Filling invariants: homological vs. homotopical

Pallavi Dani

Louisiana State University

joint with A. Abrams, N. Brady, and R. Young

<ロト <部ト <注下 <注下 = 2

590

Let γ be a simple loop in \mathbb{R}^2 of length *L*.

Э

イロト 不得 トイヨト イヨト

Isoperimetric inequality in the plane

Let γ be a simple loop in \mathbb{R}^2 of length L.

If A = area enclosed by γ then

$$A \leq \frac{L^2}{4\pi}.$$

Moreover $\frac{L^2}{4\pi}$ is the *smallest* function which work for all loops. (Since if γ is a circle, $A = \frac{L^2}{4\pi}$)

 $\frac{L^2}{4\pi}$ is the *isoperimetric function* of \mathbb{R}^2 .

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへの

Let *X* be a simply connected metric space in which area makes sense.

- Riemannian manifold (area is defined as an integral)
- Cell complex (area is given by counting cells)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let *X* be a simply connected metric space in which area makes sense.

- Riemannian manifold (area is defined as an integral)
- Cell complex (area is given by counting cells)

A loop γ in X is an immersion $\gamma : S^1 \to X$. (Or $X^{(1)}$ in cell complex case)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Let *X* be a simply connected metric space in which area makes sense.

- Riemannian manifold (area is defined as an integral)
- Cell complex (area is given by counting cells)

A loop γ in *X* is an immersion $\gamma : S^1 \to X$. (Or $X^{(1)}$ in cell complex case) A *filling* of γ is an extension $\tilde{\gamma} : D^2 \to X$. (Or $X^{(2)}$ in cell complex case) The *filling area* of γ is

$$\mathsf{FArea}(\gamma) = \inf\{\mathsf{Area}(\tilde{\gamma}) \,|\, \tilde{\gamma} \text{ is a filling of } \gamma\}$$

i. e. the area of the most "efficient" filling.

(日) (母) (ヨ) (ヨ) (ヨ)

Let *X* be a simply connected metric space in which area makes sense.

- Riemannian manifold (area is defined as an integral)
- Cell complex (area is given by counting cells)

A loop γ in X is an immersion $\gamma : S^1 \to X$. (Or $X^{(1)}$ in cell complex case) A *filling* of γ is an extension $\tilde{\gamma} : D^2 \to X$. (Or $X^{(2)}$ in cell complex case) The *filling area* of γ is

$$\mathsf{FArea}(\gamma) = \inf\{\mathsf{Area}(\tilde{\gamma}) \,|\, \tilde{\gamma} \text{ is a filling of } \gamma\}$$

i. e. the area of the most "efficient" filling.

The *isoperimetric function* (or *Dehn function*) of X is

$$Dehn_X(x) = \sup\{FArea(\gamma) \mid length(\gamma) \le x\}$$

(日) (母) (ヨ) (ヨ) (ヨ)

Dehn function of a group

Let *G* be a finitely presented group. If *G* acts *geometrically* (i. e. properly discontinuously and cocompactly) on spaces X_1 and X_2 , then their Dehn functions have the same "growth type". More precisely,

 $\operatorname{Dehn}_{X_1}(x) \simeq \operatorname{Dehn}_{X_2}(x)$

where \simeq is *coarse bilipschitz equivalence*.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Dehn function of a group

Let *G* be a finitely presented group. If *G* acts *geometrically* (i. e. properly discontinuously and cocompactly) on spaces X_1 and X_2 , then their Dehn functions have the same "growth type". More precisely,

 $\operatorname{Dehn}_{X_1}(x) \simeq \operatorname{Dehn}_{X_2}(x)$

where \simeq is *coarse bilipschitz equivalence*.

For example, any polynomial of degree $d \simeq x^d$ If $\alpha, \beta \ge 1$, then $x^{\alpha} \simeq x^{\beta} \iff \alpha = \beta$ $e^x \simeq \lambda^x$ for all $\lambda > 1$ $e^x \succeq x^d$ for any d (and e^x not $\simeq x^d$)

(ロンス語) (モンスロン) 日

Dehn function of a group

Let *G* be a finitely presented group. If *G* acts *geometrically* (i. e. properly discontinuously and cocompactly) on spaces X_1 and X_2 , then their Dehn functions have the same "growth type". More precisely,

 $\operatorname{Dehn}_{X_1}(x) \simeq \operatorname{Dehn}_{X_2}(x)$

where \simeq is *coarse bilipschitz equivalence*.

