Quantitative geometry of hyperbolic manifolds, II

Peter Shalen

December 18, 2012

The Mostow rigidity theorem asserts that a finite-volume hyperbolic manifold of dimension ≥ 3 is determined up to isometry by its topological type.

The Mostow rigidity theorem asserts that a finite-volume hyperbolic manifold of dimension ≥ 3 is determined up to isometry by its topological type.

It follows that any geometrically defined invariant of such a manifold is a topological invariant.

The Mostow rigidity theorem asserts that a finite-volume hyperbolic manifold of dimension ≥ 3 is determined up to isometry by its topological type.

It follows that any geometrically defined invariant of such a manifold is a topological invariant. Natural examples are the volume, the diameter, and the minimum injectivity radius.

The Mostow rigidity theorem asserts that a finite-volume hyperbolic manifold of dimension ≥ 3 is determined up to isometry by its topological type.

It follows that any geometrically defined invariant of such a manifold is a topological invariant. Natural examples are the volume, the diameter, and the minimum injectivity radius.

A very natural example is to relate these geometrically defined invariants to classical topological invariants such as homology.

The Mostow rigidity theorem asserts that a finite-volume hyperbolic manifold of dimension ≥ 3 is determined up to isometry by its topological type.

It follows that any geometrically defined invariant of such a manifold is a topological invariant. Natural examples are the volume, the diameter, and the minimum injectivity radius.

A very natural example is to relate these geometrically defined invariants to classical topological invariants such as homology. Relating the geometry of a manifold to its homology is a very classical theme in differential geometry.

Volumes

Thurston showed, using results due to Jorgensen and Gromov, that the set of (finite) volumes of hyperbolic 3-manifolds, as a subset of \mathbb{R}_{+}, is well-ordered (by the usual order relation on \mathbb{R}). Its ordinal type is ω^{ω}.

Volumes

Thurston showed, using results due to Jorgensen and Gromov, that the set of (finite) volumes of hyperbolic 3-manifolds, as a subset of \mathbb{R}_{+}, is well-ordered (by the usual order relation on \mathbb{R}). Its ordinal type is ω^{ω}. This shows that the class of hyperbolic 3-manifolds is very rich.

Volumes

Thurston showed, using results due to Jorgensen and Gromov, that the set of (finite) volumes of hyperbolic 3-manifolds, as a subset of \mathbb{R}_{+}, is well-ordered (by the usual order relation on \mathbb{R}). Its ordinal type is ω^{ω}. This shows that the class of hyperbolic 3-manifolds is very rich.

Thus the finite volumes of hyperbolic 3-manifolds are in natural bijective correspondence with ordinal numbers less than ω^{ω}.

Volumes

Thurston showed, using results due to Jorgensen and Gromov, that the set of (finite) volumes of hyperbolic 3-manifolds, as a subset of \mathbb{R}_{+}, is well-ordered (by the usual order relation on \mathbb{R}). Its ordinal type is ω^{ω}. This shows that the class of hyperbolic 3-manifolds is very rich.

Thus the finite volumes of hyperbolic 3-manifolds are in natural bijective correspondence with ordinal numbers less than ω^{ω}.

This means that the results below, which relate volume to the rank of homology, may be thought of either in terms of real numbers or in terms of ordinals.

Volumes

Thurston showed, using results due to Jorgensen and Gromov, that the set of (finite) volumes of hyperbolic 3-manifolds, as a subset of \mathbb{R}_{+}, is well-ordered (by the usual order relation on \mathbb{R}). Its ordinal type is ω^{ω}. This shows that the class of hyperbolic 3-manifolds is very rich.

Thus the finite volumes of hyperbolic 3-manifolds are in natural bijective correspondence with ordinal numbers less than ω^{ω}.

This means that the results below, which relate volume to the rank of homology, may be thought of either in terms of real numbers or in terms of ordinals. (The real number corresponding to a given ordinal is not known, but can typically being bounded above by some number R, explicitly producing a rich enough class of manifolds with volumes $<R$.)

Some sample results

Some sample results

In the following statements,

- M will be a closed, orientable hyperbolic 3-manifold,

Some sample results

In the following statements,

- M will be a closed, orientable hyperbolic 3-manifold,
- V will denote the volume of M,

Some sample results

In the following statements,

- M will be a closed, orientable hyperbolic 3-manifold,
- V will denote the volume of M,
- $\alpha<\omega^{\omega}$ will denote the ordinal corresponding to V, and

Some sample results

In the following statements,

- M will be a closed, orientable hyperbolic 3-manifold,
- V will denote the volume of M,
- $\alpha<\omega^{\omega}$ will denote the ordinal corresponding to V, and
- r_{p} will denote the rank of $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ for any prime p.

Some sample results

In the following statements,

- M will be a closed, orientable hyperbolic 3-manifold,
- V will denote the volume of M,
- $\alpha<\omega^{\omega}$ will denote the ordinal corresponding to V, and
- r_{p} will denote the rank of $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ for any prime p.

Theorem (Agol-Culler-S.)
If $V \leq 1.22$ then $r_{p} \leq 2$ for every odd prime p, and $r_{2} \leq 3$.

Some sample results

In the following statements,

- M will be a closed, orientable hyperbolic 3-manifold,
- V will denote the volume of M,
- $\alpha<\omega^{\omega}$ will denote the ordinal corresponding to V, and
- r_{p} will denote the rank of $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ for any prime p.

Theorem (Agol-Culler-S.)
If $V \leq 1.22$ then $r_{p} \leq 2$ for every odd prime p, and $r_{2} \leq 3$.

In particular this result applies when $\alpha \leq 3$, because there are three known volumes less than 1.22.

