, xi · p) ≥ log(2k − 1).)

These ingredients interact via topology.
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Nerves

Given a discrete torsion-free (purely loxodromic) subgroup Γ of

Isom+(H3) and a number λ > 0, we define an abstract simplicial

complex K = Kλ(Γ) as follows:

• the vertices of K are the maximal cyclic subgroups of Γ; and

• (C0, . . . ,Cm) is an m-simplex if and only if ∩mi=0Zλ(Ci) 6= ∅.
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By a labeling-compatible action of Γ on K we shall mean a

simplicial action of Γ on K such that for each vertex v of K we

have Cγ·v = γCvγ
−1.

For an (open) m-simplex ∆ with vertices v0, . . . , vm let Θ(∆)
denote the subgroup of Γ generated by Cv0 , . . . ,Cvm .

Thus a discrete, purely loxodromic subgroup Γ of Isom+(H3) and

a number λ > 0 determine a Γ-labeled complex K and a

labeling-compatible action of Γ on K .
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Labeled complexes, cont’d

The consequence of the log(2k−1) theorem stated above implies:

(*) If Γ is k-free and we take λ = log(2k − 1), then for every

(k − 1)-simplex ∆ = (C0, . . . ,Ck−1), the free group Θ(∆)
has rank less than k .

If M does not contain a ball of radius λ/2, the displacement

cylinders Z (C ) cover H3. Since the Z (C ) are convex, they and

their non-empty finite intersections are contractible. A theorem

due to Leray then implies that K is homotopy equivalent to H3
and therefore contractible.

Thus topological-combinatorial-group-theoretical results about

contractible Γ-labeled complexes which admit labeling-compatible

Γ-actions and satisfy (*) can imply geometric results, such as the

existence of balls of certain radii in hyperbolic manifolds whose

fundamental groups satisfy such conditions as k-freeness for

suitable values of k .
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Applications of this method

These methods, and their refinements, were used to prove:

Theorem (Culler-S.)

If π1(M) is 2-free then M contains a hyperbolic ball of radius

(log 3)/2.

Theorem (Anderson-Canary-Culler-S.)

If π1(M) is 3-free then M contains a hyperbolic ball of radius

(log 5)/2.

Theorem (Culler-S.)

If π1(M) is 4-free then M contains a point P such that all loops

of length < log 7 based at P define elements of a single cyclic

subgroup of π1(M,P).

If this cyclic subgroup were trivial, there would be a hyperbolic

ball of radius (log 7)/2 about P. The weaker conclusion is still

geometrically meaningful, and gives volume estimates.
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Applications of this method, cont’d

For example, here is the proof of the second statement.

Write M = H3/Γ with Γ ∼= π1(M) discrete, purely loxodromic,

3-free. Define K as above. Assume that M contains no

hyperbolic ball of radius (log 5)/2, so that K is contractible. Then

the proposition above says that Γ is free of rank at most 2. But

then H3(M;Z) ∼= H3(Γ;Z) = 0, and hence M is not closed.
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k-freeness, rank of H1, and low-genus incompressible

surfaces

These results raise the question of which 3-manifolds have k-free

fundamental groups.

Theorem (S.-Wagreich)

If M is a closed, orientable hyperbolic 3-manifold, k is an integer,

and H1(M;Zp) has rank at least k + 2 for some prime p, then

π1(M) either is k-free or has a subgroup isomorphic to a genus-g

surface group for some g with 1 < g < k.

This uses classical 3-manifold topology and some interesting

computations in the homology of groups.
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Theorem (Culler-S.)

Let g be an integer ≥ 2. Let M be a closed, simple (⇐⇒
hyperbolic) 3-manifold such that H1(M;Z2) has rank at least

max(3g − 1, 6) and π1(M) has a subgroup isomorphic to a

genus-g surface group. Then M contains a closed surface F with

1 < genus(F ) ≤ g which is incompressible in the sense that the

inclusion homomorphism π1(F )→ π1(M) is injective.

This is a fancier version of classical results due to

Papkyriakopoulos about removing self-intersections of surfaces in

3-manifolds. It depends on the S.-Wagreich theorem stated

above, a deep result due to Gabai, and Fisher’s inequality from

combinatorics.

When M does contain a low-genus incompressible surface, a

result due to Agol-Storm-Thurston often gives a good lower

bound for the volume of M. This result depends on Perelman’s

work on the Ricci flow with surgeries.
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Kishkes

Let F be an incompressible surface in a closed hyperbolic

3-manifold M.

Let X denote the manifold-with-boundary

obtained by splitting M along F . Then up to isotopy, X has a

well-defined characteristic submanifold Σ.

Each component of Σ is either an I -bundle meeting ∂X in its

horizontal boundary, or a solid torus meeting ∂X in a collection of

disjoint annuli that are homotopically non-trivial in X . We can

characterize Σ by the properties that (a) every essential annulus

in X is isotopic to one contained in Σ, and (b) no union of a

proper subset of the components of Σ satisfies (a).

