Quantitative geometry of hyperbolic manifolds,

 ।Peter Shalen

December 18, 2012

The Banach-Tarski paradox

The Banach-Tarski paradox

Not every subset of S^{2} has the right to an area. More precisely:

The Banach-Tarski paradox

Not every subset of S^{2} has the right to an area. More precisely:
Theorem (Hausdorff)
Any non-negative, finitely additive, rotationally invariant set function defined on all subsets of S^{2} is identically zero.

The Banach-Tarski paradox

Not every subset of S^{2} has the right to an area. More precisely:
Theorem (Hausdorff)
Any non-negative, finitely additive, rotationally invariant set function defined on all subsets of S^{2} is identically zero.
(A set function A is finitely additive if $A(X \cup Y)=A(X)+A(Y)$ for any two disjoint subsets of S^{2}. It is rotationally invariant if $A(\rho(X))=A(X)$ for every $\rho \in \mathrm{SO}(3)$.

The Banach-Tarski paradox, cont'd

Let us call two subsets X and Y of \mathbb{R}^{3} equivalent if for some integer N they have decompositions into disjoint subsets

$$
X=X_{1} \cup \cdots X_{N}
$$

and

$$
Y=Y_{1} \cup \cdots Y_{N}
$$

such that X_{i} and Y_{i} are isometric for $i=1, \ldots, N$.

The Banach-Tarski paradox, cont'd

Let us call two subsets X and Y of \mathbb{R}^{3} equivalent if for some integer N they have decompositions into disjoint subsets

$$
X=X_{1} \cup \cdots X_{N}
$$

and

$$
Y=Y_{1} \cup \cdots Y_{N}
$$

such that X_{i} and Y_{i} are isometric for $i=1, \ldots, N$.
The proof of Hausdorff's theorem can be souped up to show that a sphere of radius R in \mathbb{R}^{3} is equivalent to the disjoint union of two disjoint spheres of radius R.

The Banach-Tarski paradox, cont'd

Let us call two subsets X and Y of \mathbb{R}^{3} equivalent if for some integer N they have decompositions into disjoint subsets

$$
X=X_{1} \cup \cdots X_{N}
$$

and

$$
Y=Y_{1} \cup \cdots Y_{N}
$$

such that X_{i} and Y_{i} are isometric for $i=1, \ldots, N$.
The proof of Hausdorff's theorem can be souped up to show that a sphere of radius R in \mathbb{R}^{3} is equivalent to the disjoint union of two disjoint spheres of radius R.

Banach and Tarski used this to show that any two bounded sets with non-empty interior are equivalent ("the pea and the sun").

The "paradoxical" decomposition

Let F be a free group on generators x and y. We may write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\}
$$

The "paradoxical" decomposition

Let F be a free group on generators x and y. We may write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\}
$$

where X denotes the set of all reduced words beginning with x;

The "paradoxical" decomposition

Let F be a free group on generators x and y. We may write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\}
$$

where X denotes the set of all reduced words beginning with x; \bar{X} denotes the set of all reduced words beginning with x^{-1};

The "paradoxical" decomposition

Let F be a free group on generators x and y. We may write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\}
$$

where X denotes the set of all reduced words beginning with x; \bar{X} denotes the set of all reduced words beginning with x^{-1}; and so on.

The "paradoxical" decomposition

Let F be a free group on generators x and y. We may write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\}
$$

where X denotes the set of all reduced words beginning with x; \bar{X} denotes the set of all reduced words beginning with x^{-1}; and so on.

We have

$$
x^{-1} X=F-\bar{X}
$$

The "paradoxical" decomposition

Let F be a free group on generators x and y. We may write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\}
$$

where X denotes the set of all reduced words beginning with x; \bar{X} denotes the set of all reduced words beginning with x^{-1}; and so on.

We have

$$
x^{-1} X=F-\bar{X}
$$

(and similarly $x \bar{X}=F-X, y^{-1} Y=F-\bar{Y}, y \bar{Y}=F-Y$).

Proof of Hausdorff's theorem

Proof of Hausdorff's theorem

There is a rank-2 free subgroup F of $\mathrm{SO}(3)$. Fix generators x and y of F.

Proof of Hausdorff's theorem

There is a rank-2 free subgroup F of $\mathrm{SO}(3)$. Fix generators x and y of F.

Each element of $F-\{1\}$ has just two fixed points. So the fixed points of elements of $F-\{1\}$ form a countable set C.

Proof of Hausdorff's theorem

There is a rank-2 free subgroup F of $\mathrm{SO}(3)$. Fix generators x and y of F.

Each element of $F-\{1\}$ has just two fixed points. So the fixed points of elements of $F-\{1\}$ form a countable set C.
Set $C^{\prime}=S^{2}-C$.

Proof of Hausdorff's theorem

There is a rank-2 free subgroup F of $\mathrm{SO}(3)$. Fix generators x and y of F.
Each element of $F-\{1\}$ has just two fixed points. So the fixed points of elements of $F-\{1\}$ form a countable set C.
Set $C^{\prime}=S^{2}-C$. The action of F on C^{\prime} is free (i.e. no non-trivial element fixes any point). Choose (as in axiom of choice!) a complete set of orbit representatives $\Omega \subset C^{\prime}$.

Proof of Hausdorff's theorem

There is a rank-2 free subgroup F of $\mathrm{SO}(3)$. Fix generators x and y of F.
Each element of $F-\{1\}$ has just two fixed points. So the fixed points of elements of $F-\{1\}$ form a countable set C.
Set $C^{\prime}=S^{2}-C$. The action of F on C^{\prime} is free (i.e. no non-trivial element fixes any point). Choose (as in axiom of choice!) a complete set of orbit representatives $\Omega \subset C^{\prime}$.