Some sample results

In the following statements,

- M will be a closed, orientable hyperbolic 3-manifold,
- V will denote the volume of M,
- $\alpha<\omega^{\omega}$ will denote the ordinal corresponding to V, and
- r_{p} will denote the rank of $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ for any prime p.

Theorem (Agol-Culler-S.)
If $V \leq 1.22$ then $r_{p} \leq 2$ for every odd prime p, and $r_{2} \leq 3$.
In particular this result applies when $\alpha \leq 3$, because there are three known volumes less than 1.22 .

The bound on r_{p} is sharp when $p=5$.

Theorem (Culler-S.)
If $V \leq 3.08$ then $r_{2} \leq 5$.

Theorem (Culler-S.)
If $V \leq 3.08$ then $r_{2} \leq 5$.

In particular this result applies when $\alpha \leq 8 \omega$, because there are eight known volumes which are less than 3.08 and are known to correspond to limit ordinals.

Theorem (Culler-S.)
If $V \leq 3.08$ then $r_{2} \leq 5$.

In particular this result applies when $\alpha \leq 8 \omega$, because there are eight known volumes which are less than 3.08 and are known to correspond to limit ordinals.

This result does not appear to be sharp. Among examples that we know of with $V \leq 3.08$, the largest value of r_{2} that occurs is 3 .

Theorem (Culler-S.)
If $V \leq 3.08$ then $r_{2} \leq 5$.

In particular this result applies when $\alpha \leq 8 \omega$, because there are eight known volumes which are less than 3.08 and are known to correspond to limit ordinals.

This result does not appear to be sharp. Among examples that we know of with $V \leq 3.08$, the largest value of r_{2} that occurs is 3 .

Theorem (Culler-S.)
If $V \leq 3.44$ then $r_{2} \leq 7$.

Theorem (Culler-S.)
If $V \leq 3.08$ then $r_{2} \leq 5$.

In particular this result applies when $\alpha \leq 8 \omega$, because there are eight known volumes which are less than 3.08 and are known to correspond to limit ordinals.

This result does not appear to be sharp. Among examples that we know of with $V \leq 3.08$, the largest value of r_{2} that occurs is 3 .

Theorem (Culler-S.)
If $V \leq 3.44$ then $r_{2} \leq 7$.

In particular this result applies when $\alpha \leq 42 \omega$, because there are 42 known volumes which are less than 3.44 and are known to correspond to limit ordinals.

Theorem (Culler-S.)
If $V \leq 3.08$ then $r_{2} \leq 5$.

In particular this result applies when $\alpha \leq 8 \omega$, because there are eight known volumes which are less than 3.08 and are known to correspond to limit ordinals.

This result does not appear to be sharp. Among examples that we know of with $V \leq 3.08$, the largest value of r_{2} that occurs is 3 .

Theorem (Culler-S.)
If $V \leq 3.44$ then $r_{2} \leq 7$.

In particular this result applies when $\alpha \leq 42 \omega$, because there are 42 known volumes which are less than 3.44 and are known to correspond to limit ordinals.

Again this result does not appear to be sharp.
k-free groups

k-free groups

The rank of a finitely generated group is defined to be the minimal cardinality of a generating set of the group.

k-free groups

The rank of a finitely generated group is defined to be the minimal cardinality of a generating set of the group.

A group Γ is said to be k-free, where k is a given positive integer, if every finitely generated subgroup of Γ having rank at most k is free.

k-free groups

The rank of a finitely generated group is defined to be the minimal cardinality of a generating set of the group.

A group Γ is said to be k-free, where k is a given positive integer, if every finitely generated subgroup of Γ having rank at most k is free.

When $\pi_{1}(M) \cong \Gamma$ is k-free, the $\log (2 k-1)$ theorem can sometimes be used to deduce geometric information about M.

k-free groups

The rank of a finitely generated group is defined to be the minimal cardinality of a generating set of the group.

A group Γ is said to be k-free, where k is a given positive integer, if every finitely generated subgroup of Γ having rank at most k is free.

When $\pi_{1}(M) \cong \Gamma$ is k-free, the $\log (2 k-1)$ theorem can sometimes be used to deduce geometric information about M. On the other hand, k-freeness of $\pi_{1}(M)$ can be related to more familiar topological invariants of M (such as homology).

k-free groups

The rank of a finitely generated group is defined to be the minimal cardinality of a generating set of the group.

A group Γ is said to be k-free, where k is a given positive integer, if every finitely generated subgroup of Γ having rank at most k is free.

When $\pi_{1}(M) \cong \Gamma$ is k-free, the $\log (2 k-1)$ theorem can sometimes be used to deduce geometric information about M. On the other hand, k-freeness of $\pi_{1}(M)$ can be related to more familiar topological invariants of M (such as homology). Both of these connections involve novel uses of ideas from classical topology.

Displacement Cylinders

Displacement Cylinders

Let P be a point of a compact hyperbolic 3-manifold $M=\mathbb{H}^{3} / \Gamma$, and let p be a point of \mathbb{H}^{3} that maps to P under the quotient map.

Displacement Cylinders

Let P be a point of a compact hyperbolic 3-manifold $M=\mathbb{H}^{3} / \Gamma$, and let p be a point of \mathbb{H}^{3} that maps to P under the quotient map.

Let $\lambda>0$ be given. There is a hyperbolic ball of radius $\lambda / 2$ about P if and only if $\operatorname{dist}(p, \gamma \cdot p) \geq \lambda$ for every element $\gamma \neq 1$ of Γ.

Displacement Cylinders

Let P be a point of a compact hyperbolic 3-manifold $M=\mathbb{H}^{3} / \Gamma$, and let p be a point of \mathbb{H}^{3} that maps to P under the quotient map.

