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Isoperimetric inequality in the plane

Let γ be a simple loop in R2 of length L.

If A = area enclosed by γ then

A ≤ L2

4π
.

Moreover L2

4π is the smallest function which work for all loops.

(Since if γ is a circle, A = L2

4π )

L2

4π is the isoperimetric function of R2.

P. Dani (LSU) Filling invariants: homological vs. homotpoical 2 / 21



Isoperimetric inequality in the plane

Let γ be a simple loop in R2 of length L.

If A = area enclosed by γ then

A ≤ L2

4π
.

Moreover L2

4π is the smallest function which work for all loops.

(Since if γ is a circle, A = L2

4π )

L2

4π is the isoperimetric function of R2.

P. Dani (LSU) Filling invariants: homological vs. homotpoical 2 / 21



Generalization: loops in higher dimensional spaces

Let X be a simply connected metric space in which area makes sense.

Riemannian manifold (area is defined as an integral)

Cell complex (area is given by counting cells)

A loop γ in X is an immersion γ : S1 → X. (Or X(1) in cell complex case)

A filling of γ is an extension γ̃ : D2 → X. (Or X(2) in cell complex case)

The filling area of γ is

FArea(γ) = inf{Area(γ̃) | γ̃ is a filling of γ}

i. e. the area of the most “efficient” filling.

The isoperimetric function (or Dehn function) of X is

DehnX(x) = sup{FArea(γ) | length(γ) ≤ x}
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Dehn function of a group

Let G be a finitely presented group. If G acts geometrically (i. e. properly
discontinuously and cocompactly) on spaces X1 and X2, then their Dehn
functions have the same “growth type”. More precisely,

DehnX1(x) ' DehnX2(x)

where ' is coarse bilipschitz equivalence.

For example,
any polynomial of degree d ' xd

If α, β ≥ 1, then xα ' xβ ⇐⇒ α = β
ex ' λx for all λ > 1
ex � xd for any d (and ex not ' xd)

Define DehnG(x) := DehnX1(x) (well defined up to ')

Dehn functions are quasi-isometry invariants.
(Gromov, Bridson, Alonso)
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Example: G = Zn

X = Rn

Any loop of length x can be filled using area on the order of x2, i.e.

DehnZn(x) � x2

For every x, there is a loop γx of length x such that FArea(γx) � x2.
(Take γx to be a circle with circumference x which lies in a plane). So

DehnZn(x) � x2

Thus DehnZn(x) ' x2
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More examples

If G is a CAT(0) group, then DehnG(x) � x2

If G = π1(closed hyperbolic surface), then DehnG(x) ' x

In fact, Gromov showed that
DehnG(x) ' x ⇐⇒ G is (Gromov) hyperbolic ⇐⇒ DehnG(x) ≺ x2

Birget-Sapir-Rips (almost) characterize which computable functions
occur as Dehn functions of finitely presented groups.
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Homological Dehn function

Let X be a cell complex with H1(X) = 0.

If α is a 1-cycle, then a filling of α is an 2-chain β with ∂β = α.

The filling mass of α is

FMass(α) = inf{mass(β) | ∂β = α}

Then, the homological Dehn function of X is

FAX(x) = sup {FMass(α) | Mass(α) ≤ x}

This is a quasi-isometry invariant up to '.

DehnX(x) is called the homotopical Dehn function of X.
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Comparing homotopical and homological Dehn functions

Every loop γ is a 1-cycle.
Every disk which fills γ is a 2-chain which fills γ. So
FMass(γ) ≤ FArea(γ).

Then

sup {FMass(γ) | length(γ) ≤ x} ≤ sup {FArea(γ) | length(γ) ≤ x}

This suggests that FA(x) could be strictly smaller than Dehn(x).

There could be 1-cycles consisting of multiple loops whose lengths add
up to l, with filling mass larger than the filling mass of any single loop of
length l.

This suggests that Dehn(x) could be strictly smaller than FA(x)

Q. Are there fin. pres. groups for which DehnG(x) and FAG(x) are different?
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Higher dimensional filling functions

Homotopical Dehn function Homological Dehn function

X = k-connected space X = k-acyclic space

Boundaries: immersions Sk → X Boundaries: k-cycles
Fillings: extensions Dk+1 → X Fillings: (k + 1)-chains

FVol(σ)=filling vol of a k-sphere σ FMass(α)=filling mass of a k-cycle α

Dehnk
X(x) = supVol(σ)≤x{FVol(σ)} FVk

X(x) = supMass(α)≤x{FMass(α)}

Q. Are Dehnk
G(x) and FVk

G(x) ever different (for a fixed G and k)?
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Converting homological fillings to homotopical fillings

A priori, the homological filling volume of a sphere could be less than its
homotopical filling volume.

However, spheres of dimension at least 2 can be filled just as easily by balls as
by chains. More precisely:

Theorem (Gromov, Groft)

Let X be a k-connected space, with k ≥ 2. Given σ : Sk → X(k), if σ
corresponds to a k-cycle α, and β is a (k + 1)-chain with boundary α, then
there exists an extension σ̃ : Dk+1 → X such that

Vol(σ̃) = Mass(β).