The decomposition

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\}
$$

Proof of Hausdorff's theorem

There is a rank-2 free subgroup F of $\mathrm{SO}(3)$. Fix generators x and y of F.
Each element of $F-\{1\}$ has just two fixed points. So the fixed points of elements of $F-\{1\}$ form a countable set C.
Set $C^{\prime}=S^{2}-C$. The action of F on C^{\prime} is free (i.e. no non-trivial element fixes any point). Choose (as in axiom of choice!) a complete set of orbit representatives $\Omega \subset C^{\prime}$.

The decomposition

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\}
$$

gives rise to a decomposition

$$
C^{\prime}=\mathcal{X} \cup \overline{\mathcal{X}} \cup \mathcal{Y} \cup \overline{\mathcal{Y}} \cup \Omega
$$

where $\mathcal{X}=X \cdot \Omega, \overline{\mathcal{X}}=\bar{X} \cdot \Omega$, and so on.

Proof of Hausdorff's theorem, cont'd

From

$$
x^{-1} X=F-\bar{X}
$$

Proof of Hausdorff's theorem, cont'd

From

$$
x^{-1} X=F-\bar{X}
$$

we obtain

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

(and three similar identities).

Proof of Hausdorff's theorem, cont'd

From

$$
x^{-1} X=F-\bar{X}
$$

we obtain

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

(and three similar identities). Now suppose that A is a non-negative, finitely additive, rotationally invariant set function defined on all subsets of S^{2}.

Proof of Hausdorff's theorem, cont'd

From

$$
x^{-1} X=F-\bar{X}
$$

we obtain

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

(and three similar identities). Now suppose that A is a non-negative, finitely additive, rotationally invariant set function defined on all subsets of S^{2}. Using finite additivity and the disjoint decomposition

$$
C^{\prime}=\mathcal{X} \cup \overline{\mathcal{X}} \cup \mathcal{Y} \cup \overline{\mathcal{Y}} \cup \Omega
$$

Proof of Hausdorff's theorem, cont'd

From

$$
x^{-1} X=F-\bar{X}
$$

we obtain

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

(and three similar identities). Now suppose that A is a non-negative, finitely additive, rotationally invariant set function defined on all subsets of S^{2}. Using finite additivity and the disjoint decomposition

$$
C^{\prime}=\mathcal{X} \cup \overline{\mathcal{X}} \cup \mathcal{Y} \cup \overline{\mathcal{Y}} \cup \Omega
$$

we obtain

$$
A\left(C^{\prime}\right)=A(\mathcal{X})+A(\overline{\mathcal{X}})+A(\mathcal{Y})+A(\overline{\mathcal{Y}})+A(\Omega)
$$

Proof of Hausdorff's theorem, cont'd

Using rotational invariance and the transformation law

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

Proof of Hausdorff's theorem, cont'd

Using rotational invariance and the transformation law

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

we obtain

$$
\begin{aligned}
A(\mathcal{X}) & =A\left(x^{-1} \mathcal{X}\right) \\
& =A\left(C^{\prime}\right)-A(\overline{\mathcal{X}})
\end{aligned}
$$

Proof of Hausdorff's theorem, cont'd

Using rotational invariance and the transformation law

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

we obtain

$$
\begin{aligned}
A(\mathcal{X}) & =A\left(x^{-1} \mathcal{X}\right) \\
& =A\left(C^{\prime}\right)-A(\overline{\mathcal{X}}) \\
& =A(\mathcal{X})+A(\mathcal{Y})+A(\overline{\mathcal{Y}})+A(\Omega)
\end{aligned}
$$

Proof of Hausdorff's theorem, cont'd

Using rotational invariance and the transformation law

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

we obtain

$$
\begin{aligned}
A(\mathcal{X}) & =A\left(x^{-1} \mathcal{X}\right) \\
& =A\left(C^{\prime}\right)-A(\overline{\mathcal{X}}) \\
& =A(\mathcal{X})+A(\mathcal{Y})+A(\overline{\mathcal{Y}})+A(\Omega)
\end{aligned}
$$

which by non-negativity implies that

$$
A(\mathcal{Y})=A(\overline{\mathcal{Y}})=A(\Omega)=0
$$

Proof of Hausdorff's theorem, cont'd

Using rotational invariance and the transformation law

$$
x^{-1} \mathcal{X}=C^{\prime}-\overline{\mathcal{X}}
$$

we obtain

$$
\begin{aligned}
A(\mathcal{X}) & =A\left(x^{-1} \mathcal{X}\right) \\
& =A\left(C^{\prime}\right)-A(\overline{\mathcal{X}}) \\
& =A(\mathcal{X})+A(\mathcal{Y})+A(\overline{\mathcal{Y}})+A(\Omega)
\end{aligned}
$$

which by non-negativity implies that

$$
A(\mathcal{Y})=A(\overline{\mathcal{Y}})=A(\Omega)=0
$$

Similarly,

$$
A(\mathcal{X})=A(\overline{\mathcal{X}})=0 .
$$

Proof of Hausdorff's theorem, completed

It now follows that

$$
A\left(C^{\prime}\right)=0
$$

Proof of Hausdorff's theorem, completed

It now follows that

$$
A\left(C^{\prime}\right)=0
$$

It's easy to find a rotation that carries the countable set C into its complement C^{\prime},

Proof of Hausdorff's theorem, completed

It now follows that

$$
A\left(C^{\prime}\right)=0
$$

It's easy to find a rotation that carries the countable set C into its complement C^{\prime}, so $A(C)=0$

Proof of Hausdorff's theorem, completed

It now follows that

$$
A\left(C^{\prime}\right)=0 .
$$

It's easy to find a rotation that carries the countable set C into its complement C^{\prime}, so $A(C)=0$ and hence $A\left(S^{2}\right)=0$.

Uniform restrictions on discrete groups

If Γ is a discrete, torsion-free subgroup of Isom $_{+}\left(\mathbb{H}^{n}\right)$, then for any $p \in \mathbb{H}^{n}$, the set

$$
\{\operatorname{dist}(p, x \cdot p): 1 \neq x \in \Gamma\}
$$

has a strictly positive lower bound.

