Filling invariants: homological vs. homotopical

Pallavi Dani
Louisiana State University
joint with A. Abrams, N. Brady, and R. Young

Isoperimetric inequality in the plane

Let γ be a simple loop in \mathbb{R}^{2} of length L.

Isoperimetric inequality in the plane

Let γ be a simple loop in \mathbb{R}^{2} of length L.
If $A=$ area enclosed by γ then

$$
A \leq \frac{L^{2}}{4 \pi}
$$

Moreover $\frac{L^{2}}{4 \pi}$ is the smallest function which work for all loops.
(Since if γ is a circle, $A=\frac{L^{2}}{4 \pi}$)
$\frac{L^{2}}{4 \pi}$ is the isoperimetric function of \mathbb{R}^{2}.

Generalization: loops in higher dimensional spaces

Let X be a simply connected metric space in which area makes sense.

- Riemannian manifold (area is defined as an integral)
- Cell complex (area is given by counting cells)

Generalization: loops in higher dimensional spaces

Let X be a simply connected metric space in which area makes sense.

- Riemannian manifold (area is defined as an integral)
- Cell complex (area is given by counting cells)

A loop γ in X is an immersion $\gamma: S^{1} \rightarrow X$. (Or $X^{(1)}$ in cell complex case)

Generalization: loops in higher dimensional spaces

Let X be a simply connected metric space in which area makes sense.

- Riemannian manifold (area is defined as an integral)
- Cell complex (area is given by counting cells)

A loop γ in X is an immersion $\gamma: S^{1} \rightarrow X$. (Or $X^{(1)}$ in cell complex case)
A filling of γ is an extension $\tilde{\gamma}: D^{2} \rightarrow X$. (Or $X^{(2)}$ in cell complex case) The filling area of γ is

$$
\operatorname{FArea}(\gamma)=\inf \{\operatorname{Area}(\tilde{\gamma}) \mid \tilde{\gamma} \text { is a filling of } \gamma\}
$$

i. e. the area of the most "efficient" filling.

Generalization: loops in higher dimensional spaces

Let X be a simply connected metric space in which area makes sense.

- Riemannian manifold (area is defined as an integral)
- Cell complex (area is given by counting cells)

A loop γ in X is an immersion $\gamma: S^{1} \rightarrow X$. (Or $X^{(1)}$ in cell complex case)
A filling of γ is an extension $\tilde{\gamma}: D^{2} \rightarrow X$. (Or $X^{(2)}$ in cell complex case)
The filling area of γ is

$$
\operatorname{FArea}(\gamma)=\inf \{\operatorname{Area}(\tilde{\gamma}) \mid \tilde{\gamma} \text { is a filling of } \gamma\}
$$

i. e. the area of the most "efficient" filling.

The isoperimetric function (or Dehn function) of X is

$$
\operatorname{Dehn}_{X}(x)=\sup \{\operatorname{FArea}(\gamma) \mid \text { length }(\gamma) \leq x\}
$$

Dehn function of a group

Let G be a finitely presented group. If G acts geometrically (i. e. properly discontinuously and cocompactly) on spaces X_{1} and X_{2}, then their Dehn functions have the same "growth type". More precisely,

$$
\operatorname{Dehn}_{X_{1}}(x) \simeq \operatorname{Dehn}_{X_{2}}(x)
$$

where \simeq is coarse bilipschitz equivalence.

Dehn function of a group

Let G be a finitely presented group. If G acts geometrically (i. e. properly discontinuously and cocompactly) on spaces X_{1} and X_{2}, then their Dehn functions have the same "growth type". More precisely,

$$
\operatorname{Dehn}_{X_{1}}(x) \simeq \operatorname{Dehn}_{X_{2}}(x)
$$

where \simeq is coarse bilipschitz equivalence.
For example,
any polynomial of degree $d \simeq x^{d}$
If $\alpha, \beta \geq 1$, then $x^{\alpha} \simeq x^{\beta} \Longleftrightarrow \alpha=\beta$
$e^{x} \simeq \lambda^{x}$ for all $\lambda>1$
$e^{x} \succeq x^{d}$ for any d (and e^{x} not $\simeq x^{d}$)

