
Quantitative geometry of hyperbolic manifolds,

I

Peter Shalen

December 18, 2012



The Banach-Tarski paradox

Not every subset of S2 has the right to an area. More precisely:

Theorem (Hausdorff)

Any non-negative, finitely additive, rotationally invariant set

function defined on all subsets of S2 is identically zero.

(A set function A is finitely additive if A(X ∪ Y ) = A(X ) + A(Y )
for any two disjoint subsets of S2. It is rotationally invariant if

A(ρ(X )) = A(X ) for every ρ ∈ SO(3).)
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The Banach-Tarski paradox, cont’d

Let us call two subsets X and Y of R3 equivalent if for some

integer N they have decompositions into disjoint subsets

X = X1 ∪ · · ·XN

and

Y = Y1 ∪ · · ·YN
such that Xi and Yi are isometric for i = 1, . . . ,N.

The proof of Hausdorff’s theorem can be souped up to show that

a sphere of radius R in R3 is equivalent to the disjoint union of

two disjoint spheres of radius R.

Banach and Tarski used this to show that any two bounded sets

with non-empty interior are equivalent (“the pea and the sun”).
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The “paradoxical” decomposition

Let F be a free group on generators x and y . We may write F as

a disjoint union

F = X ∪ X ∪ Y ∪ Y ∪ {1},

where X denotes the set of all reduced words beginning with x ;

X denotes the set of all reduced words beginning with x−1;

and so on.

We have

x−1X = F − X

(and similarly xX = F − X , y−1Y = F − Y , y Y = F − Y ).
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Proof of Hausdorff’s theorem

There is a rank-2 free subgroup F of SO(3). Fix generators x and

y of F .

Each element of F − {1} has just two fixed points. So the fixed

points of elements of F − {1} form a countable set C .

Set C ′ = S2 − C . The action of F on C ′ is free (i.e. no

non-trivial element fixes any point). Choose (as in axiom of

choice!) a complete set of orbit representatives Ω ⊂ C ′.

The decomposition

F = X ∪ X ∪ Y ∪ Y ∪ {1}

gives rise to a decomposition

C ′ = X ∪ X ∪ Y ∪ Y ∪ Ω,

where X = X · Ω, X = X · Ω, and so on.
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Proof of Hausdorff’s theorem, cont’d

From

x−1X = F − X

we obtain

x−1X = C ′ −X

(and three similar identities). Now suppose that A is a

non-negative, finitely additive, rotationally invariant set function

defined on all subsets of S2. Using finite additivity and the

disjoint decomposition

C ′ = X ∪ X ∪ Y ∪ Y ∪ Ω,

we obtain

A(C ′) = A(X ) + A(X ) + A(Y) + A(Y) + A(Ω).
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Proof of Hausdorff’s theorem, cont’d

Using rotational invariance and the transformation law

x−1X = C ′ −X

we obtain

A(X ) = A(x−1X )

= A(C ′)− A(X )

= A(X ) + A(Y) + A(Y) + A(Ω),

which by non-negativity implies that

A(Y) = A(Y) = A(Ω) = 0.

Similarly,

A(X ) = A(X ) = 0.
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Proof of Hausdorff’s theorem, completed

It now follows that

A(C ′) = 0.

It’s easy to find a rotation that carries the countable set C into

its complement C ′, so A(C ) = 0 and hence A(S2) = 0.
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Uniform restrictions on discrete groups

If Γ is a discrete, torsion-free subgroup of Isom+(Hn), then for

any p ∈ Hn, the set

{dist(p, x · p) : 1 6= x ∈ Γ}

has a strictly positive lower bound.

There is no lower bound which is uniform in the sense of being

independent of Γ or even of p.

However, if one considers a larger set of elements x1, . . . , xk ∈ Γ,

under appropriate conditions one can sometimes give uniform

conditions involving the distances dist(p, x1 · p), . . . ,dist(p, xk · p)
which imply that they cannot all be simultaneously small.

Results of this kind turn out to be useful in studying geometric

quantities associated to hyperbolic manifolds, such as volume,

injectivity radius, diameter, etc.
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The log(2k − 1) theorem

Theorem (Anderson-Canary-Culler-S. + Agol and

Calegari-Gabai)

Let k ≥ 2 be an integer and let F be a discrete subgroup of

Isom+(H3) which is freely generated by elements x1, . . . , xk . Let

p be any point of H3 and set di = dist(p, xi · p) for i = 1, . . . , k.