Uniform restrictions on discrete groups

If Γ is a discrete, torsion-free subgroup of Isom $_{+}\left(\mathbb{H}^{n}\right)$, then for any $p \in \mathbb{H}^{n}$, the set

$$
\{\operatorname{dist}(p, x \cdot p): 1 \neq x \in \Gamma\}
$$

has a strictly positive lower bound.
There is no lower bound which is uniform in the sense of being independent of Γ or even of p.

Uniform restrictions on discrete groups

If Γ is a discrete, torsion-free subgroup of $\operatorname{Isom}_{+}\left(\mathbb{H}^{n}\right)$, then for any $p \in \mathbb{H}^{n}$, the set

$$
\{\operatorname{dist}(p, x \cdot p): 1 \neq x \in \Gamma\}
$$

has a strictly positive lower bound.
There is no lower bound which is uniform in the sense of being independent of Γ or even of p.

However, if one considers a larger set of elements $x_{1}, \ldots, x_{k} \in \Gamma$, under appropriate conditions one can sometimes give uniform conditions involving the distances $\operatorname{dist}\left(p, x_{1} \cdot p\right), \ldots, \operatorname{dist}\left(p, x_{k} \cdot p\right)$ which imply that they cannot all be simultaneously small.

Uniform restrictions on discrete groups

If Γ is a discrete, torsion-free subgroup of $\operatorname{Isom}_{+}\left(\mathbb{H}^{n}\right)$, then for any $p \in \mathbb{H}^{n}$, the set

$$
\{\operatorname{dist}(p, x \cdot p): 1 \neq x \in \Gamma\}
$$

has a strictly positive lower bound.
There is no lower bound which is uniform in the sense of being independent of Γ or even of p.

However, if one considers a larger set of elements $x_{1}, \ldots, x_{k} \in \Gamma$, under appropriate conditions one can sometimes give uniform conditions involving the distances $\operatorname{dist}\left(p, x_{1} \cdot p\right), \ldots, \operatorname{dist}\left(p, x_{k} \cdot p\right)$ which imply that they cannot all be simultaneously small.

Results of this kind turn out to be useful in studying geometric quantities associated to hyperbolic manifolds, such as volume, injectivity radius, diameter, etc.

The $\log (2 k-1)$ theorem

The $\log (2 k-1)$ theorem

Theorem (Anderson-Canary-Culler-S. + Agol and Calegari-Gabai)
Let $k \geq 2$ be an integer and let F be a discrete subgroup of Isom $_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x_{1}, \ldots, x_{k}. Let p be any point of \mathbb{H}^{3} and set $d_{i}=\operatorname{dist}\left(p, x_{i} \cdot p\right)$ for $i=1, \ldots, k$.
Then we have

$$
\sum_{i=1}^{k} \frac{1}{1+e^{d_{i}}} \leq \frac{1}{2}
$$

The $\log (2 k-1)$ theorem

Theorem (Anderson-Canary-Culler-S. + Agol and Calegari-Gabai)
Let $k \geq 2$ be an integer and let F be a discrete subgroup of Isom $_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x_{1}, \ldots, x_{k}. Let p be any point of \mathbb{H}^{3} and set $d_{i}=\operatorname{dist}\left(p, x_{i} \cdot p\right)$ for $i=1, \ldots, k$.
Then we have

$$
\sum_{i=1}^{k} \frac{1}{1+e^{d_{i}}} \leq \frac{1}{2}
$$

In particular there is some $i \in\{1, \ldots, k\}$ such that $d_{i} \geq \log (2 k-1)$.

The $\log (2 k-1)$ theorem

Theorem (Anderson-Canary-Culler-S. + Agol and Calegari-Gabai)
Let $k \geq 2$ be an integer and let F be a discrete subgroup of Isom $_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x_{1}, \ldots, x_{k}. Let p be any point of \mathbb{H}^{3} and set $d_{i}=\operatorname{dist}\left(p, x_{i} \cdot p\right)$ for $i=1, \ldots, k$.
Then we have

$$
\sum_{i=1}^{k} \frac{1}{1+e^{d_{i}}} \leq \frac{1}{2}
$$

In particular there is some $i \in\{1, \ldots, k\}$ such that $d_{i} \geq \log (2 k-1)$.

Idea of the proof of the $\log (2 k-1)$ theorem

The proof involves an argument analogous to the proof of Hausdorff's theorem,

Idea of the proof of the $\log (2 k-1)$ theorem

The proof involves an argument analogous to the proof of Hausdorff's theorem, but the role of the finitely additive, rotation-invariant measure A is played by the so-called Patterson-Sullivan measure for a free discrete subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$.

Idea of the proof of the $\log (2 k-1)$ theorem

The proof involves an argument analogous to the proof of Hausdorff's theorem, but the role of the finitely additive, rotation-invariant measure A is played by the so-called Patterson-Sullivan measure for a free discrete subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$.

Rather than being invariant under the action of the group, this measure transforms in a controlled way under the action.

Idea of the proof of the $\log (2 k-1)$ theorem

The proof involves an argument analogous to the proof of Hausdorff's theorem, but the role of the finitely additive, rotation-invariant measure A is played by the so-called Patterson-Sullivan measure for a free discrete subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$.

Rather than being invariant under the action of the group, this measure transforms in a controlled way under the action.

As a result, instead of getting a paradox, one gets an estimate.

Patterson-Sullivan measures

Patterson-Sullivan measures

If $\Gamma \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right) \cong \mathrm{PSL}_{2}(\mathbb{C})$ is discrete, we define its Poincaré series centered at a point $p \in \mathbb{H}^{3}$ by

$$
g(p, s)=\sum_{\gamma \in \Gamma} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

Patterson-Sullivan measures

If $\Gamma \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right) \cong \mathrm{PSL}_{2}(\mathbb{C})$ is discrete, we define its Poincaré series centered at a point $p \in \mathbb{H}^{3}$ by

$$
g(p, s)=\sum_{\gamma \in \Gamma} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

There is a critical exponent $D \in[0,2]$ such that the series diverges for $s<D$ and converges for $s>D$.