For example, any polynomial of degree $d \simeq x^d$ If $\alpha, \beta \ge 1$, then $x^{\alpha} \simeq x^{\beta} \iff \alpha = \beta$ $e^x \simeq \lambda^x$ for all $\lambda > 1$ $e^x \succeq x^d$ for any d (and e^x not $\simeq x^d$)

Define $\text{Dehn}_G(x) := \text{Dehn}_{X_1}(x)$ (well defined up to \simeq)

Dehn functions are *quasi-isometry invariants*. (Gromov, Bridson, Alonso)

P. Dani (LSU)

・ロット (四)・ (日)・ (日)・ (日)

Example: $G = \mathbb{Z}^n$

 $X = \mathbb{R}^n$

イロト イロト イヨト イヨト 二日

 $X = \mathbb{R}^n$

• Any loop of length x can be filled using area on the order of x^2 , i.e.

 $\operatorname{Dehn}_{\mathbb{Z}^n}(x) \preceq x^2$

イロト 不得 とくき とくき とうき

 $X = \mathbb{R}^n$

• Any loop of length x can be filled using area on the order of x^2 , i.e.

 $\mathrm{Dehn}_{\mathbb{Z}^n}(x) \preceq x^2$

• For every x, there is a loop γ_x of length x such that $FArea(\gamma_x) \succeq x^2$. (Take γ_x to be a circle with circumference x which lies in a plane). So

 $\mathrm{Dehn}_{\mathbb{Z}^n}(x) \succeq x^2$

Thus $\operatorname{Dehn}_{\mathbb{Z}^n}(x) \simeq x^2$

ヘロト 不得 とくほ とくほ とうせい

• If G is a CAT(0) group, then $\text{Dehn}_G(x) \preceq x^2$

э

ヘロト 人間 とくほとくほとう

- If G is a CAT(0) group, then $\text{Dehn}_G(x) \preceq x^2$
- If $G = \pi_1$ (closed hyperbolic surface), then $\text{Dehn}_G(x) \simeq x$

<ロト < 四ト < 回ト < 回ト < 回ト = 三回

- If G is a CAT(0) group, then $\text{Dehn}_G(x) \preceq x^2$
- If $G = \pi_1$ (closed hyperbolic surface), then $\text{Dehn}_G(x) \simeq x$
- In fact, Gromov showed that $\operatorname{Dehn}_G(x) \simeq x \iff G \text{ is (Gromov) hyperbolic } \iff \operatorname{Dehn}_G(x) \prec x^2$

イロト 不得 トイヨト イヨト 二日

- If G is a CAT(0) group, then $\text{Dehn}_G(x) \preceq x^2$
- If $G = \pi_1$ (closed hyperbolic surface), then $\text{Dehn}_G(x) \simeq x$
- In fact, Gromov showed that $\operatorname{Dehn}_G(x) \simeq x \iff G \text{ is (Gromov) hyperbolic } \iff \operatorname{Dehn}_G(x) \prec x^2$
- Birget-Sapir-Rips (almost) characterize which computable functions occur as Dehn functions of finitely presented groups.

(日)

Homological Dehn function

Let *X* be a cell complex with $H_1(X) = 0$.

If α is a 1-cycle, then a filling of α is an 2-chain β with $\partial \beta = \alpha$.

The *filling mass* of α is

$$FMass(\alpha) = \inf\{mass(\beta) \mid \partial\beta = \alpha\}$$

3

イロト 不得 トイヨト イヨト

Let *X* be a cell complex with $H_1(X) = 0$.

If α is a 1-cycle, then a filling of α is an 2-chain β with $\partial \beta = \alpha$.

The *filling mass* of α is

$$FMass(\alpha) = \inf\{mass(\beta) \mid \partial\beta = \alpha\}$$

Then, the homological Dehn function of X is

 $FA_X(x) = \sup \{FMass(\alpha) \mid Mass(\alpha) \le x\}$

This is a quasi-isometry invariant up to \simeq .

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Let *X* be a cell complex with $H_1(X) = 0$.

If α is a 1-cycle, then a filling of α is an 2-chain β with $\partial \beta = \alpha$.