Then we have
k∑
i=1

1

1 + edi
≤

1

2
.

In particular there is some i ∈ {1, . . . , k} such that

di ≥ log(2k − 1).
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Idea of the proof of the log(2k − 1) theorem

The proof involves an argument analogous to the proof of

Hausdorff’s theorem,

but the role of the finitely additive,

rotation-invariant measure A is played by the so-called

Patterson-Sullivan measure for a free discrete subgroup of

PSL2(C).

Rather than being invariant under the action of the group, this

measure transforms in a controlled way under the action.

As a result, instead of getting a paradox, one gets an estimate.
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Patterson-Sullivan measures

If Γ ≤ Isom+(H3) ∼= PSL2(C) is discrete, we define its Poincaré

series centered at a point p ∈ H3 by

g(p, s) =
∑
γ∈Γ

exp(−s dist(p, γ · p)).

There is a critical exponent D ∈ [0, 2] such that the series

diverges for s < D and converges for s > D.

Let us assume for a moment that the series diverges for s = D.

For every s > D and every p ∈ H3 we define a Borel probability

measure µp,s on the compact space H3 = H3 ∪ S∞ by

µp,s =
1

g(p, s)

∑
γ∈Γ

exp(−s dist(p, γ · p))δγ·p

where δγ·p denotes a Dirac mass concentrated at γ · p.
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There is a critical exponent D ∈ [0, 2] such that the series

diverges for s < D and converges for s > D.

Let us assume for a moment that the series diverges for s = D.

For every s > D and every p ∈ H3 we define a Borel probability

measure µp,s on the compact space H3 = H3 ∪ S∞ by

µp,s =
1

g(p, s)

∑
γ∈Γ

exp(−s dist(p, γ · p))δγ·p

where δγ·p denotes a Dirac mass concentrated at γ · p.



Patterson-Sullivan measures, cont’d

As s decreases to D through a suitable sequence, µp,s converges

weakly to a measure µp, a Patterson-Sullivan measure for Γ
centered at p.

There is a more technical definition that works when the Poincaré

series converges for s = D.

The support of µp is the limit set Λ ⊂ S∞ of Γ.



Patterson-Sullivan measures, cont’d

As s decreases to D through a suitable sequence, µp,s converges

weakly to a measure µp, a Patterson-Sullivan measure for Γ
centered at p.

There is a more technical definition that works when the Poincaré
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Under an element γ ∈ Γ, the measure transforms according to the

law

dµγ−1(p) = λDγ,p dµp (1)

for every γ ∈ Γ and every p ∈ H3. Here D is the critical

exponent, and λγ,p is the “conformal expansion factor” with

respect to the round metric on S∞ centered at p; this means that

for every ζ ∈ S∞, the tangent map dγ∞ : Tζ(S∞)→ Tγ∞(ζ)(S∞)
changes lengths by a factor of λγ,p(ζ).

Note that if Ap denotes the area measure centered at p,

normalized to have total mass 1, the ordinary change of variable

formula gives

dAγ−1(p) = λ2γ,p dAp.

for every γ ∈ Isom+(H3). Thus (1) is consistent with the

possibility that D = 2 and that Ap = µp for every p ∈ S∞. This is

what in fact happens if, for example, Γ is cocompact.
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The “paradoxical” decomposition of Patterson-Sullivan

measure

Suppose that F ≤ Isom+(H3) is a discrete group which is free on

a given generating set.

For simplicity I will take the rank of F to

be 2. Let x and y denote the generators. As above, write F as a

disjoint union

F = X ∪ X ∪ Y ∪ Y ∪ {1}.

This decomposition of F will give rise to a decomposition of a

Patterson-Sullivan measure µ = µp associated to F .
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The “paradoxical” decomposition of Patterson-Sullivan

measure, cont’d
For simplicity, suppose that the Poincaré series

g(s) =
∑
γ∈F

exp(−s dist(p, γ · p))

diverges at the critical exponent s = D.

For each s > D, we set

νp,s;X =
1

g(s)

∑
γ∈X

exp(−s dist(p, γ · p))δγ·p

and we define νp,s;X , νp,s;Y and νp,s;Y similarly.