Patterson-Sullivan measures

If $\Gamma \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right) \cong \mathrm{PSL}_{2}(\mathbb{C})$ is discrete, we define its Poincaré series centered at a point $p \in \mathbb{H}^{3}$ by

$$
g(p, s)=\sum_{\gamma \in \Gamma} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

There is a critical exponent $D \in[0,2]$ such that the series diverges for $s<D$ and converges for $s>D$.

Let us assume for a moment that the series diverges for $s=D$.

Patterson-Sullivan measures

If $\Gamma \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right) \cong \mathrm{PSL}_{2}(\mathbb{C})$ is discrete, we define its Poincaré series centered at a point $p \in \mathbb{H}^{3}$ by

$$
g(p, s)=\sum_{\gamma \in \Gamma} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

There is a critical exponent $D \in[0,2]$ such that the series diverges for $s<D$ and converges for $s>D$.

Let us assume for a moment that the series diverges for $s=D$. For every $s>D$ and every $p \in \mathbb{H}^{3}$ we define a Borel probability measure $\mu_{p, s}$ on the compact space $\overline{\mathbb{H}^{3}}=\mathbb{H}^{3} \cup S_{\infty}$ by

$$
\mu_{p, s}=\frac{1}{g(p, s)} \sum_{\gamma \in \Gamma} \exp (-s \operatorname{dist}(p, \gamma \cdot p)) \delta_{\gamma \cdot p}
$$

where $\delta_{\gamma \cdot p}$ denotes a Dirac mass concentrated at $\gamma \cdot p$.

Patterson-Sullivan measures, cont'd

As s decreases to D through a suitable sequence, $\mu_{p, s}$ converges weakly to a measure μ_{p}, a Patterson-Sullivan measure for Γ centered at p.

Patterson-Sullivan measures, cont'd

As s decreases to D through a suitable sequence, $\mu_{p, s}$ converges weakly to a measure μ_{p}, a Patterson-Sullivan measure for Γ centered at p.

There is a more technical definition that works when the Poincaré series converges for $s=D$.

Patterson-Sullivan measures, cont'd

As s decreases to D through a suitable sequence, $\mu_{p, s}$ converges weakly to a measure μ_{p}, a Patterson-Sullivan measure for Γ centered at p.

There is a more technical definition that works when the Poincaré series converges for $s=D$.

The support of μ_{p} is the limit set $\Lambda \subset S_{\infty}$ of Γ.

Under an element $\gamma \in \Gamma$, the measure transforms according to the law

$$
\begin{equation*}
d \mu_{\gamma^{-1}(p)}=\lambda_{\gamma, p}^{D} d \mu_{p} \tag{1}
\end{equation*}
$$

for every $\gamma \in \Gamma$ and every $p \in \mathbb{H}^{3}$. Here D is the critical exponent, and $\lambda_{\gamma, p}$ is the "conformal expansion factor" with respect to the round metric on S_{∞} centered at p; this means that for every $\zeta \in S_{\infty}$, the tangent map $d \gamma_{\infty}: T_{\zeta}\left(S_{\infty}\right) \rightarrow T_{\gamma_{\infty}(\zeta)}\left(S_{\infty}\right)$ changes lengths by a factor of $\lambda_{\gamma, p}(\zeta)$.

Under an element $\gamma \in \Gamma$, the measure transforms according to the law

$$
\begin{equation*}
d \mu_{\gamma^{-1}(p)}=\lambda_{\gamma, p}^{D} d \mu_{p} \tag{1}
\end{equation*}
$$

for every $\gamma \in \Gamma$ and every $p \in \mathbb{H}^{3}$. Here D is the critical exponent, and $\lambda_{\gamma, p}$ is the "conformal expansion factor" with respect to the round metric on S_{∞} centered at p; this means that for every $\zeta \in S_{\infty}$, the tangent map $d \gamma_{\infty}: T_{\zeta}\left(S_{\infty}\right) \rightarrow T_{\gamma_{\infty}(\zeta)}\left(S_{\infty}\right)$ changes lengths by a factor of $\lambda_{\gamma, p}(\zeta)$.

Note that if A_{p} denotes the area measure centered at p, normalized to have total mass 1 , the ordinary change of variable formula gives

$$
d A_{\gamma^{-1}(p)}=\lambda_{\gamma, p}^{2} d A_{p} .
$$

for every $\gamma \in \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$.

Under an element $\gamma \in \Gamma$, the measure transforms according to the law

$$
\begin{equation*}
d \mu_{\gamma^{-1}(p)}=\lambda_{\gamma, p}^{D} d \mu_{p} \tag{1}
\end{equation*}
$$

for every $\gamma \in \Gamma$ and every $p \in \mathbb{H}^{3}$. Here D is the critical exponent, and $\lambda_{\gamma, p}$ is the "conformal expansion factor" with respect to the round metric on S_{∞} centered at p; this means that for every $\zeta \in S_{\infty}$, the tangent map $d \gamma_{\infty}: T_{\zeta}\left(S_{\infty}\right) \rightarrow T_{\gamma_{\infty}(\zeta)}\left(S_{\infty}\right)$ changes lengths by a factor of $\lambda_{\gamma, p}(\zeta)$.

Note that if A_{p} denotes the area measure centered at p, normalized to have total mass 1 , the ordinary change of variable formula gives

$$
d A_{\gamma^{-1}(p)}=\lambda_{\gamma, p}^{2} d A_{p} .
$$

for every $\gamma \in \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$. Thus (1) is consistent with the possibility that $D=2$ and that $A_{p}=\mu_{p}$ for every $p \in S_{\infty}$.