The *filling mass* of α is

$$FMass(\alpha) = \inf\{mass(\beta) \mid \partial\beta = \alpha\}$$

Then, the *homological Dehn function* of X is

 $FA_X(x) = \sup \{FMass(\alpha) \mid Mass(\alpha) \le x\}$

This is a quasi-isometry invariant up to \simeq .

 $Dehn_X(x)$ is called the *homotopical Dehn function of X*.

P. Dani (LSU)

(ロト (四) (モ) (モ) (モ)

Every loop γ is a 1-cycle.
Every disk which fills γ is a 2-chain which fills γ. So FMass(γ) ≤ FArea(γ).

イロト 不得 とくき とくき とうき

Every loop γ is a 1-cycle.
Every disk which fills γ is a 2-chain which fills γ. So FMass(γ) ≤ FArea(γ). Then

 $\sup \left\{ \mathrm{FMass}(\gamma) \mid \mathrm{length}(\gamma) \leq x \right\} \leq \sup \left\{ \mathrm{FArea}(\gamma) \mid \mathrm{length}(\gamma) \leq x \right\}$

This suggests that FA(x) could be strictly smaller than Dehn(x).

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Every loop γ is a 1-cycle.
Every disk which fills γ is a 2-chain which fills γ. So FMass(γ) ≤ FArea(γ). Then

 $\sup \left\{ \mathrm{FMass}(\gamma) \mid \mathrm{length}(\gamma) \leq x \right\} \leq \sup \left\{ \mathrm{FArea}(\gamma) \mid \mathrm{length}(\gamma) \leq x \right\}$

This suggests that FA(x) could be strictly smaller than Dehn(x).

• There could be 1-cycles consisting of multiple loops whose lengths add up to *l*, with filling mass larger than the filling mass of any single loop of length *l*.

This suggests that Dehn(x) could be strictly smaller than FA(x)

・ロト ・四ト ・ヨト ・ヨト - ヨ

Every loop γ is a 1-cycle.
Every disk which fills γ is a 2-chain which fills γ. So FMass(γ) ≤ FArea(γ). Then

 $\sup \left\{ \mathrm{FMass}(\gamma) \mid \mathrm{length}(\gamma) \leq x \right\} \leq \sup \left\{ \mathrm{FArea}(\gamma) \mid \mathrm{length}(\gamma) \leq x \right\}$

This suggests that FA(x) could be strictly smaller than Dehn(x).

• There could be 1-cycles consisting of multiple loops whose lengths add up to *l*, with filling mass larger than the filling mass of any single loop of length *l*.

This suggests that Dehn(x) could be strictly smaller than FA(x)

Q. Are there fin. pres. groups for which $Dehn_G(x)$ and $FA_G(x)$ are different?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Homotopical Dehn function	Homological Dehn function
X = k-connected space	X = k-acyclic space
Boundaries: immersions $S^k \to X$ Fillings: extensions $D^{k+1} \to X$	Boundaries: k -cycles Fillings: $(k + 1)$ -chains

2

ヘロト ヘロト ヘビト ヘビト

Homotopical Dehn function	Homological Dehn function
X = k-connected space	X = k-acyclic space
Boundaries: immersions $S^k \to X$ Fillings: extensions $D^{k+1} \to X$	Boundaries: k -cycles Fillings: $(k + 1)$ -chains
$FVol(\sigma)$ =filling vol of a <i>k</i> -sphere σ	FMass(α)=filling mass of a k-cycle α
$\mathrm{Dehn}^k_X(x) = \mathrm{sup}_{\mathrm{Vol}(\sigma) \leq x} \{ \mathrm{FVol}(\sigma) \}$	$FV_X^k(x) = \sup_{Mass(\alpha) \le x} \{FMass(\alpha)\}$

2

イロト イポト イヨト イヨト

Homotopical Dehn function	Homological Dehn function
X = k-connected space	X = k-acyclic space
Boundaries: immersions $S^k \to X$ Fillings: extensions $D^{k+1} \to X$	Boundaries: k -cycles Fillings: $(k + 1)$ -chains
$FVol(\sigma)$ =filling vol of a <i>k</i> -sphere σ	FMass(α)=filling mass of a k-cycle α
$\operatorname{Dehn}_X^k(x) = \sup_{\operatorname{Vol}(\sigma) \leq x} \{\operatorname{FVol}(\sigma)\}$	$FV_X^k(x) = \sup_{Mass(\alpha) \le x} \{FMass(\alpha)\}$

Q. Are $\text{Dehn}_{G}^{k}(x)$ and $\text{FV}_{G}^{k}(x)$ ever different (for a fixed *G* and *k*)?

Э

イロト 不得 トイヨト イヨト

Converting homological fillings to homotopical fillings

A priori, the homological filling volume of a sphere could be less than its homotopical filling volume.