After refining the sequence of values of s > D that defined µ, we

may arrange that νp,s;X , νp,s;X , νp,s;Y and νp,s;Y converge weakly

to measures νp;X , . . . , νp;Y . We then have

µ = νp;X + νp;X + νp;Y + νp;Y .
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The “paradoxical” decomposition of Patterson-Sullivan

measure, cont’d

The measures νp;X , . . . , νp;Y satisfy the analogue of (1), e.g.

dνγ−1(p);X = λDγ,p dνp;X ,

for any γ ∈ F .

On the other hand, the group-theoretical identity

x−1X = F − X

implies that

dνx(p);X = dµ− dνp;X .

Combining these, taking γ = x−1 (say), and integrating over S∞,

we get ∫
λDx−1;p dνp;X = 1−

∫
dνp;X .
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A sketch of the proof of the log(2k − 1) theorem

For simplicity of notation, take k = 2. Recall the statement for

this case:

Theorem (Anderson-Canary-Culler-S. + Agol and

Calegari-Gabai)

Let F be a discrete (purely loxodromic) subgroup of Isom+(H3)
which is freely generated by elements x and y . Then for any point

of p ∈ H3 we have

1

1 + exp(dist(p, x · p))
+

1

1 + exp(dist(p, y · p))
≤

1

2
.

For the proof, work with the Patterson-Sullivan measure µ = µp
centered at p, and its decomposition

µ = νX + νX + νY + νY

(with p now suppressed from notation).
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A sketch of the proof of the log(2k − 1) theorem. cont’d
Pretend for the moment that F is cocompact, so D = 2, and µ =
normalized area measure A = Ap centered at p.

Then νX , . . . , νY
are bounded above by A.

Set λ = λx−1 . We’ve seen∫
λDx−1 dνX = 1−

∫
dνX .

Can identify S∞ with the standard S2 so that λ is a function of

latitude and increases monotonically from latitude −π/2 to

latitude +π/2. Let us set αX =
∫

dνX and βX =
∫

dνX̄ , and let

Cα denote the cap of area α centered at the north pole. Since

νX ≤ A and λ is monotonically increasing in latitude, it’s easy to

deduce that ∫
s2
λ2 dνX ≤

∫
CαX

λ2 dA

so that ∫
CαX

λ2 dA ≥ 1− βX . (2)
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The function λ can be explicitly given in terms of the parameter

dx = dist(p, x · p), and the left hand side of the last inequality can

be evaluated using elementary calculus.

This turns (2) into an

explicit inequality relating dx , αX and βX . After a little

manipulation we get

1

1 + edx
≤
αX + βX

2
.

Similarly,
1

1 + edy
≤
αY + βY

2
.

So
1

1 + edx
+

1

1 + edx
≤
αX + βX + αY + βY

2
=

1

2
.
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αY + βY

2
.

So
1

1 + edx
+

1

1 + edx
≤
αX + βX + αY + βY

2
=

1

2
.



This proves the conjecture under the additional assumption that

the normalized area measure is a Patterson-Sullivan measure and

the critical exponent is 2.

It follows from the Marden conjecture,

recently proved by Agol and Calegari-Gabai, together with earlier

work by Thurston and Canary, that this additional assumption

always holds if F is purely loxodromic and geometrically infinite.

(To say that the purely loxodromic F is geometrically infinite

means that there is no non-empty convex subset C of H3 such

that C/F is compact.)

If F is geometrically finite, there is a trick for reducing the proof

to the case already done. The representations of an abstract

rank-2 free group F in Isom+(H3) can be identified with points of

V = Isom+(H3)2. The representations that are faithful and have

discrete image form a closed subset ∆ of V , while the

representations in ∆ having purely loxodromic and geometrically

finite image form an open subset Φ of V which is dense in ∆.



This proves the conjecture under the additional assumption that

the normalized area measure is a Patterson-Sullivan measure and

the critical exponent is 2. It follows from the Marden conjecture,

recently proved by Agol and Calegari-Gabai, together with earlier

work by Thurston and Canary, that this additional assumption

always holds if F is purely loxodromic and geometrically infinite.

(To say that the purely loxodromic F is geometrically infinite

means that there is no non-empty convex subset C of H3 such

that C/F is compact.)