Dehn function of a group

Let G be a finitely presented group. If G acts geometrically (i. e. properly discontinuously and cocompactly) on spaces X_{1} and X_{2}, then their Dehn functions have the same "growth type". More precisely,

$$
\operatorname{Dehn}_{X_{1}}(x) \simeq \operatorname{Dehn}_{X_{2}}(x)
$$

where \simeq is coarse bilipschitz equivalence.
For example,
any polynomial of degree $d \simeq x^{d}$
If $\alpha, \beta \geq 1$, then $x^{\alpha} \simeq x^{\beta} \Longleftrightarrow \alpha=\beta$
$e^{x} \simeq \lambda^{x}$ for all $\lambda>1$
$e^{x} \succeq x^{d}$ for any d (and e^{x} not $\simeq x^{d}$)
Define $\operatorname{Dehn}_{G}(x):=\operatorname{Dehn}_{X_{1}}(x)($ well defined up to $\simeq)$
Dehn functions are quasi-isometry invariants.
(Gromov, Bridson, Alonso)

Example: $G=\mathbb{Z}^{n}$

$$
X=\mathbb{R}^{n}
$$

Example: $G=\mathbb{Z}^{n}$

$X=\mathbb{R}^{n}$

- Any loop of length x can be filled using area on the order of x^{2}, i.e.

$$
\operatorname{Dehn}_{\mathbb{Z}^{n}}(x) \preceq x^{2}
$$

Example: $G=\mathbb{Z}^{n}$

$X=\mathbb{R}^{n}$

- Any loop of length x can be filled using area on the order of x^{2}, i.e.

$$
\operatorname{Dehn}_{\mathbb{Z}^{n}}(x) \preceq x^{2}
$$

- For every x, there is a loop γ_{x} of length x such that FArea $\left(\gamma_{x}\right) \succeq x^{2}$. (Take γ_{x} to be a circle with circumference x which lies in a plane). So

$$
\operatorname{Dehn}_{\mathbb{Z}^{n}}(x) \succeq x^{2}
$$

Thus $\operatorname{Dehn}_{\mathbb{Z}^{n}}(x) \simeq x^{2}$

More examples

- If G is a CAT(0$)$ group, then $\operatorname{Dehn}_{G}(x) \preceq x^{2}$

More examples

- If G is a $\operatorname{CAT}(0)$ group, then $\operatorname{Dehn}_{G}(x) \preceq x^{2}$
- If $G=\pi_{1}($ closed hyperbolic surface $)$, then $\operatorname{Dehn}_{G}(x) \simeq x$

More examples

- If G is a $\operatorname{CAT}(0)$ group, then $\operatorname{Dehn}_{G}(x) \preceq x^{2}$
- If $G=\pi_{1}$ (closed hyperbolic surface), then $\operatorname{Dehn}_{G}(x) \simeq x$
- In fact, Gromov showed that
$\operatorname{Dehn}_{G}(x) \simeq x \Longleftrightarrow G$ is (Gromov) hyperbolic $\Longleftrightarrow \operatorname{Dehn}_{G}(x) \prec x^{2}$

More examples

- If G is a $\operatorname{CAT}(0)$ group, then $\operatorname{Dehn}_{G}(x) \preceq x^{2}$
- If $G=\pi_{1}$ (closed hyperbolic surface), then $\operatorname{Dehn}_{G}(x) \simeq x$
- In fact, Gromov showed that
$\operatorname{Dehn}_{G}(x) \simeq x \Longleftrightarrow G$ is (Gromov) hyperbolic $\Longleftrightarrow \operatorname{Dehn}_{G}(x) \prec x^{2}$
- Birget-Sapir-Rips (almost) characterize which computable functions occur as Dehn functions of finitely presented groups.