э

イロト 不得 とくほ とくほ とう

A priori, the homological filling volume of a sphere could be less than its homotopical filling volume.

However, spheres of dimension at least 2 can be filled just as easily by balls as by chains. More precisely:

Theorem (Gromov, Groft)

Let X be a k-connected space, with $k \ge 2$. Given $\sigma : S^k \to X^{(k)}$, if σ corresponds to a k-cycle α , and β is a (k + 1)-chain with boundary α , then there exists an extension $\tilde{\sigma} : D^{k+1} \to X$ such that

 $\operatorname{Vol}(\tilde{\sigma}) = \operatorname{Mass}(\beta).$

ヘロト 人間ト ヘヨト ヘヨト

A priori, the homological filling volume of a sphere could be less than its homotopical filling volume.

However, spheres of dimension at least 2 can be filled just as easily by balls as by chains. More precisely:

Theorem (Gromov, Groft)

Let X be a k-connected space, with $k \ge 2$. Given $\sigma : S^k \to X^{(k)}$, if σ corresponds to a k-cycle α , and β is a (k + 1)-chain with boundary α , then there exists an extension $\tilde{\sigma} : D^{k+1} \to X$ such that

$$\operatorname{Vol}(\tilde{\sigma}) = \operatorname{Mass}(\beta).$$

So when $k \ge 2$, we have

$$\operatorname{Dehn}_X^k(x) \preceq \operatorname{FV}_X^k(x)$$

ヘロト 人間 とくほ とくほ とう

By a similar argument, cycles of dimension at least 3 are no harder to fill than spheres of the same dimension. More precisely,

Theorem (Groft)

Let X be a k-connected space, with $k \ge 3$. Then given any k-cycle α , there exists a sphere $\sigma : S^k \to X$ with $Vol(\sigma) = Mass(\alpha)$, such that

 $FMass(\alpha) = FVol(\sigma)$

(4 回) (4 回) (4 回) (4

By a similar argument, cycles of dimension at least 3 are no harder to fill than spheres of the same dimension. More precisely,

Theorem (Groft)

Let X be a k-connected space, with $k \ge 3$. Then given any k-cycle α , there exists a sphere $\sigma : S^k \to X$ with $Vol(\sigma) = Mass(\alpha)$, such that

 $\mathsf{FMass}(\alpha) = \mathsf{FVol}(\sigma)$

Corollary

If $k \ge 3$, and G is a group which acts geometrically on a k-connected complex, then

 $\operatorname{Dehn}_{G}^{k}(x) \simeq \operatorname{FV}_{G}^{k}(x).$

イロト イロト イヨト イヨト

By a similar argument, cycles of dimension at least 3 are no harder to fill than spheres of the same dimension. More precisely,

Theorem (Groft)

Let X be a k-connected space, with $k \ge 3$. Then given any k-cycle α , there exists a sphere $\sigma : S^k \to X$ with $Vol(\sigma) = Mass(\alpha)$, such that

 $\mathsf{FMass}(\alpha) = \mathsf{FVol}(\sigma)$

Corollary

If $k \ge 3$, and G is a group which acts geometrically on a k-connected complex, then

 $\operatorname{Dehn}_{G}^{k}(x) \simeq \operatorname{FV}_{G}^{k}(x).$

Theorem (Young)

There exist groups G which act geometrically on 2-connected complexes such that $FV_G^2(x)$ is strictly greater than $Dehn_G^2(x)$.

э

イロト 不得 トイヨト イヨト

Theorem (Abrams-Brady-D.-Young)

For every $d \in \mathbb{N}$, there is a finitely presented group H such that

$$\operatorname{FA}_H(x) \preceq x^5$$
 and $x^d \preceq \operatorname{Dehn}_H(x) \preceq x^{d+3}$

There exists a finitely presented group H such that

$$FA_H(x) \preceq x^5$$
 and $e^x \preceq Dehn_H(x)$

In each of the above cases, H is constructed as a subgroup of a CAT(0) group.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reducing the homological filling area of a single loop in a space

Let *W* be a simply connected 2-complex, and α is a loop in *W*.