So when k ≥ 2, we have

Dehnk
X(x) � FVk

X(x)
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By a similar argument, cycles of dimension at least 3 are no harder to fill than
spheres of the same dimension. More precisely,

Theorem (Groft)
Let X be a k-connected space, with k ≥ 3. Then given any k-cycle α, there
exists a sphere σ : Sk → X with Vol(σ) = Mass(α), such that

FMass(α) = FVol(σ)

Corollary
If k ≥ 3, and G is a group which acts geometrically on a k-connected
complex, then

Dehnk
G(x) ' FVk

G(x).

Theorem (Young)
There exist groups G which act geometrically on 2-connected complexes such
that FV2

G(x) is strictly greater than Dehn2
G(x).
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The case k = 1

Theorem (Abrams-Brady-D.-Young)
For every d ∈ N, there is a finitely presented group H such that

FAH(x) � x5 and xd � DehnH(x) � xd+3

There exists a finitely presented group H such that

FAH(x) � x5 and ex � DehnH(x)

In each of the above cases, H is constructed as a subgroup of a CAT(0) group.
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Reducing the homological filling area of a single loop in a space

Let W be a simply connected 2-complex, and α is a loop in W.

To reduce FMass(α) but not FArea(α), attach a 2-complex Z along α, in
which α bounds a 2-chain, but not a disk.

Choose Z so that

π1(Z) = 〈〈γ〉〉, where γ has infinite order.

Mass(Z) small compared to FArea(α)

For example, Z = presentation complex for an simple group containing an
infinite-order element (such as Thompson’s group T)

Form W ′ by attaching Z to W by identifying γ with α.

van Kampen’s Theorem =⇒ X′ is simply connected.

In X′,
FMass(α) < FArea(α)
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Constructing a space with FA(x) less than Dehn(x)

Let W and Z be as before.

To obtain a space X with

DehnX(x) = DehnW(x) but

FAX(x) less than FAW(x)

attach copies of Z along an infinite family of loops αn such that

length(αn)→∞
An arbitrary loop can be decomposed into a sum of αn’s and therefore
has small homological filling mass.
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Group theoretic version

Want: a group H such that

H is finitely presented

H acts geometrically on a space X as above

Natural setting in which one sees many scaled copies of the same complex:
certain spaces associated to kernels of homomorphisms to Z
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Right-angled Artin groups (RAAGs)

RAAG : ∃ finite presentation with every relator = a commutator of generators.

Γ= defining graph

Then AΓ = RAAG based on Γ = group with

one generator for each vertex

one commuting relation for each edge

For example,

Γ = complete graph on n vertices =⇒ AΓ = Zn

Γ = n vertices, no edges =⇒ AΓ = free group of rank n.

Γ = a square =⇒ AΓ = F2 × F2.
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A space with a geometric AΓ action

Salvetti complex = K(AΓ, 1).

Start with a wedge of circles, one for each generator.

Glue in a 2-torus for each edge of Γ
...

Glue in an n-torus for each complete subgraph with n-vertices.

KΓ := universal cover of this complex.

For example,

If AΓ = Zn then KΓ = Rn with a cube complex structure.

If AΓ = Fn then KΓ = a tree of valence 2n.

If AΓ = F2 × F2, then KΓ = a product of trees.
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Start with a wedge of circles, one for each generator.

Glue in a 2-torus for each edge of Γ
...

Glue in an n-torus for each complete subgraph with n-vertices.

KΓ := universal cover of this complex.
For example,

If AΓ = Zn then KΓ = Rn with a cube complex structure.
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Homomorphisms to Z

Given a RAAG AΓ, consider the homomorphism

h : AΓ → Z given by
each generator 7→ 1

The map AΓ → Z induces a height function h : KΓ → R

Defined on K(1)
Γ = Cayley graph of AΓ by the homomorphism

Extends to higher dimensional cells.

Consider HΓ = ker(AΓ → Z).

HΓ acts geometrically and freely on level sets of h.
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The connection between level sets and Γ

Theorem (Bestvina-Brady)
Let Γ be a graph, and Z be the flag complex on Γ. Let HΓ = ker(h : AΓ → Z).

Then
1 HΓ is finitely presented if and only if Z is simply connected
2 h−1(0) is homotopy equivalent to a wedge product of infinitely many

copies of Z, indexed by the vertices in KΓ \ h−1(0). In fact, h−1(0) is a
union of infinitely many scaled copies of Z.
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The groups H with small homological and large homotopical Dehn functions

H is the kernel of a homomorphism from a group G to Z.

G is defined by the graph of
groups on the right

A2

A1

An

Q

F1

Fn

F2

Here

Ai is a RAAG defined by Z(1), where Z is a triangulated 2-complex with
π1(Z) infinite simple.

Fi ∼= F2 × F2

Q is a group (defined in terms of labelled oriented graphs) such that

There is a map hQ : Q→ Z
Dehnker(hQ)(x) ' xd or ex (∃ construction by Brady-Guralnik-Lee)

The maps hAi , hQ extend to a map hG : G→ Z. Finally H = ker(hG).
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The groups H with small homological and large homotopical Dehn functions

H acts geometrically on a level set h−1
G (0) of a map hG : KG → R.

h−1
G (0) has the structure of the space X described earlier.

H is finitely presented (PL Morse theory arguments similar to
Bestvina-Brady)
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