Under an element $\gamma \in \Gamma$, the measure transforms according to the law

$$
\begin{equation*}
d \mu_{\gamma^{-1}(p)}=\lambda_{\gamma, p}^{D} d \mu_{p} \tag{1}
\end{equation*}
$$

for every $\gamma \in \Gamma$ and every $p \in \mathbb{H}^{3}$. Here D is the critical exponent, and $\lambda_{\gamma, p}$ is the "conformal expansion factor" with respect to the round metric on S_{∞} centered at p; this means that for every $\zeta \in S_{\infty}$, the tangent map $d \gamma_{\infty}: T_{\zeta}\left(S_{\infty}\right) \rightarrow T_{\gamma_{\infty}(\zeta)}\left(S_{\infty}\right)$ changes lengths by a factor of $\lambda_{\gamma, p}(\zeta)$.

Note that if A_{p} denotes the area measure centered at p, normalized to have total mass 1 , the ordinary change of variable formula gives

$$
d A_{\gamma^{-1}(p)}=\lambda_{\gamma, p}^{2} d A_{p} .
$$

for every $\gamma \in \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$. Thus (1) is consistent with the possibility that $D=2$ and that $A_{p}=\mu_{p}$ for every $p \in S_{\infty}$. This is what in fact happens if, for example, Γ is cocompact.

The "paradoxical" decomposition of Patterson-Sullivan measure

Suppose that $F \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ is a discrete group which is free on a given generating set.

The "paradoxical" decomposition of Patterson-Sullivan measure

Suppose that $F \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ is a discrete group which is free on a given generating set. For simplicity I will take the rank of F to be 2. Let x and y denote the generators.

The "paradoxical" decomposition of Patterson-Sullivan measure

Suppose that $F \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ is a discrete group which is free on a given generating set. For simplicity I will take the rank of F to be 2. Let x and y denote the generators. As above, write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\} .
$$

The "paradoxical" decomposition of Patterson-Sullivan measure

Suppose that $F \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ is a discrete group which is free on a given generating set. For simplicity I will take the rank of F to be 2. Let x and y denote the generators. As above, write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\} .
$$

The "paradoxical" decomposition of Patterson-Sullivan measure

Suppose that $F \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ is a discrete group which is free on a given generating set. For simplicity I will take the rank of F to be 2. Let x and y denote the generators. As above, write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\} .
$$

This decomposition of F will give rise to a decomposition of a Patterson-Sullivan measure $\mu=\mu_{p}$ associated to F.

The "paradoxical" decomposition of Patterson-Sullivan measure

Suppose that $F \leq \operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ is a discrete group which is free on a given generating set. For simplicity I will take the rank of F to be 2. Let x and y denote the generators. As above, write F as a disjoint union

$$
F=X \cup \bar{X} \cup Y \cup \bar{Y} \cup\{1\} .
$$

This decomposition of F will give rise to a decomposition of a Patterson-Sullivan measure $\mu=\mu_{p}$ associated to F.

The "paradoxical" decomposition of Patterson-Sullivan measure, cont'd

For simplicity, suppose that the Poincaré series

$$
g(s)=\sum_{\gamma \in F} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

diverges at the critical exponent $s=D$.

The "paradoxical" decomposition of Patterson-Sullivan measure, cont'd

For simplicity, suppose that the Poincaré series

$$
g(s)=\sum_{\gamma \in F} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

diverges at the critical exponent $s=D$. For each $s>D$, we set

$$
\nu_{p, s ; X}=\frac{1}{g(s)} \sum_{\gamma \in X} \exp (-s \operatorname{dist}(p, \gamma \cdot p)) \delta_{\gamma \cdot p}
$$

The "paradoxical" decomposition of Patterson-Sullivan measure, cont'd

For simplicity, suppose that the Poincaré series

$$
g(s)=\sum_{\gamma \in F} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

diverges at the critical exponent $s=D$. For each $s>D$, we set

$$
\nu_{p, s ; X}=\frac{1}{g(s)} \sum_{\gamma \in X} \exp (-s \operatorname{dist}(p, \gamma \cdot p)) \delta_{\gamma \cdot p}
$$

and we define $\nu_{p, s ; \bar{X}}, \nu_{p, s ; Y}$ and $\nu_{p, s ; \bar{Y}}$ similarly.

The "paradoxical" decomposition of Patterson-Sullivan

 measure, cont'dFor simplicity, suppose that the Poincaré series

$$
g(s)=\sum_{\gamma \in F} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

diverges at the critical exponent $s=D$. For each $s>D$, we set

$$
\nu_{p, s ; X}=\frac{1}{g(s)} \sum_{\gamma \in X} \exp (-s \operatorname{dist}(p, \gamma \cdot p)) \delta_{\gamma \cdot p}
$$

and we define $\nu_{p, s ; \bar{X}}, \nu_{p, s ; Y}$ and $\nu_{p, s ; \bar{Y}}$ similarly.
After refining the sequence of values of $s>D$ that defined μ, we may arrange that $\nu_{p, s ; X}, \nu_{p, s ; \bar{X}}, \nu_{p, s ; Y}$ and $\nu_{p, s ; \bar{Y}}$ converge weakly to measures $\nu_{p ; X}, \ldots, \nu_{p ; \bar{Y}}$.