To reduce $FMass(\alpha)$ but not $FArea(\alpha)$, attach a 2-complex Z along α , in which α bounds a 2-chain, but not a disk.

イロト 不得 とくほ とくほ とうほ

Let *W* be a simply connected 2-complex, and α is a loop in *W*.

To reduce $FMass(\alpha)$ but not $FArea(\alpha)$, attach a 2-complex Z along α , in which α bounds a 2-chain, but not a disk.

Choose Z so that

- $\pi_1(Z) = \langle \langle \gamma \rangle \rangle$, where γ has infinite order.
- Mass(Z) small compared to $FArea(\alpha)$

For example, Z = presentation complex for an simple group containing an infinite-order element (such as Thompson's group *T*)

Form W' by attaching Z to W by identifying γ with α .

van Kampen's Theorem $\implies X'$ is simply connected.

In X',

```
\operatorname{FMass}(\alpha) < \operatorname{FArea}(\alpha)
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 - のへ⊙

Let W and Z be as before.

To obtain a space X with

- $Dehn_X(x) = Dehn_W(x)$ but
- $FA_X(x)$ less than $FA_W(x)$

Let W and Z be as before.

To obtain a space X with

- $Dehn_X(x) = Dehn_W(x)$ but
- $FA_X(x)$ less than $FA_W(x)$

attach copies of Z along an infinite family of loops α_n such that

• length
$$(\alpha_n) \to \infty$$

3

・ロト ・ 同ト ・ ヨト ・ ヨト …

Let W and Z be as before.

To obtain a space X with

- $Dehn_X(x) = Dehn_W(x)$ but
- $FA_X(x)$ less than $FA_W(x)$

attach copies of Z along an infinite family of loops α_n such that

- length(α_n) $\rightarrow \infty$
- An arbitrary loop can be decomposed into a sum of α_n 's and therefore has small homological filling mass.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Want: a group *H* such that

- *H* is finitely presented
- *H* acts geometrically on a space *X* as above

Want: a group *H* such that

- *H* is finitely presented
- *H* acts geometrically on a space *X* as above

Natural setting in which one sees many scaled copies of the same complex: certain spaces associated to kernels of homomorphisms to \mathbb{Z}

- 4 同 ト 4 ヨ ト 4 ヨ ト

RAAG : \exists finite presentation with every relator = a commutator of generators.

ヘロト ヘアト ヘビト ヘビト

RAAG : \exists finite presentation with every relator = a commutator of generators.

 Γ = defining graph

Then $A_{\Gamma} =$ RAAG based on $\Gamma =$ group with

- one generator for each vertex
- one commuting relation for each edge

RAAG : \exists finite presentation with every relator = a commutator of generators.

 Γ = defining graph

Then $A_{\Gamma} =$ RAAG based on $\Gamma =$ group with

- one generator for each vertex
- one commuting relation for each edge

For example,

- $\Gamma = \text{complete graph on } n \text{ vertices } \implies A_{\Gamma} = \mathbb{Z}^n$
- $\Gamma = n$ vertices, no edges $\implies A_{\Gamma} =$ free group of rank n.
- $\Gamma = a \text{ square } \implies A_{\Gamma} = \mathbb{F}_2 \times \mathbb{F}_2.$

・ロト (四) (ヨト (ヨト) ヨー つので

Salvetti complex = $K(A_{\Gamma}, 1)$.

•

- Start with a wedge of circles, one for each generator.
- Glue in a 2-torus for each edge of Γ
- Glue in an *n*-torus for each complete subgraph with *n*-vertices.

 K_{Γ} := universal cover of this complex.

イロト 不得 とくほ とくほ とうほ

Salvetti complex = $K(A_{\Gamma}, 1)$.

•

- Start with a wedge of circles, one for each generator.
- Glue in a 2-torus for each edge of Γ
- Glue in an *n*-torus for each complete subgraph with *n*-vertices.