Let $\lambda>0$ be given. There is a hyperbolic ball of radius $\lambda / 2$ about P if and only if $\operatorname{dist}(p, \gamma \cdot p) \geq \lambda$ for every element $\gamma \neq 1$ of Γ.

Every non-trivial element of Γ lies in a unique maximal cyclic subgroup.

Displacement Cylinders

Let P be a point of a compact hyperbolic 3-manifold $M=\mathbb{H}^{3} / \Gamma$, and let p be a point of \mathbb{H}^{3} that maps to P under the quotient map.

Let $\lambda>0$ be given. There is a hyperbolic ball of radius $\lambda / 2$ about P if and only if $\operatorname{dist}(p, \gamma \cdot p) \geq \lambda$ for every element $\gamma \neq 1$ of Γ.

Every non-trivial element of Γ lies in a unique maximal cyclic subgroup. Hence P is the center of a hyperbolic ball of radius $\lambda / 2$ if and only if

$$
p \notin \bigcup_{C} Z_{\lambda}(C)
$$

where C ranges over the maximal cyclic subgroups of Γ, and

$$
Z_{\lambda}(C):=\left\{z \in \mathbb{H}^{3}: \operatorname{dist}(z, \gamma \cdot z)<\lambda \text { for some } \gamma \in C-\{1\}\right\}
$$

Displacement Cylinders

Let P be a point of a compact hyperbolic 3-manifold $M=\mathbb{H}^{3} / \Gamma$, and let p be a point of \mathbb{H}^{3} that maps to P under the quotient map.

Let $\lambda>0$ be given. There is a hyperbolic ball of radius $\lambda / 2$ about P if and only if $\operatorname{dist}(p, \gamma \cdot p) \geq \lambda$ for every element $\gamma \neq 1$ of Γ.

Every non-trivial element of Γ lies in a unique maximal cyclic subgroup. Hence P is the center of a hyperbolic ball of radius $\lambda / 2$ if and only if

$$
p \notin \bigcup_{C} Z_{\lambda}(C)
$$

where C ranges over the maximal cyclic subgroups of Γ, and

$$
Z_{\lambda}(C):=\left\{z \in \mathbb{H}^{3}: \operatorname{dist}(z, \gamma \cdot z)<\lambda \text { for some } \gamma \in C-\{1\}\right\}
$$

Hence M contains a ball of radius $\lambda / 2$ if and only if the sets $Z_{\lambda}(C)$ fail to cover \mathbb{H}^{3}.

Displacement Cylinders, cont'd

This illustrates the relevance of the family of sets $\left(Z_{\lambda}(C)\right)$, indexed by the maximal cyclic subgroups of Γ, to studying the geometry of M.

Displacement Cylinders, cont'd

This illustrates the relevance of the family of sets $\left(Z_{\lambda}(C)\right)$, indexed by the maximal cyclic subgroups of Γ, to studying the geometry of M.

Each $Z_{\lambda}(C)$ is a "cylinder" in the following sense: there exist a hyperbolic line A_{C} (the common "axis" of the non-trivial elements of C) and a number r depending on C and λ such that

$$
Z_{\lambda}(C)=\left\{z \in \mathbb{H}^{3}: \operatorname{dist}\left(z, A_{C}\right)<r\right\}
$$

Displacement Cylinders, cont'd

If we take $\lambda=\log (2 k-1)$, the $\log (2 k-1)$ theorem implies (formally) that if Γ is k-free and if C_{1}, \ldots, C_{k} are maximal cyclic subgroups of Γ such that

$$
Z_{\lambda}\left(C_{1}\right) \cap \cdots \cap Z_{\lambda}\left(C_{k}\right) \neq \emptyset
$$

then the free group generated by C_{1}, \ldots, C_{k} has rank $<k$.

Displacement Cylinders, cont'd

If we take $\lambda=\log (2 k-1)$, the $\log (2 k-1)$ theorem implies (formally) that if Γ is k-free and if C_{1}, \ldots, C_{k} are maximal cyclic subgroups of Γ such that

$$
Z_{\lambda}\left(C_{1}\right) \cap \cdots \cap Z_{\lambda}\left(C_{k}\right) \neq \emptyset
$$

then the free group generated by C_{1}, \ldots, C_{k} has rank $<k$.
(Recall the relevant part of the $\log (2 k-1)$ Theorem: Let $k \geq 2$ be an integer and let F be a discrete subgroup of $\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x_{1}, \ldots, x_{k}.

Displacement Cylinders, cont'd

If we take $\lambda=\log (2 k-1)$, the $\log (2 k-1)$ theorem implies (formally) that if Γ is k-free and if C_{1}, \ldots, C_{k} are maximal cyclic subgroups of Γ such that

$$
Z_{\lambda}\left(C_{1}\right) \cap \cdots \cap Z_{\lambda}\left(C_{k}\right) \neq \emptyset
$$

then the free group generated by C_{1}, \ldots, C_{k} has rank $<k$.
(Recall the relevant part of the $\log (2 k-1)$ Theorem: Let $k \geq 2$ be an integer and let F be a discrete subgroup of $\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x_{1}, \ldots, x_{k}. Let p be any point of \mathbb{H}^{3}.

Displacement Cylinders, cont'd

If we take $\lambda=\log (2 k-1)$, the $\log (2 k-1)$ theorem implies (formally) that if Γ is k-free and if C_{1}, \ldots, C_{k} are maximal cyclic subgroups of Γ such that

$$
Z_{\lambda}\left(C_{1}\right) \cap \cdots \cap Z_{\lambda}\left(C_{k}\right) \neq \emptyset
$$

then the free group generated by C_{1}, \ldots, C_{k} has rank $<k$.
(Recall the relevant part of the $\log (2 k-1)$ Theorem: Let $k \geq 2$ be an integer and let F be a discrete subgroup of $\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x_{1}, \ldots, x_{k}. Let p be any point of \mathbb{H}^{3}. Then for some $i \in\{1, \ldots, k\}$ we have $\operatorname{dist}\left(p, x_{i} \cdot p\right) \geq \log (2 k-1)$.)