Homological Dehn function

Let X be a cell complex with $H_{1}(X)=0$.
If α is a 1 -cycle, then a filling of α is an 2 -chain β with $\partial \beta=\alpha$.
The filling mass of α is

$$
\operatorname{FMass}(\alpha)=\inf \{\operatorname{mass}(\beta) \mid \partial \beta=\alpha\}
$$

Homological Dehn function

Let X be a cell complex with $H_{1}(X)=0$.
If α is a 1 -cycle, then a filling of α is an 2 -chain β with $\partial \beta=\alpha$.
The filling mass of α is

$$
\operatorname{FMass}(\alpha)=\inf \{\operatorname{mass}(\beta) \mid \partial \beta=\alpha\}
$$

Then, the homological Dehn function of X is

$$
\operatorname{FA}_{X}(x)=\sup \{\operatorname{FMass}(\alpha) \mid \operatorname{Mass}(\alpha) \leq x\}
$$

This is a quasi-isometry invariant up to \simeq.

Homological Dehn function

Let X be a cell complex with $H_{1}(X)=0$.
If α is a 1 -cycle, then a filling of α is an 2 -chain β with $\partial \beta=\alpha$.
The filling mass of α is

$$
\operatorname{FMass}(\alpha)=\inf \{\operatorname{mass}(\beta) \mid \partial \beta=\alpha\}
$$

Then, the homological Dehn function of X is

$$
\operatorname{FA}_{X}(x)=\sup \{\operatorname{FMass}(\alpha) \mid \operatorname{Mass}(\alpha) \leq x\}
$$

This is a quasi-isometry invariant up to \simeq.
$\operatorname{Dehn}_{X}(x)$ is called the homotopical Dehn function of X.

Comparing homotopical and homological Dehn functions

- Every loop γ is a 1-cycle. Every disk which fills γ is a 2-chain which fills γ. So FMass $(\gamma) \leq \operatorname{FArea}(\gamma)$.

Comparing homotopical and homological Dehn functions

- Every loop γ is a 1-cycle. Every disk which fills γ is a 2-chain which fills γ. So $\operatorname{FMass}(\gamma) \leq \operatorname{FArea}(\gamma)$. Then
$\sup \{\operatorname{FMass}(\gamma) \mid$ length $(\gamma) \leq x\} \leq \sup \{$ FArea $(\gamma) \mid$ length $(\gamma) \leq x\}$
This suggests that $\mathrm{FA}(x)$ could be strictly smaller than $\operatorname{Dehn}(x)$.

Comparing homotopical and homological Dehn functions

- Every loop γ is a 1-cycle.

Every disk which fills γ is a 2 -chain which fills γ. So FMass $(\gamma) \leq$ FArea (γ). Then

$$
\sup \{\operatorname{FMass}(\gamma) \mid \text { length }(\gamma) \leq x\} \leq \sup \{\operatorname{FArea}(\gamma) \mid \text { length }(\gamma) \leq x\}
$$

This suggests that $\mathrm{FA}(x)$ could be strictly smaller than $\operatorname{Dehn}(x)$.

- There could be 1-cycles consisting of multiple loops whose lengths add up to l, with filling mass larger than the filling mass of any single loop of length l.
This suggests that $\operatorname{Dehn}(x)$ could be strictly smaller than FA (x)

Comparing homotopical and homological Dehn functions

- Every loop γ is a 1-cycle.

Every disk which fills γ is a 2 -chain which fills γ. So $\operatorname{FMass}(\gamma) \leq \operatorname{FArea}(\gamma)$. Then

$$
\sup \{\operatorname{FMass}(\gamma) \mid \text { length }(\gamma) \leq x\} \leq \sup \{\operatorname{FArea}(\gamma) \mid \text { length }(\gamma) \leq x\}
$$

This suggests that $\mathrm{FA}(x)$ could be strictly smaller than $\operatorname{Dehn}(x)$.

- There could be 1-cycles consisting of multiple loops whose lengths add up to l, with filling mass larger than the filling mass of any single loop of length l.
This suggests that $\operatorname{Dehn}(x)$ could be strictly smaller than FA (x)
Q. Are there fin. pres. groups for which $\operatorname{Dehn}_{G}(x)$ and $\mathrm{FA}_{G}(x)$ are different?

