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1 Introduction

We first introduce the basic terminology in option pricing.

Option: An option is the right, but not the obligation to buy (or sell) an asset under specified
terms.

Holder of the Option: has the right without any obligation.

Writer of the Option: has no right, but is obliged to the holder to fulfill the terms of the
option.

Call Option: gives the holder the right to buy something.

Put Option: gives the holder the right to sell something.

Asset : can be anything, but we consider only stocks which will be referred to as a primary
security. An option is a derivative security.

Strike (or Exercise) Price: A prescribed amount at which the underlying asset may be
bought or sold by the holder.

Expiration Date: a future time (date) after which the option becomes void.

European Option: can be exercised only on the expiry date.

American Option: can be exercised any time before and including the expiration date.

Short : selling an asset without actually possessing it.

Long : buy.

To summarize: A European call option is a contract with the following conditions: At a
prescribed time in future (expiration date) the holder of the option may buy a prescribed
asset for a prescribed price (strike price).

Note that the holder of the option has a right but no obligation, whereas the writer of the
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option does have a potential obligation : he must sell the asset should the holder choose to
exercise his call option. Since the option confers on its holder a right without any obligation
it has some value, i.e., the holder must pay some amount (premium ) at the time of opening
the contract. At the same time, the writer of the option must have some compensation for
the obligation he has assumed. Thus two central issues are:

(a) How much would the holder of the option pay for this right, i.e., what is the value
(price) of an option?

(b) How can the writer of the option minimize the risk associated with his obligation ?

Nature of Option Price (value)

Let us examine the case of a European call option on a stock, whose price at time t is St .
Let T = expiration date , K = the strike price. Now two cases arise:

(i) K > ST : the option will not be exercised.

(ii) K < ST : the holder makes a profit of ST −K by exercising the option.

Thus the price or value of the option at maturity is

CT = (ST −K)+ = max(ST −K, 0).

Similarly for put option PT = (K − ST )+ = max(K − ST , 0). At the time of writing the
option, ST is unknown. Thus we have to deal with two problems :

(i) How much the holder should pay to the writer at time t = 0 for an asset worth
(ST −K)+ at time T? This is the problem of pricing the option.

(ii) How should the writer, who earns the premium initially, generate an amount (ST−K)+

at time T? This is the problem of hedging the option.
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Figure 1: Call Option and Put Option
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Figure 2: Time Value

We have thus far analyzed the value of the option CT (or PT ) at the expiration date. At any
time t between 0 to T , the option has a value Ct (or Pt). We say that a call option at time t
is in the money, at the money, or out of the money depending on whether St > K,St = K,
or St < K, respectively. Puts have reverse terminology.

It may be noted that even European options have a value at earlier times, since they provide
potential for future exercise.

When there is a positive time to expiration, the value of the call option as a function of
the stock price is a smooth curve rather than the decidedly kinked curve that applies at
expiration. The value of option price for various expiration dates are shown in Figure 2.
The problem is to determine the curve.

Factors Affecting the Option Price

(1) The price of the stock St.

(2) Time of expiration.
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(3) The strike price.

(4) Volatility of the underlying stocks.

(5) Prevailing interest rate.

(6) Growth rate of the stock (in Black-Scholes model this does not appear explicitly in the
option price).

Arbitrage and Put-Call Parity

Loosely speaking arbitrage means an opportunity to make risk free profit. Throughout we
will assume the absence of arbitrage opportunities, i.e., there is no risk free profit available
in the market. This will be made precise later. We now derive a formula relating European
put and call prices, often referred to as put-call parity. Both the put and call which have
maturity (expiration) T and exercise price K are contingent on the same underlying stock
which is worth St at time t. We also assume that it is possible to borrow or invest money
at a constant rate r. Let Ct and Pt denote respectively the prices of the call and the put
at time t. Because of no arbitrage, the following equation called put-call parity holds for all
t < T :

Ct − Pt = St −Ke−r(T−t).

Indeed, assume that
Ct − Pt > St −Ke−r(T−t).

At time t, we buy a share of the stock and a put, and sell a call. The net value of the
operation is

Ct − Pt − St.

If Ct − Pt − St > 0 , we invest this amount at a rate r until T , whereas if it is negative we
borrow it at the same rate. At time T , two outcomes are possible:

• ST > K : the call is exercised, we deliver the stock, receive the amount K and clear
the cash account to end up with a wealth K + er(T−t)(Ct − Pt − St) > 0.