Displacement Cylinders, cont'd

If we take $\lambda=\log (2 k-1)$, the $\log (2 k-1)$ theorem implies (formally) that if Γ is k-free and if C_{1}, \ldots, C_{k} are maximal cyclic subgroups of Γ such that

$$
Z_{\lambda}\left(C_{1}\right) \cap \cdots \cap Z_{\lambda}\left(C_{k}\right) \neq \emptyset
$$

then the free group generated by C_{1}, \ldots, C_{k} has rank $<k$.
(Recall the relevant part of the $\log (2 k-1)$ Theorem: Let $k \geq 2$ be an integer and let F be a discrete subgroup of $\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x_{1}, \ldots, x_{k}. Let p be any point of \mathbb{H}^{3}. Then for some $i \in\{1, \ldots, k\}$ we have $\operatorname{dist}\left(p, x_{i} \cdot p\right) \geq \log (2 k-1)$.)

These ingredients interact via topology.

Nerves

Nerves

Given a discrete torsion-free (purely loxodromic) subgroup Γ of Isom $_{+}\left(\mathbb{H}^{3}\right)$ and a number $\lambda>0$, we define an abstract simplicial complex $K=K_{\lambda}(\Gamma)$ as follows:

Nerves

Given a discrete torsion-free (purely loxodromic) subgroup Γ of Isom $_{+}\left(\mathbb{H}^{3}\right)$ and a number $\lambda>0$, we define an abstract simplicial complex $K=K_{\lambda}(\Gamma)$ as follows:

- the vertices of K are the maximal cyclic subgroups of Γ;

Nerves

Given a discrete torsion-free (purely loxodromic) subgroup Γ of Isom $_{+}\left(\mathbb{H}^{3}\right)$ and a number $\lambda>0$, we define an abstract simplicial complex $K=K_{\lambda}(\Gamma)$ as follows:

- the vertices of K are the maximal cyclic subgroups of Γ; and
- $\left(C_{0}, \ldots, C_{m}\right)$ is an m-simplex if and only if $\cap_{i=0}^{m} Z_{\lambda}\left(C_{i}\right) \neq \emptyset$.

Nerves

Given a discrete torsion-free (purely loxodromic) subgroup Γ of Isom $_{+}\left(\mathbb{H}^{3}\right)$ and a number $\lambda>0$, we define an abstract simplicial complex $K=K_{\lambda}(\Gamma)$ as follows:

- the vertices of K are the maximal cyclic subgroups of Γ; and
- $\left(C_{0}, \ldots, C_{m}\right)$ is an m-simplex if and only if $\cap_{i=0}^{m} Z_{\lambda}\left(C_{i}\right) \neq \emptyset$.

Labeled complexes

Let Γ be a group. By a 「-labeled complex we shall mean a simplicial complex K equipped with a family $\left(C_{v}\right)_{v}$ of infinite cyclic subgroups of Γ indexed by the vertices of K.

Labeled complexes

Let 「 be a group. By a 「-labeled complex we shall mean a simplicial complex K equipped with a family $\left(C_{v}\right)_{v}$ of infinite cyclic subgroups of Γ indexed by the vertices of K.

By a labeling-compatible action of Γ on K we shall mean a simplicial action of Γ on K such that for each vertex v of K we have $C_{\gamma \cdot v}=\gamma C_{v} \gamma^{-1}$.

Labeled complexes

Let Γ be a group. By a 「-labeled complex we shall mean a simplicial complex K equipped with a family $\left(C_{v}\right)_{v}$ of infinite cyclic subgroups of Γ indexed by the vertices of K.

By a labeling-compatible action of Γ on K we shall mean a simplicial action of Γ on K such that for each vertex v of K we have $C_{\gamma \cdot v}=\gamma C_{v} \gamma^{-1}$.

For an (open) m-simplex Δ with vertices v_{0}, \ldots, v_{m} let $\Theta(\Delta)$ denote the subgroup of Γ generated by $C_{V_{0}}, \ldots, C_{V_{m}}$.

Labeled complexes

Let Γ be a group. By a 「-labeled complex we shall mean a simplicial complex K equipped with a family $\left(C_{v}\right)_{v}$ of infinite cyclic subgroups of Γ indexed by the vertices of K.

By a labeling-compatible action of Γ on K we shall mean a simplicial action of Γ on K such that for each vertex v of K we have $C_{\gamma \cdot v}=\gamma C_{v} \gamma^{-1}$.

For an (open) m-simplex Δ with vertices v_{0}, \ldots, v_{m} let $\Theta(\Delta)$ denote the subgroup of Γ generated by $C_{V_{0}}, \ldots, C_{V_{m}}$.
Thus a discrete, purely loxodromic subgroup Γ of Isom $_{+}\left(\mathbb{H}^{3}\right)$ and a number $\lambda>0$ determine a Γ-labeled complex K and a labeling-compatible action of Γ on K.

Labeled complexes, cont'd

The consequence of the $\log (2 k-1)$ theorem stated above implies:
$\left(^{*}\right)$ If Γ is k-free and we take $\lambda=\log (2 k-1)$, then for every $(k-1)$-simplex $\Delta=\left(C_{0}, \ldots, C_{k-1}\right)$, the free group $\Theta(\Delta)$ has rank less than k.