 K_{Γ} := universal cover of this complex. For example,

- If $A_{\Gamma} = \mathbb{Z}^n$ then $K_{\Gamma} = \mathbb{R}^n$ with a cube complex structure.
- If $A_{\Gamma} = \mathbb{F}_n$ then $K_{\Gamma} =$ a tree of valence 2n.
- If $A_{\Gamma} = \mathbb{F}_2 \times \mathbb{F}_2$, then $K_{\Gamma} =$ a product of trees.

(日) (母) (ヨ) (ヨ) (ヨ)

Given a RAAG A_{Γ} , consider the homomorphism

$$h: A_{\Gamma} \to \mathbb{Z}$$
 given by
each generator $\mapsto 1$

2

Given a RAAG A_{Γ} , consider the homomorphism

$$h: A_{\Gamma} \to \mathbb{Z}$$
 given by
each generator $\mapsto 1$

The map $A_{\Gamma} \to \mathbb{Z}$ induces a height function $h: K_{\Gamma} \to \mathbb{R}$

- Defined on $K_{\Gamma}^{(1)}$ = Cayley graph of A_{Γ} by the homomorphism
- Extends to higher dimensional cells.

Given a RAAG A_{Γ} , consider the homomorphism

$$h: A_{\Gamma} \to \mathbb{Z}$$
 given by
each generator $\mapsto 1$

The map $A_{\Gamma} \to \mathbb{Z}$ induces a height function $h: K_{\Gamma} \to \mathbb{R}$

- Defined on $K_{\Gamma}^{(1)}$ = Cayley graph of A_{Γ} by the homomorphism
- Extends to higher dimensional cells.

Consider $H_{\Gamma} = \ker(A_{\Gamma} \to \mathbb{Z}).$

 H_{Γ} acts geometrically and freely on level sets of *h*.

イロト (過) (ヨ) (ヨ) (ヨ) ヨー つくつ

Theorem (Bestvina-Brady)

Let Γ be a graph, and Z be the flag complex on Γ . Let $H_{\Gamma} = \ker(h : A_{\Gamma} \to \mathbb{Z})$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (Bestvina-Brady)

Let Γ *be a graph, and* Z *be the flag complex on* Γ *. Let* $H_{\Gamma} = \text{ker}(h : A_{\Gamma} \to \mathbb{Z})$ *. Then*

1 H_{Γ} is finitely presented if and only if Z is simply connected

A (B) + A (B) + A (B) +

Theorem (Bestvina-Brady)

Let Γ be a graph, and Z be the flag complex on Γ . Let $H_{\Gamma} = \ker(h : A_{\Gamma} \to \mathbb{Z})$. Then

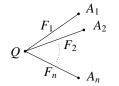
- **1** H_{Γ} is finitely presented if and only if Z is simply connected
- $h^{-1}(0)$ is homotopy equivalent to a wedge product of infinitely many copies of Z, indexed by the vertices in $K_{\Gamma} \setminus h^{-1}(0)$. In fact, $h^{-1}(0)$ is a union of infinitely many scaled copies of Z.

ヘロト ヘ戸ト ヘヨト ヘヨト

The groups H with small homological and large homotopical Dehn functions

H is the kernel of a homomorphism from a group *G* to \mathbb{Z} .

G is defined by the graph of groups on the right

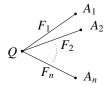


ヘロト 人間 とくほとくほとう

The groups H with small homological and large homotopical Dehn functions

H is the kernel of a homomorphism from a group *G* to \mathbb{Z} .

G is defined by the graph of groups on the right



Here

- A_i is a RAAG defined by $Z^{(1)}$, where Z is a triangulated 2-complex with $\pi_1(Z)$ infinite simple.
- $F_i \cong F_2 \times F_2$
- Q is a group (defined in terms of labelled oriented graphs) such that
 - There is a map $h_Q: Q \to \mathbb{Z}$
 - Dehn_{ker(h_Q)(x) $\simeq x^d$ or e^x (\exists construction by Brady-Guralnik-Lee)}

The maps h_{A_i} , h_Q extend to a map $h_G : G \to \mathbb{Z}$. Finally $H = \ker(h_G)$.

イロト (過) (ヨ) (ヨ) (ヨ) ヨー つくつ

- *H* acts geometrically on a level set $h_G^{-1}(0)$ of a map $h_G : K_G \to \mathbb{R}$.
- $h_G^{-1}(0)$ has the structure of the space *X* described earlier.
- *H* is finitely presented (PL Morse theory arguments similar to Bestvina-Brady)

・ロト ・ (日) ・ (日) ・ (日) ・ (日)