Higher dimensional filling functions

> Homotopical Dehn function
> $X=k$-connected space
> Boundaries: immersions $S^{k} \rightarrow X$ Fillings: extensions $D^{k+1} \rightarrow X$

Homological Dehn function
$X=k$-acyclic space
Boundaries: k-cycles
Fillings: $(k+1)$-chains

Higher dimensional filling functions

Homotopical Dehn function
$X=k$-connected space
Boundaries: immersions $S^{k} \rightarrow X$ Fillings: extensions $D^{k+1} \rightarrow X$
$\operatorname{FVol}(\sigma)=$ filling vol of a k-sphere σ
$\operatorname{Dehn}_{X}^{k}(x)=\sup _{\operatorname{Vol}(\sigma) \leq x}\{\operatorname{FVol}(\sigma)\}$

Homological Dehn function
$X=k$-acyclic space
Boundaries: k-cycles
Fillings: $(k+1)$-chains
FMass $(\alpha)=$ filling mass of a k-cycle α
$\operatorname{FV}_{X}^{k}(x)=\sup _{\operatorname{Mass}(\alpha) \leq x}\{\operatorname{FMass}(\alpha)\}$

Higher dimensional filling functions

Homotopical Dehn function
$X=k$-connected space
Boundaries: immersions $S^{k} \rightarrow X$ Fillings: extensions $D^{k+1} \rightarrow X$
$\operatorname{FVol}(\sigma)=$ filling vol of a k-sphere σ
$\operatorname{Dehn}_{X}^{k}(x)=\sup _{\operatorname{Vol}(\sigma) \leq x}\{\operatorname{FVol}(\sigma)\}$

Homological Dehn function
$X=k$-acyclic space

Boundaries: k-cycles
Fillings: $(k+1)$-chains
FMass $(\alpha)=$ filling mass of a k-cycle α
$\operatorname{FV}_{X}^{k}(x)=\sup _{\operatorname{Mass}(\alpha) \leq x}\{\operatorname{FMass}(\alpha)\}$
Q. Are $\operatorname{Dehn}_{G}^{k}(x)$ and $\mathrm{FV}_{G}^{k}(x)$ ever different (for a fixed G and k)?

Converting homological fillings to homotopical fillings

A priori, the homological filling volume of a sphere could be less than its homotopical filling volume.

Converting homological fillings to homotopical fillings

A priori, the homological filling volume of a sphere could be less than its homotopical filling volume.

However, spheres of dimension at least 2 can be filled just as easily by balls as by chains. More precisely:

Theorem (Gromov, Groft)

Let X be a k-connected space, with $k \geq 2$. Given $\sigma: S^{k} \rightarrow X^{(k)}$, if σ corresponds to a k-cycle α, and β is a $(k+1)$-chain with boundary α, then there exists an extension $\tilde{\sigma}: D^{k+1} \rightarrow X$ such that

$$
\operatorname{Vol}(\tilde{\sigma})=\operatorname{Mass}(\beta)
$$

Converting homological fillings to homotopical fillings

A priori, the homological filling volume of a sphere could be less than its homotopical filling volume.

However, spheres of dimension at least 2 can be filled just as easily by balls as by chains. More precisely:

Theorem (Gromov, Groft)

Let X be a k-connected space, with $k \geq 2$. Given $\sigma: S^{k} \rightarrow X^{(k)}$, if σ corresponds to a k-cycle α, and β is a $(k+1)$-chain with boundary α, then there exists an extension $\tilde{\sigma}: D^{k+1} \rightarrow X$ such that

$$
\operatorname{Vol}(\tilde{\sigma})=\operatorname{Mass}(\beta)
$$

So when $k \geq 2$, we have

$$
\operatorname{Dehn}_{X}^{k}(x) \preceq \mathrm{FV}_{X}^{k}(x)
$$

By a similar argument, cycles of dimension at least 3 are no harder to fill than spheres of the same dimension. More precisely,

Theorem (Groft)