Labeled complexes, cont'd

The consequence of the $\log (2 k-1)$ theorem stated above implies:
$\left(^{*}\right)$ If Γ is k-free and we take $\lambda=\log (2 k-1)$, then for every $(k-1)$-simplex $\Delta=\left(C_{0}, \ldots, C_{k-1}\right)$, the free group $\Theta(\Delta)$ has rank less than k.

If M does not contain a ball of radius $\lambda / 2$, the displacement cylinders $Z(C)$ cover \mathbb{H}^{3}.

Labeled complexes, cont'd

The consequence of the $\log (2 k-1)$ theorem stated above implies:
$\left(^{*}\right)$ If Γ is k-free and we take $\lambda=\log (2 k-1)$, then for every $(k-1)$-simplex $\Delta=\left(C_{0}, \ldots, C_{k-1}\right)$, the free group $\Theta(\Delta)$ has rank less than k.

If M does not contain a ball of radius $\lambda / 2$, the displacement cylinders $Z(C)$ cover \mathbb{H}^{3}. Since the $Z(C)$ are convex, they and their non-empty finite intersections are contractible. A theorem due to Leray then implies that K is homotopy equivalent to \mathbb{H}^{3} and therefore contractible.

Labeled complexes, cont'd

The consequence of the $\log (2 k-1)$ theorem stated above implies:
$\left(^{*}\right)$ If Γ is k-free and we take $\lambda=\log (2 k-1)$, then for every $(k-1)$-simplex $\Delta=\left(C_{0}, \ldots, C_{k-1}\right)$, the free group $\Theta(\Delta)$ has rank less than k.

If M does not contain a ball of radius $\lambda / 2$, the displacement cylinders $Z(C)$ cover \mathbb{H}^{3}. Since the $Z(C)$ are convex, they and their non-empty finite intersections are contractible. A theorem due to Leray then implies that K is homotopy equivalent to \mathbb{H}^{3} and therefore contractible.

Thus topological-combinatorial-group-theoretical results about contractible Γ-labeled complexes which admit labeling-compatible Γ-actions and satisfy (*) can imply geometric results, such as the existence of balls of certain radii in hyperbolic manifolds whose fundamental groups satisfy such conditions as k-freeness for suitable values of k.

Applications of this method

Applications of this method

These methods, and their refinements, were used to prove: Theorem (Culler-S.)
If $\pi_{1}(M)$ is 2-free then M contains a hyperbolic ball of radius $(\log 3) / 2$.

Applications of this method

These methods, and their refinements, were used to prove: Theorem (Culler-S.)
If $\pi_{1}(M)$ is 2-free then M contains a hyperbolic ball of radius $(\log 3) / 2$.

Theorem (Anderson-Canary-Culler-S.)
If $\pi_{1}(M)$ is 3-free then M contains a hyperbolic ball of radius $(\log 5) / 2$.

Applications of this method

These methods, and their refinements, were used to prove:
Theorem (Culler-S.)
If $\pi_{1}(M)$ is 2-free then M contains a hyperbolic ball of radius $(\log 3) / 2$.

Theorem (Anderson-Canary-Culler-S.)
If $\pi_{1}(M)$ is 3-free then M contains a hyperbolic ball of radius $(\log 5) / 2$.

Theorem (Culler-S.)
If $\pi_{1}(M)$ is 4 -free then M contains a point P such that all loops of length $<\log 7$ based at P define elements of a single cyclic subgroup of $\pi_{1}(M, P)$.

Applications of this method

These methods, and their refinements, were used to prove:
Theorem (Culler-S.)
If $\pi_{1}(M)$ is 2-free then M contains a hyperbolic ball of radius $(\log 3) / 2$.

Theorem (Anderson-Canary-Culler-S.)
If $\pi_{1}(M)$ is 3-free then M contains a hyperbolic ball of radius $(\log 5) / 2$.

Theorem (Culler-S.)
If $\pi_{1}(M)$ is 4 -free then M contains a point P such that all loops of length $<\log 7$ based at P define elements of a single cyclic subgroup of $\pi_{1}(M, P)$.

If this cyclic subgroup were trivial, there would be a hyperbolic ball of radius $(\log 7) / 2$ about P. The weaker conclusion is still geometrically meaningful, and gives volume estimates.

Applications of this method, cont'd

For example, here is the proof of the second statement.

Applications of this method, cont'd

For example, here is the proof of the second statement.
Write $M=\mathbb{H}^{3} / \Gamma$ with $\Gamma \cong \pi_{1}(M)$ discrete, purely loxodromic, 3-free.

Applications of this method, cont'd

For example, here is the proof of the second statement.
Write $M=\mathbb{H}^{3} / \Gamma$ with $\Gamma \cong \pi_{1}(M)$ discrete, purely loxodromic, 3-free. Define K as above.

Applications of this method, cont'd

For example, here is the proof of the second statement.
Write $M=\mathbb{H}^{3} / \Gamma$ with $\Gamma \cong \pi_{1}(M)$ discrete, purely loxodromic, 3-free. Define K as above. Assume that M contains no hyperbolic ball of radius $(\log 5) / 2$, so that K is contractible.

Applications of this method, cont'd

For example, here is the proof of the second statement.
Write $M=\mathbb{H}^{3} / \Gamma$ with $\Gamma \cong \pi_{1}(M)$ discrete, purely loxodromic, 3-free. Define K as above. Assume that M contains no hyperbolic ball of radius $(\log 5) / 2$, so that K is contractible. Then the proposition above says that Γ is free of rank at most 2 .