• ST < K : we exercise the put and clear the cash account to finish with a wealth

K + er(T−t)(Ct − Pt − St) > 0.

In both cases, we locked in a positive profit without making any initial endowment : this is
an example of arbitrage opportunity.

Similarly, we can show that (Exercise)

Ct − Pt < St −Ke−r(T−t)

will lead to an arbitrage opportunity.

Our exposition on Option Pricing is based on [2], [3], [4] and [5]. In particular the
derivation and the explicit solution of Black-Scholes partial differential equation
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(pde) are based on [2]; the Greeks are based on [4]. We also refer to [1] for an
excellent non-technical exposition on derivatives.

We have thus far described option pricing in continuous time. We can also do the same
in discrete time, i.e., when trading is done at discrete epochs 0, 1, 2, . . . , N , where N is the
expiration time.

Exercise 1.1 (Bull spread) An investor who is bullish about a stock (believing that it will
rise) may wish to construct a bull spread for that stock. One way to construct such a spread
is to buy a call with a strike price K1 and sell a call with the same expiration date but with
a strike price K2 > K1. Draw the payoff curve for such a spread. Is the initial cost of the
spread positive or negative?

Exercise 1.2 Let Cn and Pn be the call and the put prices respectively at time n on the
same underlying with same strike price K and with the same expiration date N . If r denotes
the risk free interest rate per period, show that the following put-call parity holds:

Cn − Pn = Sn −K(1 + r)−(N−n)

where Sn is the price of the underlying at time n.

Exercise 1.3 You would like to speculate on a rise in the price of a certain stock. The
current stock price is Rs. 290 and a 3-month call with a strike price of Rs. 300 costs Rs.
29. You have Rs. 58, 000 to invest. Identify two alternative strategies, one involving an
investment in the stock and the other involving in the option. What are the potential gains
and losses from each?

2 Option Pricing in Discrete time

Let (Ω,F , P ) be a finite probability space, and {Fn}, n = 0, 1, . . . , N, a filtration on it with
FN = the set of all subsets of Ω; N is a positive integer which is the planning horizon. It
will correspond to the maturity of the options. We will assume that P ({ω}) > 0 for all
ω ∈ Ω. We consider a market which consists of (k+ 1) financial assets, whose prices at time
n (0 ≤ n ≤ N) are given by S0

n, S
1
n, . . . , S

k
n which are adapted (measurable) with respect

to Fn, i.e., these prices are based on the information available up to and including time n.
Typically Fn = σ(S0

m, S
1
m, . . . , S

k
m,m = 0, 1, . . . , n). Let Sn = (S0

n, S
1
n, . . . , S

k
n) denote the

vector of prices at time n. The asset indexed by 0 is a risk free asset, and we assume that
S0
0 = 1. If the return on the risk free asset over one period of time is constant, and is equal

to r, then
S0
n = (1 + r)n.

Let βn = 1
S0
n

= (1 + r)−n; βn is interpreted as the discount factor, i.e, if an amount βn is
invested in the risk free asset at time 0, then its value at time n will be 1. In other words βn
is the present value (at time n) of 1. Since the rate of interest is constant, βn = βn, where
β = (1 + r)−1. The risk free asset is often referred to as the numeraire. The assets indexed
by i = 1, 2, . . . , k are all risky assets (for example stocks).
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Definition 2.1 (Strategies) A trading strategy is defined as a (finite) sequence of random
variables

ϕ = {(ϕ0
n, ϕ

1
n, . . . , ϕ

k
n), 0 ≤ n ≤ N}

in Rk+1, where ϕi
n denotes the number of assets i held at time n, and ϕ is predictable, i.e.,

for all i = 0, 1, . . . , k, ϕi
0 is F0-measurable, and for n ≥ 1, ϕi

n is Fn−1-measurable. This means
that the position in the portfolio (ϕ0

n, ϕ
1
n, . . . , ϕ

k
n) at time n is decided on the basis of the

information available at time (n−1), and kept until n when the new quotations are available.
The value of the portfolio at time n is given by

Vn(ϕ) = ⟨ϕn, Sn⟩ =
k∑

i=0

ϕi
nS

i
n.

Let S̃i
n = βnS

i
n = (1 + r)−nSi

n; S̃i
n is called the discounted value of the asset i at time n. The

discounted value of the portfolio at time n is given by

Ṽn(ϕ) = βnVn(ϕ) =
k∑

i=0

ϕi
nS̃

i
n.