The "paradoxical" decomposition of Patterson-Sullivan

 measure, cont'dFor simplicity, suppose that the Poincaré series

$$
g(s)=\sum_{\gamma \in F} \exp (-s \operatorname{dist}(p, \gamma \cdot p))
$$

diverges at the critical exponent $s=D$. For each $s>D$, we set

$$
\nu_{p, s ; X}=\frac{1}{g(s)} \sum_{\gamma \in X} \exp (-s \operatorname{dist}(p, \gamma \cdot p)) \delta_{\gamma \cdot p}
$$

and we define $\nu_{p, s ; \bar{X}}, \nu_{p, s ; Y}$ and $\nu_{p, s ; \bar{Y}}$ similarly.
After refining the sequence of values of $s>D$ that defined μ, we may arrange that $\nu_{p, s ; X}, \nu_{p, s ; \bar{X}}, \nu_{p, s ; Y}$ and $\nu_{p, s ; \bar{Y}}$ converge weakly to measures $\nu_{p ; X}, \ldots, \nu_{p ; \bar{Y}}$. We then have

$$
\mu=\nu_{p ; X}+\nu_{p ; \bar{X}}+\nu_{p ; Y}+\nu_{p ; \bar{Y}}
$$

The "paradoxical" decomposition of Patterson-Sullivan measure, cont'd

The measures $\nu_{p ; X}, \ldots, \nu_{p ; \bar{Y}}$ satisfy the analogue of (1), e.g.

$$
d \nu_{\gamma^{-1}(p) ; X}=\lambda_{\gamma, p}^{D} d \nu_{p ; X}
$$

for any $\gamma \in F$.

The "paradoxical" decomposition of Patterson-Sullivan measure, cont'd

The measures $\nu_{p ; X}, \ldots, \nu_{p ; \bar{Y}}$ satisfy the analogue of (1), e.g.

$$
d \nu_{\gamma^{-1}(p) ; X}=\lambda_{\gamma, p}^{D} d \nu_{p ; X}
$$

for any $\gamma \in F$.
On the other hand, the group-theoretical identity

$$
x^{-1} X=F-\bar{X}
$$

The "paradoxical" decomposition of Patterson-Sullivan measure, cont'd

The measures $\nu_{p ; X}, \ldots, \nu_{p ; \bar{Y}}$ satisfy the analogue of (1), e.g.

$$
d \nu_{\gamma^{-1}(p) ; X}=\lambda_{\gamma, p}^{D} d \nu_{p ; X}
$$

for any $\gamma \in F$.
On the other hand, the group-theoretical identity

$$
x^{-1} X=F-\bar{X}
$$

implies that

$$
d \nu_{x(p) ; x}=d \mu-d \nu_{p ; \bar{X}}
$$

The "paradoxical" decomposition of Patterson-Sullivan measure, cont'd

The measures $\nu_{p ; X}, \ldots, \nu_{p ; \bar{Y}}$ satisfy the analogue of (1), e.g.

$$
d \nu_{\gamma^{-1}(p) ; X}=\lambda_{\gamma, p}^{D} d \nu_{p ; X},
$$

for any $\gamma \in F$.
On the other hand, the group-theoretical identity

$$
x^{-1} X=F-\bar{X}
$$

implies that

$$
d \nu_{x(p) ; x}=d \mu-d \nu_{p ; \bar{x}}
$$

Combining these, taking $\gamma=x^{-1}$ (say), and integrating over S_{∞}, we get

$$
\int \lambda_{x^{-1} ; p}^{D} d \nu_{p ; X}=1-\int d \nu_{p ; \bar{x}}
$$

A sketch of the proof of the $\log (2 k-1)$ theorem

A sketch of the proof of the $\log (2 k-1)$ theorem
For simplicity of notation, take $k=2$. Recall the statement for this case:

A sketch of the proof of the $\log (2 k-1)$ theorem

For simplicity of notation, take $k=2$. Recall the statement for this case:

Theorem (Anderson-Canary-Culler-S. + Agol and Calegari-Gabai)
Let F be a discrete (purely loxodromic) subgroup of Isom $_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x and y.

A sketch of the proof of the $\log (2 k-1)$ theorem

For simplicity of notation, take $k=2$. Recall the statement for this case:

Theorem (Anderson-Canary-Culler-S. + Agol and Calegari-Gabai)
Let F be a discrete (purely loxodromic) subgroup of $\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x and y. Then for any point of $p \in \mathbb{H}^{3}$ we have

$$
\frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))} \leq \frac{1}{2}
$$

A sketch of the proof of the $\log (2 k-1)$ theorem

For simplicity of notation, take $k=2$. Recall the statement for this case:

Theorem (Anderson-Canary-Culler-S. + Agol and Calegari-Gabai)
Let F be a discrete (purely loxodromic) subgroup of Isom $_{+}\left(\mathbb{H}^{3}\right)$ which is freely generated by elements x and y. Then for any point of $p \in \mathbb{H}^{3}$ we have

$$
\frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))} \leq \frac{1}{2}
$$

For the proof, work with the Patterson-Sullivan measure $\mu=\mu_{p}$ centered at p, and its decomposition

$$
\mu=\nu_{X}+\nu_{\bar{X}}+\nu_{Y}+\nu_{\bar{Y}}
$$

(with p now suppressed from notation).

A sketch of the proof of the $\log (2 k-1)$ theorem. cont'd Pretend for the moment that F is cocompact, so $D=2$, and $\mu=$ normalized area measure $A=A_{p}$ centered at p.

A sketch of the proof of the $\log (2 k-1)$ theorem. cont'd Pretend for the moment that F is cocompact, so $D=2$, and $\mu=$ normalized area measure $A=A_{p}$ centered at p.Then $\nu_{X}, \ldots, \nu_{\bar{Y}}$ are bounded above by A.