Applications of this method, cont'd

For example, here is the proof of the second statement.
Write $M=\mathbb{H}^{3} / \Gamma$ with $\Gamma \cong \pi_{1}(M)$ discrete, purely loxodromic, 3-free. Define K as above. Assume that M contains no hyperbolic ball of radius $(\log 5) / 2$, so that K is contractible. Then the proposition above says that Γ is free of rank at most 2 . But then $H_{3}(M ; \mathbb{Z}) \cong H_{3}(\Gamma ; \mathbb{Z})=0$, and hence M is not closed.
k-freeness, rank of H_{1}, and low-genus incompressible surfaces
k-freeness, rank of H_{1}, and low-genus incompressible surfaces

These results raise the question of which 3 -manifolds have k-free fundamental groups.
k-freeness, rank of H_{1}, and low-genus incompressible surfaces

These results raise the question of which 3-manifolds have k-free fundamental groups.

Theorem (S.-Wagreich)
If M is a closed, orientable hyperbolic 3-manifold, k is an integer, and $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ has rank at least $k+2$ for some prime p, then $\pi_{1}(M)$ either is k-free or has a subgroup isomorphic to a genus-g surface group for some g with $1<g<k$.
k-freeness, rank of H_{1}, and low-genus incompressible surfaces

These results raise the question of which 3-manifolds have k-free fundamental groups.

Theorem (S.-Wagreich)
If M is a closed, orientable hyperbolic 3-manifold, k is an integer, and $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ has rank at least $k+2$ for some prime p, then $\pi_{1}(M)$ either is k-free or has a subgroup isomorphic to a genus- g surface group for some g with $1<g<k$.

This uses classical 3-manifold topology and some interesting computations in the homology of groups.
k-freeness, rank of H_{1}, and low-genus incompressible surfaces

These results raise the question of which 3-manifolds have k-free fundamental groups.

Theorem (S.-Wagreich)
If M is a closed, orientable hyperbolic 3-manifold, k is an integer, and $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ has rank at least $k+2$ for some prime p, then $\pi_{1}(M)$ either is k-free or has a subgroup isomorphic to a genus- g surface group for some g with $1<g<k$.

This uses classical 3-manifold topology and some interesting computations in the homology of groups.

Theorem (Culler-S.)

Let g be an integer ≥ 2. Let M be a closed, simple $(\Longleftrightarrow$ hyperbolic) 3-manifold such that $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least $\max (3 g-1,6)$ and $\pi_{1}(M)$ has a subgroup isomorphic to a genus-g surface group. Then M contains a closed surface F with $1<\operatorname{genus}(F) \leq g$ which is incompressible in the sense that the inclusion homomorphism $\pi_{1}(F) \rightarrow \pi_{1}(M)$ is injective.

Theorem (Culler-S.)

Let g be an integer ≥ 2. Let M be a closed, simple $(\Longleftrightarrow$ hyperbolic) 3-manifold such that $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least $\max (3 g-1,6)$ and $\pi_{1}(M)$ has a subgroup isomorphic to a genus-g surface group. Then M contains a closed surface F with $1<\operatorname{genus}(F) \leq g$ which is incompressible in the sense that the inclusion homomorphism $\pi_{1}(F) \rightarrow \pi_{1}(M)$ is injective.

This is a fancier version of classical results due to
Papkyriakopoulos about removing self-intersections of surfaces in 3-manifolds. It depends on the S.-Wagreich theorem stated above, a deep result due to Gabai, and Fisher's inequality from combinatorics.

Theorem (Culler-S.)

Let g be an integer ≥ 2. Let M be a closed, simple $(\Longleftrightarrow$ hyperbolic) 3-manifold such that $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least $\max (3 g-1,6)$ and $\pi_{1}(M)$ has a subgroup isomorphic to a genus-g surface group. Then M contains a closed surface F with $1<\operatorname{genus}(F) \leq g$ which is incompressible in the sense that the inclusion homomorphism $\pi_{1}(F) \rightarrow \pi_{1}(M)$ is injective.

This is a fancier version of classical results due to
Papkyriakopoulos about removing self-intersections of surfaces in 3-manifolds. It depends on the S.-Wagreich theorem stated above, a deep result due to Gabai, and Fisher's inequality from combinatorics.

When M does contain a low-genus incompressible surface, a result due to Agol-Storm-Thurston often gives a good lower bound for the volume of M. This result depends on Perelman's work on the Ricci flow with surgeries.

Kishkes

Let F be an incompressible surface in a closed hyperbolic 3-manifold M.

Kishkes

Let F be an incompressible surface in a closed hyperbolic 3-manifold M. Let X denote the manifold-with-boundary obtained by splitting M along F.

Kishkes

Let F be an incompressible surface in a closed hyperbolic 3-manifold M. Let X denote the manifold-with-boundary obtained by splitting M along F. Then up to isotopy, X has a well-defined characteristic submanifold Σ.

Kishkes

Let F be an incompressible surface in a closed hyperbolic 3-manifold M. Let X denote the manifold-with-boundary obtained by splitting M along F. Then up to isotopy, X has a well-defined characteristic submanifold Σ.

Each component of Σ is either an I-bundle meeting ∂X in its horizontal boundary, or a solid torus meeting ∂X in a collection of disjoint annuli that are homotopically non-trivial in X.

Kishkes

Let F be an incompressible surface in a closed hyperbolic 3-manifold M. Let X denote the manifold-with-boundary obtained by splitting M along F. Then up to isotopy, X has a well-defined characteristic submanifold Σ.

Each component of Σ is either an I-bundle meeting ∂X in its horizontal boundary, or a solid torus meeting ∂X in a collection of disjoint annuli that are homotopically non-trivial in X. We can characterize Σ by the properties that (a) every essential annulus in X is isotopic to one contained in Σ,

Kishkes

Let F be an incompressible surface in a closed hyperbolic 3-manifold M. Let X denote the manifold-with-boundary obtained by splitting M along F. Then up to isotopy, X has a well-defined characteristic submanifold Σ.