Definition 2.2 A strategy ϕ = {(ϕ0
n, ϕ

1
n, . . . , ϕ

k
n), 0 ≤ n ≤ N} is called self-financing if for

all n = 0, 1, . . . , N − 1,
⟨ϕn, Sn⟩ = ⟨ϕn+1, Sn⟩

i.e.,
k∑

i=0

ϕi
nS

i
n =

k∑
i=0

ϕi
n+1S

i
n.

The interpretation of self-financing strategy is the following: at time n, once the new prices
S0
n, S

1
n, . . . , S

k
n are quoted, the investor readjusts his position from ϕn to ϕn+1 without bringing

in or consuming any wealth.

Lemma 2.1 The following statements are equivalent:
(a) The strategy ϕ is self-financing;
(b) For any n = 1, 2, . . . , N

Vn(ϕ) = V0(ϕ) +
n∑

j=1

⟨ϕj,∆Sj⟩

where ∆Sj = Sj − Sj−1.

Proof. Let ϕ be self-financing. Then

⟨ϕn, Sn⟩ = ⟨ϕn+1, Sn⟩,

which implies

⟨ϕn+1, Sn+1 − Sn⟩ = ⟨ϕn+1, Sn+1⟩ − ⟨ϕn, Sn⟩ = Vn+1(ϕ) − Vn(ϕ).
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Hence

Vn(ϕ) = V0(ϕ) +
n∑

j=1

⟨ϕj,∆Sj⟩.

This proves that (a) implies (b). The converse follows using an analogous argument.

Remark 2.1 The above lemma shows that if an investor follows a self-financing strategy
then the value of its portfolio is completely determined by the initial wealth V0(ϕ) and
(ϕ1

n, . . . , ϕ
k
n), 0 ≤ n ≤ N. Similarly we can show that

Ṽn(ϕ) = V0(ϕ) +
n∑

j=1

⟨ϕj,∆S̃j⟩

where ∆S̃j = S̃j−S̃j−1. Thus for a self-financing strategy the discounted value of its portfolio
is also completely determined by the initial wealth V0(ϕ) and (ϕ1

n, . . . , ϕ
k
n), 0 ≤ n ≤ N. In

fact we can proceed a step further in this direction.

Lemma 2.2 For any predictable process {(ϕ1
n, . . . , ϕ

k
n), 0 ≤ n ≤ N} and for any initial

wealth V0, there exists a unique predictable process {ϕ0
n, 0 ≤ n ≤ N} such that the strategy

ϕ = {(ϕ0
n, ϕ

1
n, . . . , ϕ

k
n), 0 ≤ n ≤ N} is self-financing and V0(ϕ) = V0.

Proof. The proof is constructive. The self-financing condition implies

Ṽn(ϕ) = ϕ0
n + ϕ1

nS̃
i
n + . . .+ ϕk

nS̃
k
n = V0 +

n∑
j=1

(ϕ1
j∆S̃

1
j + . . .+ ϕk

j∆S̃k
j )

which defines ϕ0
n. The uniqueness of {ϕ0

n, 0 ≤ n ≤ N} follows again from the self-financing
property.

Remark 2.2 If ϕ0
n < 0, we have borrowed an amount |ϕ0

n| from the risk free asset. If
ϕi
n < 0 for i ≥ 1, we say that we are short a number ϕi

n of asset i. Short-selling and
borrowing are allowed, but the value of the portfolio must have a specified lower bound.
To simplify matters we choose this number to be zero, i.e., the value of the portfolio must
always be non-negative.

Definition 2.3 A strategy ϕ = {(ϕ0
n, . . . , ϕ

k
n), 0 ≤ n ≤ N} is said to be admissible if it is

self-financing, and Vn(ϕ) ≥ 0 for any n = 0, 1, . . . , N.

We now introduce the concept of ARBITRAGE which means the possibility of risk-less
profit. A precise definition is given below.

Definition 2.4 An arbitrage strategy is an admissible strategy with zero initial value and
positive final value with a positive probability.

Definition 2.5 The market is said to be viable if there is no arbitrage opportunity.
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Lemma 2.3 If the discounted prices of assets {S̃i
n}, i = 1, 2, . . . , N , are martingales (with

respect to {Fn}) then for any self-financing strategy ϕ, the discounted value of the portfolio
{Ṽn(ϕ)} is also a martingale.

Proof. Exercise (Hint: use Remark 2.1). .