Let X be a k-connected space, with $k \geq 3$. Then given any k-cycle α, there exists a sphere $\sigma: S^{k} \rightarrow X$ with $\operatorname{Vol}(\sigma)=\operatorname{Mass}(\alpha)$, such that

$$
\operatorname{FMass}(\alpha)=\operatorname{FVol}(\sigma)
$$

By a similar argument, cycles of dimension at least 3 are no harder to fill than spheres of the same dimension. More precisely,

Theorem (Groft)

Let X be a k-connected space, with $k \geq 3$. Then given any k-cycle α, there exists a sphere $\sigma: S^{k} \rightarrow X$ with $\operatorname{Vol}(\sigma)=\operatorname{Mass}(\alpha)$, such that

$$
\operatorname{FMass}(\alpha)=\operatorname{FVol}(\sigma)
$$

Corollary

If $k \geq 3$, and G is a group which acts geometrically on a k-connected complex, then

$$
\operatorname{Dehn}_{G}^{k}(x) \simeq \mathrm{FV}_{G}^{k}(x)
$$

By a similar argument, cycles of dimension at least 3 are no harder to fill than spheres of the same dimension. More precisely,

Theorem (Groft)

Let X be a k-connected space, with $k \geq 3$. Then given any k-cycle α, there exists a sphere $\sigma: S^{k} \rightarrow X$ with $\operatorname{Vol}(\sigma)=\operatorname{Mass}(\alpha)$, such that

$$
\operatorname{FMass}(\alpha)=\operatorname{FVol}(\sigma)
$$

Corollary

If $k \geq 3$, and G is a group which acts geometrically on a k-connected complex, then

$$
\operatorname{Dehn}_{G}^{k}(x) \simeq \mathrm{FV}_{G}^{k}(x)
$$

Theorem (Young)

There exist groups G which act geometrically on 2-connected complexes such that $\mathrm{FV}_{G}^{2}(x)$ is strictly greater than $\operatorname{Dehn}_{G}^{2}(x)$.

The case $k=1$

Theorem (Abrams-Brady-D.-Young)

For every $d \in \mathbb{N}$, there is a finitely presented group H such that

$$
\mathrm{FA}_{H}(x) \preceq x^{5} \quad \text { and } \quad x^{d} \preceq \operatorname{Dehn}_{H}(x) \preceq x^{d+3}
$$

There exists a finitely presented group H such that

$$
\mathrm{FA}_{H}(x) \preceq x^{5} \quad \text { and } \quad e^{x} \preceq \operatorname{Dehn}_{H}(x)
$$

In each of the above cases, H is constructed as a subgroup of a CAT(0) group.

Reducing the homological filling area of a single loop in a space

Let W be a simply connected 2-complex, and α is a loop in W.
To reduce FMass (α) but not $\operatorname{FArea}(\alpha)$, attach a 2-complex Z along α, in which α bounds a 2-chain, but not a disk.

Reducing the homological filling area of a single loop in a space
Let W be a simply connected 2-complex, and α is a loop in W.
To reduce $\operatorname{FMass}(\alpha)$ but not $\operatorname{FArea}(\alpha)$, attach a 2-complex Z along α, in which α bounds a 2-chain, but not a disk.

Choose Z so that

- $\pi_{1}(Z)=\langle\langle\gamma\rangle\rangle$, where γ has infinite order.
- $\operatorname{Mass}(Z)$ small compared to FArea (α)

For example, $Z=$ presentation complex for an simple group containing an infinite-order element (such as Thompson's group T)

Form W^{\prime} by attaching Z to W by identifying γ with α.
van Kampen's Theorem $\Longrightarrow X^{\prime}$ is simply connected.
In X^{\prime},
$\operatorname{FMass}(\alpha)<\operatorname{FArea}(\alpha)$

Constructing a space with FA (x) less than Dehn (x)

Let W and Z be as before.
To obtain a space X with

- $\operatorname{Dehn}_{X}(x)=\operatorname{Dehn}_{W}(x)$ but
- $\mathrm{FA}_{X}(x)$ less than $\mathrm{FA}_{W}(x)$