Now define kish(M,F ) (the “kishkes” of X , sometimes called the

“guts”) to be the union of all components of X − Σ that have

negative Euler characteristic.
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Kishkes and volume

Let V8 = 3.66 denote the volume of a regular ideal octahedron in

H3.

If X is a compact triangulable space, I’ll set χ(X ) = −χ(X ),

where χ denotes Euler characteristic.

Theorem (Agol-Storm-Thurston)

Let F be a closed, orientable incompressible surface in a closed,

orientable hyperbolic 3-manifold. Then

VolM ≥ V8 · χ(kish(M,F )).

I will illustrate how the above ingredients fit together to prove the

theorems that I stated at the beginning.



Kishkes and volume

Let V8 = 3.66 denote the volume of a regular ideal octahedron in

H3.

If X is a compact triangulable space, I’ll set χ(X ) = −χ(X ),

where χ denotes Euler characteristic.

Theorem (Agol-Storm-Thurston)

Let F be a closed, orientable incompressible surface in a closed,

orientable hyperbolic 3-manifold. Then

VolM ≥ V8 · χ(kish(M,F )).

I will illustrate how the above ingredients fit together to prove the

theorems that I stated at the beginning.



Kishkes and volume

Let V8 = 3.66 denote the volume of a regular ideal octahedron in

H3.

If X is a compact triangulable space, I’ll set χ(X ) = −χ(X ),

where χ denotes Euler characteristic.

Theorem (Agol-Storm-Thurston)

Let F be a closed, orientable incompressible surface in a closed,

orientable hyperbolic 3-manifold. Then

VolM ≥ V8 · χ(kish(M,F )).

I will illustrate how the above ingredients fit together to prove the

theorems that I stated at the beginning.



Kishkes and volume

Let V8 = 3.66 denote the volume of a regular ideal octahedron in

H3.

If X is a compact triangulable space, I’ll set χ(X ) = −χ(X ),

where χ denotes Euler characteristic.

Theorem (Agol-Storm-Thurston)

Let F be a closed, orientable incompressible surface in a closed,

orientable hyperbolic 3-manifold. Then

VolM ≥ V8 · χ(kish(M,F )).

I will illustrate how the above ingredients fit together to prove the

theorems that I stated at the beginning.



Putting the ingredients together

Here is one of the theorems that I stated at the beginning.

Theorem (Culler-S.)

Let M be a closed, orientable hyperbolic 3-manifold. If

VolM ≤ 3.08 then the rank of H1(M;Z2) is at most 5.

Equivalently, this says that if H1(M;Z2) has rank at least 6 then

VolM > 3.08. To prove this, first recall:

Theorem (S.-Wagreich)

If 3-manifold, k is an integer, and H1(M;Zp) has rank at least

k + 2 for some prime p, then π1(M) either is k-free or has a

subgroup isomorphic to a genus-g surface group for some g with

1 < g < k.

Applying this with p = 2 and k = 3, we deduce that π1(M) either

is 3-free or contains a genus-2 surface group.
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Putting the ingredients together, cont’d

If π1(M) is 3-free, we use another one of the theorems I stated

earlier:

Theorem (Anderson-Canary-Culler-S.)

If π1(M) is 3-free then M contains a hyperbolic ball of radius

(log 5)/2.

A theorem due to Böröczky and Florian about sphere-packing in

hyperbolic space implies that if M contains a hyperbolic ball of

radius (log 5)/2 then VolM > 3.08.
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Putting the ingredients together, cont’d

Now suppose that π1(M) contains a genus-2 surface group. In

this case we use:

Theorem (Culler-S.)

Let g be an integer ≥ 2. Let M be a closed, simple (⇐⇒
hyperbolic) 3-manifold such that H1(M;Z2) has rank at least

max(3g − 1, 6) and π1(M) contains a genus-g surface group.

Then M contains a closed incompressible surface F with

1 < genus(F ) ≤ g.

Applying this with k = 2 we deduce that M contains a closed

incompressible surface F of genus 2.
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Putting the ingredients together, cont’d

The next step is to apply the Agol-Storm-Thurston theorem:

Theorem (Agol-Storm-Thurston)

Let F be a closed, orientable incompressible surface in a closed,

orientable hyperbolic 3-manifold. Then

VolM ≥ V8 · χ(kish(M,F )).

If χ(kish(M,F )) ≥ 1, the theorem implies that

VolM ≥ V8 = 3.66 . . . > 3.08.
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Putting the ingredients together, cont’d

If χ(kish(M,F )) = 0, then kish(M,F )) = ∅, and the manifold X

obtained by splitting M along F is a (possibly disconnected) book

of I -bundles.

This means that X is made up of a union of

mutually disjoint I -bundles over surfaces (“pages”) and a union of

mutually disjoint solid tori (“bindings”), in such a way that the

intersection of any binding B with any page P is a vertical

annulus in the boundary of P which is homotopically non-trivial in

the boundary of B. In this case an elementary topological

argument shows that H1(M;Z2) has rank at most 5.

The other results I mentioned at the beginning are proved by

putting together the ingredients I have described in a similar way.
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