Each component of Σ is either an I-bundle meeting ∂X in its horizontal boundary, or a solid torus meeting ∂X in a collection of disjoint annuli that are homotopically non-trivial in X. We can characterize Σ by the properties that (a) every essential annulus in X is isotopic to one contained in Σ, and (b) no union of a proper subset of the components of Σ satisfies (a).

Kishkes

Let F be an incompressible surface in a closed hyperbolic 3-manifold M. Let X denote the manifold-with-boundary obtained by splitting M along F. Then up to isotopy, X has a well-defined characteristic submanifold Σ.

Each component of Σ is either an I-bundle meeting ∂X in its horizontal boundary, or a solid torus meeting ∂X in a collection of disjoint annuli that are homotopically non-trivial in X. We can characterize Σ by the properties that (a) every essential annulus in X is isotopic to one contained in Σ, and (b) no union of a proper subset of the components of Σ satisfies (a).

Now define kish (M, F) (the "kishkes" of X, sometimes called the "guts") to be the union of all components of $\overline{X-\Sigma}$ that have negative Euler characteristic.

Kishkes and volume

Let $V_{8}=3.66$ denote the volume of a regular ideal octahedron in \mathbb{H}^{3}.

Kishkes and volume

Let $V_{8}=3.66$ denote the volume of a regular ideal octahedron in \mathbb{H}^{3}.

If X is a compact triangulable space, I'll set $\bar{\chi}(X)=-\chi(X)$, where χ denotes Euler characteristic.

Kishkes and volume

Let $V_{8}=3.66$ denote the volume of a regular ideal octahedron in \mathbb{H}^{3}.

If X is a compact triangulable space, I'll set $\bar{\chi}(X)=-\chi(X)$, where χ denotes Euler characteristic.

Theorem (Agol-Storm-Thurston)
Let F be a closed, orientable incompressible surface in a closed, orientable hyperbolic 3-manifold. Then

$$
\operatorname{Vol} M \geq V_{8} \cdot \bar{\chi}(\operatorname{kish}(M, F))
$$

Kishkes and volume

Let $V_{8}=3.66$ denote the volume of a regular ideal octahedron in \mathbb{H}^{3}.

If X is a compact triangulable space, I'll set $\bar{\chi}(X)=-\chi(X)$, where χ denotes Euler characteristic.

Theorem (Agol-Storm-Thurston)
Let F be a closed, orientable incompressible surface in a closed, orientable hyperbolic 3-manifold. Then

$$
\operatorname{Vol} M \geq V_{8} \cdot \bar{\chi}(\operatorname{kish}(M, F))
$$

I will illustrate how the above ingredients fit together to prove the theorems that I stated at the beginning.

Putting the ingredients together

Here is one of the theorems that I stated at the beginning.
Theorem (Culler-S.)
Let M be a closed, orientable hyperbolic 3-manifold. If
$\operatorname{Vol} M \leq 3.08$ then the rank of $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ is at most 5 .

Putting the ingredients together

Here is one of the theorems that I stated at the beginning.
Theorem (Culler-S.)
Let M be a closed, orientable hyperbolic 3-manifold. If
$\operatorname{Vol} M \leq 3.08$ then the rank of $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ is at most 5 .
Equivalently, this says that if $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least 6 then $\operatorname{Vol} M>3.08$.

Putting the ingredients together

Here is one of the theorems that I stated at the beginning.
Theorem (Culler-S.)
Let M be a closed, orientable hyperbolic 3-manifold. If
$\operatorname{Vol} M \leq 3.08$ then the rank of $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ is at most 5 .
Equivalently, this says that if $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least 6 then $\operatorname{Vol} M>3.08$. To prove this, first recall:

Theorem (S.-Wagreich)
If 3-manifold, k is an integer, and $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ has rank at least $k+2$ for some prime p, then $\pi_{1}(M)$ either is k-free or has a subgroup isomorphic to a genus-g surface group for some g with $1<g<k$.

Putting the ingredients together

Here is one of the theorems that I stated at the beginning.
Theorem (Culler-S.)
Let M be a closed, orientable hyperbolic 3-manifold. If
$\operatorname{Vol} M \leq 3.08$ then the rank of $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ is at most 5 .
Equivalently, this says that if $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least 6 then $\operatorname{Vol} M>3.08$. To prove this, first recall:

Theorem (S.-Wagreich)
If 3-manifold, k is an integer, and $H_{1}\left(M ; \mathbb{Z}_{p}\right)$ has rank at least $k+2$ for some prime p, then $\pi_{1}(M)$ either is k-free or has a subgroup isomorphic to a genus-g surface group for some g with $1<g<k$.

Applying this with $p=2$ and $k=3$, we deduce that $\pi_{1}(M)$ either is 3 -free or contains a genus-2 surface group.

Putting the ingredients together, cont'd

If $\pi_{1}(M)$ is 3-free, we use another one of the theorems I stated earlier:

Theorem (Anderson-Canary-Culler-S.)
If $\pi_{1}(M)$ is 3-free then M contains a hyperbolic ball of radius $(\log 5) / 2$.

Putting the ingredients together, cont'd

If $\pi_{1}(M)$ is 3-free, we use another one of the theorems I stated earlier:

Theorem (Anderson-Canary-Culler-S.)
If $\pi_{1}(M)$ is 3-free then M contains a hyperbolic ball of radius $(\log 5) / 2$.
A theorem due to Böröczky and Florian about sphere-packing in hyperbolic space implies that if M contains a hyperbolic ball of radius $(\log 5) / 2$ then $\operatorname{Vol} M>3.08$.