Constructing a space with FA (x) less than Dehn (x)

Let W and Z be as before.
To obtain a space X with

- $\operatorname{Dehn}_{X}(x)=\operatorname{Dehn}_{W}(x)$ but
- $\mathrm{FA}_{X}(x)$ less than $\mathrm{FA}_{W}(x)$
attach copies of Z along an infinite family of loops α_{n} such that
- length $\left(\alpha_{n}\right) \rightarrow \infty$

Constructing a space with FA (x) less than Dehn (x)

Let W and Z be as before.
To obtain a space X with

- $\operatorname{Dehn}_{X}(x)=\operatorname{Dehn}_{W}(x)$ but
- $\mathrm{FA}_{X}(x)$ less than $\mathrm{FA}_{W}(x)$
attach copies of Z along an infinite family of loops α_{n} such that
- length $\left(\alpha_{n}\right) \rightarrow \infty$
- An arbitrary loop can be decomposed into a sum of α_{n} 's and therefore has small homological filling mass.

Group theoretic version

Want: a group H such that

- H is finitely presented
- H acts geometrically on a space X as above

Group theoretic version

Want: a group H such that

- H is finitely presented
- H acts geometrically on a space X as above

Natural setting in which one sees many scaled copies of the same complex: certain spaces associated to kernels of homomorphisms to \mathbb{Z}

Right-angled Artin groups (RAAGs)

RAAG : \exists finite presentation with every relator $=$ a commutator of generators.

Right-angled Artin groups (RAAGs)

RAAG : \exists finite presentation with every relator $=$ a commutator of generators.
$\Gamma=$ defining graph
Then $A_{\Gamma}=$ RAAG based on $\Gamma=$ group with

- one generator for each vertex
- one commuting relation for each edge

Right-angled Artin groups (RAAGs)

RAAG : \exists finite presentation with every relator $=$ a commutator of generators.
$\Gamma=$ defining graph
Then $A_{\Gamma}=$ RAAG based on $\Gamma=$ group with

- one generator for each vertex
- one commuting relation for each edge

For example,

- $\Gamma=$ complete graph on n vertices $\Longrightarrow A_{\Gamma}=\mathbb{Z}^{n}$
- $\Gamma=n$ vertices, no edges $\Longrightarrow A_{\Gamma}=$ free group of rank n.
- $\Gamma=$ a square $\Longrightarrow A_{\Gamma}=\mathbb{F}_{2} \times \mathbb{F}_{2}$.

A space with a geometric A_{Γ} action

Salvetti complex $=K\left(A_{\Gamma}, 1\right)$.

- Start with a wedge of circles, one for each generator.
- Glue in a 2-torus for each edge of Γ
- Glue in an n-torus for each complete subgraph with n-vertices.
$K_{\Gamma}:=$ universal cover of this complex.

A space with a geometric A_{Γ} action

Salvetti complex $=K\left(A_{\Gamma}, 1\right)$.

- Start with a wedge of circles, one for each generator.
- Glue in a 2-torus for each edge of Γ
- Glue in an n-torus for each complete subgraph with n-vertices.
$K_{\Gamma}:=$ universal cover of this complex.
For example,
- If $A_{\Gamma}=\mathbb{Z}^{n}$ then $K_{\Gamma}=\mathbb{R}^{n}$ with a cube complex structure.
- If $A_{\Gamma}=\mathbb{F}_{n}$ then $K_{\Gamma}=$ a tree of valence $2 n$.
- If $A_{\Gamma}=\mathbb{F}_{2} \times \mathbb{F}_{2}$, then $K_{\Gamma}=$ a product of trees.