A sketch of the proof of the $\log (2 k-1)$ theorem. cont'd Pretend for the moment that F is cocompact, so $D=2$, and $\mu=$ normalized area measure $A=A_{p}$ centered at p. Then $\nu_{X}, \ldots, \nu_{\bar{Y}}$ are bounded above by A.
Set $\lambda=\lambda_{x^{-1}}$. We've seen

$$
\int \lambda_{x^{-1}}^{D} d \nu_{X}=1-\int d \nu_{\bar{x}}
$$

A sketch of the proof of the $\log (2 k-1)$ theorem. cont'd Pretend for the moment that F is cocompact, so $D=2$, and $\mu=$ normalized area measure $A=A_{p}$ centered at p. Then $\nu_{X}, \ldots, \nu_{\bar{Y}}$ are bounded above by A.
Set $\lambda=\lambda_{x^{-1}}$. We've seen

$$
\int \lambda_{x^{-1}}^{D} d \nu_{x}=1-\int d \nu_{\bar{x}} .
$$

Can identify S_{∞} with the standard S^{2} so that λ is a function of latitude and increases monotonically from latitude $-\pi / 2$ to latitude $+\pi / 2$.

A sketch of the proof of the $\log (2 k-1)$ theorem. cont'd Pretend for the moment that F is cocompact, so $D=2$, and $\mu=$ normalized area measure $A=A_{p}$ centered at p. Then $\nu_{X}, \ldots, \nu_{\bar{Y}}$ are bounded above by A.
Set $\lambda=\lambda_{x^{-1}}$. We've seen

$$
\int \lambda_{x^{-1}}^{D} d \nu_{x}=1-\int d \nu_{\bar{x}} .
$$

Can identify S_{∞} with the standard S^{2} so that λ is a function of latitude and increases monotonically from latitude $-\pi / 2$ to latitude $+\pi / 2$. Let us set $\alpha_{X}=\int d \nu_{X}$ and $\beta_{X}=\int d \nu_{\bar{X}}$, and let C_{α} denote the cap of area α centered at the north pole.

A sketch of the proof of the $\log (2 k-1)$ theorem. cont'd Pretend for the moment that F is cocompact, so $D=2$, and $\mu=$ normalized area measure $A=A_{p}$ centered at p. Then $\nu_{X}, \ldots, \nu_{\bar{Y}}$ are bounded above by A.
Set $\lambda=\lambda_{x^{-1}}$. We've seen

$$
\int \lambda_{x^{-1}}^{D} d \nu_{x}=1-\int d \nu_{\bar{x}} .
$$

Can identify S_{∞} with the standard S^{2} so that λ is a function of latitude and increases monotonically from latitude $-\pi / 2$ to latitude $+\pi / 2$. Let us set $\alpha_{X}=\int d \nu_{X}$ and $\beta_{X}=\int d \nu_{\bar{X}}$, and let C_{α} denote the cap of area α centered at the north pole. Since $\nu_{x} \leq A$ and λ is monotonically increasing in latitude, it's easy to deduce that

$$
\int_{s^{2}} \lambda^{2} d \nu x \leq \int_{C_{\alpha_{X}}} \lambda^{2} d A
$$

A sketch of the proof of the $\log (2 k-1)$ theorem. cont'd Pretend for the moment that F is cocompact, so $D=2$, and $\mu=$ normalized area measure $A=A_{p}$ centered at p. Then $\nu_{X}, \ldots, \nu_{\bar{Y}}$ are bounded above by A.
Set $\lambda=\lambda_{x^{-1}}$. We've seen

$$
\int \lambda_{x^{-1}}^{D} d \nu_{x}=1-\int d \nu_{\bar{x}} .
$$

Can identify S_{∞} with the standard S^{2} so that λ is a function of latitude and increases monotonically from latitude $-\pi / 2$ to latitude $+\pi / 2$. Let us set $\alpha_{X}=\int d \nu_{X}$ and $\beta_{X}=\int d \nu_{\bar{X}}$, and let C_{α} denote the cap of area α centered at the north pole. Since $\nu_{x} \leq A$ and λ is monotonically increasing in latitude, it's easy to deduce that

$$
\int_{s^{2}} \lambda^{2} d \nu x \leq \int_{C_{\alpha_{X}}} \lambda^{2} d A
$$

so that

$$
\begin{equation*}
\int_{C_{\alpha_{X}}} \lambda^{2} d A \geq 1-\beta_{X} . \tag{2}
\end{equation*}
$$

The function λ can be explicitly given in terms of the parameter $d_{x}=\operatorname{dist}(p, x \cdot p)$, and the left hand side of the last inequality can be evaluated using elementary calculus.

The function λ can be explicitly given in terms of the parameter $d_{x}=\operatorname{dist}(p, x \cdot p)$, and the left hand side of the last inequality can be evaluated using elementary calculus. This turns (2) into an explicit inequality relating d_{x}, α_{X} and β_{X}. After a little manipulation we get

$$
\frac{1}{1+e^{d_{x}}} \leq \frac{\alpha_{x}+\beta_{X}}{2}
$$

The function λ can be explicitly given in terms of the parameter $d_{x}=\operatorname{dist}(p, x \cdot p)$, and the left hand side of the last inequality can be evaluated using elementary calculus. This turns (2) into an explicit inequality relating d_{x}, α_{X} and β_{X}. After a little manipulation we get

$$
\frac{1}{1+e^{d_{x}}} \leq \frac{\alpha_{X}+\beta_{X}}{2}
$$

Similarly,

$$
\frac{1}{1+e^{d_{y}}} \leq \frac{\alpha_{Y}+\beta_{Y}}{2}
$$

The function λ can be explicitly given in terms of the parameter $d_{x}=\operatorname{dist}(p, x \cdot p)$, and the left hand side of the last inequality can be evaluated using elementary calculus. This turns (2) into an explicit inequality relating d_{x}, α_{X} and β_{X}. After a little manipulation we get

$$
\frac{1}{1+e^{d_{x}}} \leq \frac{\alpha_{X}+\beta_{X}}{2}
$$

Similarly,

$$
\frac{1}{1+e^{d_{y}}} \leq \frac{\alpha_{Y}+\beta_{Y}}{2}
$$

So

$$
\frac{1}{1+e^{d_{x}}}+\frac{1}{1+e^{d_{x}}} \leq \frac{\alpha_{X}+\beta_{X}+\alpha_{Y}+\beta_{Y}}{2}=\frac{1}{2}
$$

This proves the conjecture under the additional assumption that the normalized area measure is a Patterson-Sullivan measure and the critical exponent is 2 .