If F is geometrically finite, there is a trick for reducing the proof

to the case already done. The representations of an abstract

rank-2 free group F in Isom+(H3) can be identified with points of

V = Isom+(H3)2. The representations that are faithful and have

discrete image form a closed subset ∆ of V , while the

representations in ∆ having purely loxodromic and geometrically

finite image form an open subset Φ of V which is dense in ∆.



This proves the conjecture under the additional assumption that

the normalized area measure is a Patterson-Sullivan measure and

the critical exponent is 2. It follows from the Marden conjecture,

recently proved by Agol and Calegari-Gabai, together with earlier

work by Thurston and Canary, that this additional assumption

always holds if F is purely loxodromic and geometrically infinite.

(To say that the purely loxodromic F is geometrically infinite

means that there is no non-empty convex subset C of H3 such

that C/F is compact.)

If F is geometrically finite, there is a trick for reducing the proof

to the case already done. The representations of an abstract

rank-2 free group F in Isom+(H3) can be identified with points of

V = Isom+(H3)2. The representations that are faithful and have

discrete image form a closed subset ∆ of V , while the

representations in ∆ having purely loxodromic and geometrically

finite image form an open subset Φ of V which is dense in ∆.



This proves the conjecture under the additional assumption that

the normalized area measure is a Patterson-Sullivan measure and

the critical exponent is 2. It follows from the Marden conjecture,

recently proved by Agol and Calegari-Gabai, together with earlier

work by Thurston and Canary, that this additional assumption

always holds if F is purely loxodromic and geometrically infinite.

(To say that the purely loxodromic F is geometrically infinite

means that there is no non-empty convex subset C of H3 such

that C/F is compact.)

If F is geometrically finite, there is a trick for reducing the proof

to the case already done.

The representations of an abstract

rank-2 free group F in Isom+(H3) can be identified with points of

V = Isom+(H3)2. The representations that are faithful and have

discrete image form a closed subset ∆ of V , while the

representations in ∆ having purely loxodromic and geometrically

finite image form an open subset Φ of V which is dense in ∆.



This proves the conjecture under the additional assumption that

the normalized area measure is a Patterson-Sullivan measure and

the critical exponent is 2. It follows from the Marden conjecture,

recently proved by Agol and Calegari-Gabai, together with earlier

work by Thurston and Canary, that this additional assumption

always holds if F is purely loxodromic and geometrically infinite.

(To say that the purely loxodromic F is geometrically infinite

means that there is no non-empty convex subset C of H3 such

that C/F is compact.)

If F is geometrically finite, there is a trick for reducing the proof

to the case already done. The representations of an abstract

rank-2 free group F in Isom+(H3) can be identified with points of

V = Isom+(H3)2.

The representations that are faithful and have

discrete image form a closed subset ∆ of V , while the

representations in ∆ having purely loxodromic and geometrically

finite image form an open subset Φ of V which is dense in ∆.



This proves the conjecture under the additional assumption that

the normalized area measure is a Patterson-Sullivan measure and

the critical exponent is 2. It follows from the Marden conjecture,

recently proved by Agol and Calegari-Gabai, together with earlier

work by Thurston and Canary, that this additional assumption

always holds if F is purely loxodromic and geometrically infinite.

(To say that the purely loxodromic F is geometrically infinite

means that there is no non-empty convex subset C of H3 such

that C/F is compact.)

If F is geometrically finite, there is a trick for reducing the proof

to the case already done. The representations of an abstract

rank-2 free group F in Isom+(H3) can be identified with points of

V = Isom+(H3)2. The representations that are faithful and have

discrete image form a closed subset ∆ of V , while the

representations in ∆ having purely loxodromic and geometrically

finite image form an open subset Φ of V which is dense in ∆.



Fix any point p ∈ H3, and consider the real-valued function

defined on ∆ by

(x , y) 7→
1

1 + exp(dist(p, x · p))
+

1

1 + exp(dist(p, y · p))
.

We need to show the function is bounded above by 1/2 on ∆.

If the function has no maximum on the closure of Φ, it’s easy to

show its supremum is at most 1/2. It’s almost trivial to show

that it has no maximum on Φ. So we may assume it takes a

maximum value on the frontier of Φ. This frontier is known to

have a dense subset consisting of purely loxodromic, geometrically

infinite representations; on this set, the function is bounded above

by 1/2 in view of the case already done.
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