Homomorphisms to \mathbb{Z}

Given a RAAG A_{Γ}, consider the homomorphism

$$
\begin{aligned}
h: A_{\Gamma} & \rightarrow \mathbb{Z} \quad \text { given by } \\
\text { each generator } & \mapsto 1
\end{aligned}
$$

Homomorphisms to \mathbb{Z}

Given a RAAG A_{Γ}, consider the homomorphism

$$
\begin{aligned}
h: A_{\Gamma} & \rightarrow \mathbb{Z} \quad \text { given by } \\
\text { each generator } & \mapsto 1
\end{aligned}
$$

The map $A_{\Gamma} \rightarrow \mathbb{Z}$ induces a height function $h: K_{\Gamma} \rightarrow \mathbb{R}$

- Defined on $K_{\Gamma}^{(1)}=$ Cayley graph of A_{Γ} by the homomorphism
- Extends to higher dimensional cells.

Homomorphisms to \mathbb{Z}

Given a RAAG A_{Γ}, consider the homomorphism

$$
\begin{aligned}
h: A_{\Gamma} & \rightarrow \mathbb{Z} \quad \text { given by } \\
\text { each generator } & \mapsto 1
\end{aligned}
$$

The map $A_{\Gamma} \rightarrow \mathbb{Z}$ induces a height function $h: K_{\Gamma} \rightarrow \mathbb{R}$

- Defined on $K_{\Gamma}^{(1)}=$ Cayley graph of A_{Γ} by the homomorphism
- Extends to higher dimensional cells.

Consider $H_{\Gamma}=\operatorname{ker}\left(A_{\Gamma} \rightarrow \mathbb{Z}\right)$.
H_{Γ} acts geometrically and freely on level sets of h.

The connection between level sets and Γ

Theorem (Bestvina-Brady)

Let Γ be a graph, and Z be the flag complex on Γ. Let $H_{\Gamma}=\operatorname{ker}\left(h: A_{\Gamma} \rightarrow \mathbb{Z}\right)$.

The connection between level sets and Γ

Theorem (Bestvina-Brady)

Let Γ be a graph, and Z be the flag complex on Γ. Let $H_{\Gamma}=\operatorname{ker}\left(h: A_{\Gamma} \rightarrow \mathbb{Z}\right)$. Then
(1) H_{Γ} is finitely presented if and only if Z is simply connected

The connection between level sets and Γ

Theorem (Bestvina-Brady)

Let Γ be a graph, and Z be the flag complex on Γ. Let $H_{\Gamma}=\operatorname{ker}\left(h: A_{\Gamma} \rightarrow \mathbb{Z}\right)$. Then
(1) H_{Γ} is finitely presented if and only if Z is simply connected
(2) $h^{-1}(0)$ is homotopy equivalent to a wedge product of infinitely many copies of Z, indexed by the vertices in $K_{\Gamma} \backslash h^{-1}(0)$. In fact, $h^{-1}(0)$ is a union of infinitely many scaled copies of Z.

The groups H with small homological and large homotopical Dehn functions

H is the kernel of a homomorphism from a group G to \mathbb{Z}.
G is defined by the graph of groups on the right

The groups H with small homological and large homotopical Dehn functions

H is the kernel of a homomorphism from a group G to \mathbb{Z}.
G is defined by the graph of groups on the right

Here

- A_{i} is a RAAG defined by $Z^{(1)}$, where Z is a triangulated 2-complex with $\pi_{1}(Z)$ infinite simple.
- $F_{i} \cong F_{2} \times F_{2}$
- Q is a group (defined in terms of labelled oriented graphs) such that
- There is a map $h_{Q}: Q \rightarrow \mathbb{Z}$
- $\operatorname{Dehn}_{\text {ker }\left(h_{Q}\right)}(x) \simeq x^{d}$ or $e^{x}(\exists$ construction by Brady-Guralnik-Lee)

The maps $h_{A_{i}}, h_{Q}$ extend to a map $h_{G}: G \rightarrow \mathbb{Z}$. Finally $H=\operatorname{ker}\left(h_{G}\right)$.

The groups H with small homological and large homotopical Dehn functions

- H acts geometrically on a level set $h_{G}^{-1}(0)$ of a map $h_{G}: K_{G} \rightarrow \mathbb{R}$.
- $h_{G}^{-1}(0)$ has the structure of the space X described earlier.
- H is finitely presented (PL Morse theory arguments similar to Bestvina-Brady)