Putting the ingredients together, cont'd

Now suppose that $\pi_{1}(M)$ contains a genus- 2 surface group. In this case we use:

Theorem (Culler-S.)
Let g be an integer ≥ 2. Let M be a closed, simple $(\Longleftrightarrow$ hyperbolic) 3-manifold such that $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least $\max (3 g-1,6)$ and $\pi_{1}(M)$ contains a genus-g surface group. Then M contains a closed incompressible surface F with $1<\operatorname{genus}(F) \leq g$.

Putting the ingredients together, cont'd

Now suppose that $\pi_{1}(M)$ contains a genus- 2 surface group. In this case we use:

Theorem (Culler-S.)
Let g be an integer ≥ 2. Let M be a closed, simple $(\Longleftrightarrow$ hyperbolic) 3-manifold such that $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least $\max (3 g-1,6)$ and $\pi_{1}(M)$ contains a genus-g surface group.
Then M contains a closed incompressible surface F with $1<\operatorname{genus}(F) \leq g$.

Applying this with $k=2$ we deduce that M contains a closed incompressible surface F of genus 2 .

Putting the ingredients together, cont'd

Now suppose that $\pi_{1}(M)$ contains a genus- 2 surface group. In this case we use:

Theorem (Culler-S.)
Let g be an integer ≥ 2. Let M be a closed, simple $(\Longleftrightarrow$ hyperbolic) 3-manifold such that $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at least $\max (3 g-1,6)$ and $\pi_{1}(M)$ contains a genus-g surface group.
Then M contains a closed incompressible surface F with $1<\operatorname{genus}(F) \leq g$.

Applying this with $k=2$ we deduce that M contains a closed incompressible surface F of genus 2 .

Putting the ingredients together, cont'd

The next step is to apply the Agol-Storm-Thurston theorem:
Theorem (Agol-Storm-Thurston)
Let F be a closed, orientable incompressible surface in a closed, orientable hyperbolic 3-manifold. Then

$$
\operatorname{Vol} M \geq V_{8} \cdot \bar{\chi}(\operatorname{kish}(M, F))
$$

Putting the ingredients together, cont'd

The next step is to apply the Agol-Storm-Thurston theorem:
Theorem (Agol-Storm-Thurston)
Let F be a closed, orientable incompressible surface in a closed, orientable hyperbolic 3-manifold. Then

$$
\operatorname{Vol} M \geq V_{8} \cdot \bar{\chi}(\operatorname{kish}(M, F))
$$

If $\bar{\chi}(\operatorname{kish}(M, F)) \geq 1$, the theorem implies that

$$
\operatorname{Vol} M \geq V_{8}=3.66 \ldots>3.08
$$

Putting the ingredients together, cont'd

The next step is to apply the Agol-Storm-Thurston theorem:
Theorem (Agol-Storm-Thurston)
Let F be a closed, orientable incompressible surface in a closed, orientable hyperbolic 3-manifold. Then

$$
\operatorname{Vol} M \geq V_{8} \cdot \bar{\chi}(\operatorname{kish}(M, F))
$$

If $\bar{\chi}(\operatorname{kish}(M, F)) \geq 1$, the theorem implies that

$$
\operatorname{Vol} M \geq V_{8}=3.66 \ldots>3.08
$$

Putting the ingredients together, cont'd

If $\bar{\chi}(\operatorname{kish}(M, F))=0$, then $\operatorname{kish}(M, F))=\emptyset$, and the manifold X obtained by splitting M along F is a (possibly disconnected) book of I-bundles.

Putting the ingredients together, cont'd

If $\bar{\chi}(\operatorname{kish}(M, F))=0$, then $\operatorname{kish}(M, F))=\emptyset$, and the manifold X obtained by splitting M along F is a (possibly disconnected) book of I-bundles. This means that X is made up of a union of mutually disjoint I-bundles over surfaces ("pages") and a union of mutually disjoint solid tori ("bindings"),

Putting the ingredients together, cont'd

If $\bar{\chi}(\operatorname{kish}(M, F))=0$, then $\operatorname{kish}(M, F))=\emptyset$, and the manifold X obtained by splitting M along F is a (possibly disconnected) book of I-bundles. This means that X is made up of a union of mutually disjoint I-bundles over surfaces ("pages") and a union of mutually disjoint solid tori ("bindings"), in such a way that the intersection of any binding B with any page P is a vertical annulus in the boundary of P which is homotopically non-trivial in the boundary of B.

Putting the ingredients together, cont'd

If $\bar{\chi}(\operatorname{kish}(M, F))=0$, then $\operatorname{kish}(M, F))=\emptyset$, and the manifold X obtained by splitting M along F is a (possibly disconnected) book of I-bundles. This means that X is made up of a union of mutually disjoint I-bundles over surfaces ("pages") and a union of mutually disjoint solid tori ("bindings"), in such a way that the intersection of any binding B with any page P is a vertical annulus in the boundary of P which is homotopically non-trivial in the boundary of B. In this case an elementary topological argument shows that $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at most 5 .

Putting the ingredients together, cont'd

If $\bar{\chi}(\operatorname{kish}(M, F))=0$, then $\operatorname{kish}(M, F))=\emptyset$, and the manifold X obtained by splitting M along F is a (possibly disconnected) book of I-bundles. This means that X is made up of a union of mutually disjoint I-bundles over surfaces ("pages") and a union of mutually disjoint solid tori ("bindings"), in such a way that the intersection of any binding B with any page P is a vertical annulus in the boundary of P which is homotopically non-trivial in the boundary of B. In this case an elementary topological argument shows that $H_{1}\left(M ; \mathbb{Z}_{2}\right)$ has rank at most 5 .

The other results I mentioned at the beginning are proved by putting together the ingredients I have described in a similar way.