This proves the conjecture under the additional assumption that the normalized area measure is a Patterson-Sullivan measure and the critical exponent is 2. It follows from the Marden conjecture, recently proved by Agol and Calegari-Gabai, together with earlier work by Thurston and Canary, that this additional assumption always holds if F is purely loxodromic and geometrically infinite.

This proves the conjecture under the additional assumption that the normalized area measure is a Patterson-Sullivan measure and the critical exponent is 2 . It follows from the Marden conjecture, recently proved by Agol and Calegari-Gabai, together with earlier work by Thurston and Canary, that this additional assumption always holds if F is purely loxodromic and geometrically infinite. (To say that the purely loxodromic F is geometrically infinite means that there is no non-empty convex subset \mathcal{C} of \mathbb{H}^{3} such that \mathcal{C} / F is compact.)

This proves the conjecture under the additional assumption that the normalized area measure is a Patterson-Sullivan measure and the critical exponent is 2 . It follows from the Marden conjecture, recently proved by Agol and Calegari-Gabai, together with earlier work by Thurston and Canary, that this additional assumption always holds if F is purely loxodromic and geometrically infinite. (To say that the purely loxodromic F is geometrically infinite means that there is no non-empty convex subset \mathcal{C} of \mathbb{H}^{3} such that \mathcal{C} / F is compact.)

If F is geometrically finite, there is a trick for reducing the proof to the case already done.

This proves the conjecture under the additional assumption that the normalized area measure is a Patterson-Sullivan measure and the critical exponent is 2. It follows from the Marden conjecture, recently proved by Agol and Calegari-Gabai, together with earlier work by Thurston and Canary, that this additional assumption always holds if F is purely loxodromic and geometrically infinite. (To say that the purely loxodromic F is geometrically infinite means that there is no non-empty convex subset \mathcal{C} of \mathbb{H}^{3} such that \mathcal{C} / F is compact.)

If F is geometrically finite, there is a trick for reducing the proof to the case already done. The representations of an abstract rank-2 free group F in $\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ can be identified with points of $V=\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)^{2}$.

This proves the conjecture under the additional assumption that the normalized area measure is a Patterson-Sullivan measure and the critical exponent is 2. It follows from the Marden conjecture, recently proved by Agol and Calegari-Gabai, together with earlier work by Thurston and Canary, that this additional assumption always holds if F is purely loxodromic and geometrically infinite. (To say that the purely loxodromic F is geometrically infinite means that there is no non-empty convex subset \mathcal{C} of \mathbb{H}^{3} such that \mathcal{C} / F is compact.)

If F is geometrically finite, there is a trick for reducing the proof to the case already done. The representations of an abstract rank-2 free group F in $\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)$ can be identified with points of $V=\operatorname{Isom}_{+}\left(\mathbb{H}^{3}\right)^{2}$. The representations that are faithful and have discrete image form a closed subset Δ of V, while the representations in Δ having purely loxodromic and geometrically finite image form an open subset Φ of V which is dense in Δ.

Fix any point $p \in \mathbb{H}^{3}$, and consider the real-valued function defined on Δ by

$$
(x, y) \mapsto \frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))}
$$

Fix any point $p \in \mathbb{H}^{3}$, and consider the real-valued function defined on Δ by

$$
(x, y) \mapsto \frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))}
$$

We need to show the function is bounded above by $1 / 2$ on Δ.

Fix any point $p \in \mathbb{H}^{3}$, and consider the real-valued function defined on Δ by

$$
(x, y) \mapsto \frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))} .
$$

We need to show the function is bounded above by $1 / 2$ on Δ. If the function has no maximum on the closure of Φ, it's easy to show its supremum is at most $1 / 2$.

Fix any point $p \in \mathbb{H}^{3}$, and consider the real-valued function defined on Δ by

$$
(x, y) \mapsto \frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))}
$$

We need to show the function is bounded above by $1 / 2$ on Δ. If the function has no maximum on the closure of Φ, it's easy to show its supremum is at most $1 / 2$. It's almost trivial to show that it has no maximum on Φ.

Fix any point $p \in \mathbb{H}^{3}$, and consider the real-valued function defined on Δ by

$$
(x, y) \mapsto \frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))}
$$

We need to show the function is bounded above by $1 / 2$ on Δ. If the function has no maximum on the closure of Φ, it's easy to show its supremum is at most $1 / 2$. It's almost trivial to show that it has no maximum on Φ. So we may assume it takes a maximum value on the frontier of Φ.

Fix any point $p \in \mathbb{H}^{3}$, and consider the real-valued function defined on Δ by

$$
(x, y) \mapsto \frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))}
$$

We need to show the function is bounded above by $1 / 2$ on Δ. If the function has no maximum on the closure of Φ, it's easy to show its supremum is at most $1 / 2$. It's almost trivial to show that it has no maximum on Φ. So we may assume it takes a maximum value on the frontier of Φ. This frontier is known to have a dense subset consisting of purely loxodromic, geometrically infinite representations;

Fix any point $p \in \mathbb{H}^{3}$, and consider the real-valued function defined on Δ by

$$
(x, y) \mapsto \frac{1}{1+\exp (\operatorname{dist}(p, x \cdot p))}+\frac{1}{1+\exp (\operatorname{dist}(p, y \cdot p))}
$$

We need to show the function is bounded above by $1 / 2$ on Δ. If the function has no maximum on the closure of Φ, it's easy to show its supremum is at most $1 / 2$. It's almost trivial to show that it has no maximum on Φ. So we may assume it takes a maximum value on the frontier of Φ. This frontier is known to have a dense subset consisting of purely loxodromic, geometrically infinite representations; on this set, the function is bounded above by $1 / 2$ in view of the case already done.