Definition 2.6 A probability measure P ∗ ≡ P is said to be an equivalent martingale
measure (EMM) if the discounted asset prices {S̃i

n} are martingales with respect to P ∗.
Such a probability measure is also referred to as a risk neutral measure.

Theorem 2.4 The market is viable (i.e., arbitrage free) if and only if there exists an EMM
P ∗.

Proof. Assume that there exists a probability measure P ∗ ≡ P such that {S̃i
n} are martin-

gale with respect to P ∗. Then for any self-financing strategy ϕ, {Ṽn(ϕ)} is also a martingale
by Lemma 2.3. Thus

E∗[ṼN(ϕ)] = E∗[Ṽ0(ϕ)].

If ϕ is admissible and V0(ϕ) = 0, then

E∗[ṼN(ϕ)] = 0

which implies that
ṼN(ϕ) = 0.

Thus the market is viable. The converse is more involved. It is proved using a “Separation
Theorem”. We omit it. .

Definition 2.7 (Contingent Claims) An FN -measurable function H ≥ 0 is called a
contingent claim (of maturity N). For example for a European call option on the underlying
S1 with strike price K

H = (S1
N −K)+ = max(S1

N −K, 0).

For a European put on the same asset with the same strike price K,

H = (K − S1
N)+ = max(K − S1

N , 0).

Definition 2.8 A contingent claim defined by H is attainable if there exists an admissible
strategy ϕ worth H at time N , i.e., VN(ϕ) = H.

Definition 2.9 (Complete Market) The market is said to be complete if every contingent
claim is attainable, i.e., if H is a contingent claim, then there exists an admissible strategy
ϕ such that VN(ϕ) = H. The strategy ϕ is often referred to as a strategy replicating the
contingent claim H.
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Theorem 2.5 A viable market is complete if and only if the exists a unique probability
measure P ∗ ≡ P under which the discounted prices {S̃i

n} are martingales.

Proof. First assume that the market is viable and complete. Let H be a contingent claim.
Let ϕ be an admissible strategy such that VN(ϕ) = H. Since ϕ is self-financing

βNH = ṼN(ϕ) = V0(ϕ) +
N∑
j=1

⟨ϕj,∆S̃j⟩.

If P1 and P2 are two equivalent martingale measures then by Lemma 2.3, {Ṽn(ϕ)} is a
martingale under both P1 and P2. Thus

EP1 [ṼN(ϕ)] = EP2 [ṼN(ϕ)].

This implies
EP1 [H] = EP2 [H].

Since H is arbitrary, it follows that P1 = P2.

Conversely assume that the market is viable and incomplete. Then there exists a contingent
claim H which is not attainable. Let L̃ be the set of all random variables of the form

V0 +
N∑

n=1

⟨ϕn,∆S̃n⟩

where V0 is a F0-measurable and {(ϕ1
n, . . . , ϕ

k
n)} is predictable. Then βNH does not belong

to L̃. Thus L̃ is a proper subset of  L2(Ω,F , P ∗) where P ∗ is an EMM. Thus there exists a
non-zero random variable X which is orthogonal to L̃. Set

P ∗∗(ω) = (1 +
X(ω)

2 maxω |X(ω)|
)P ∗(ω).

Then P ∗∗ is a probability measure and P ∗∗ ≡ P ∗ ≡ P. Moreover

E∗∗[
N∑

n=1

⟨ϕn,∆S̃n⟩ = 0

for any predictable ϕ. Hence {S̃i
n} is a P ∗∗ martingale. Thus there are two equivalent

martingale measures.
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Pricing and Hedging of European Options

Assume that the market is viable and complete. Let P ∗ denote the unique EMM. Let H
be a contingent claim and ϕ the corresponding replicating strategy, i.e., VN(ϕ) = H. Since
{Ṽn(ϕ)} is a P ∗-martingale, we have for n = 0, 1, . . . , N − 1

Ṽn(ϕ) = E∗[ṼN(ϕ)|Fn].

This implies
(1 + r)N−nVn(ϕ) = E∗[H|Fn].

Thus at any time the value of an admissible strategy ϕ replicating H is completely determined
by H itself. Hence

Vn(ϕ) = (1 + r)−(N−n)E∗[H|Fn]

is the wealth needed at time n to replicate H at time N . Thus this quantity is the price of
the option at time n. If at time 0, an agent sells an option for (1 + r)−NE∗[H], he can follow
a replicating strategy ϕ to generate an amount H at time N . In other words the investor is
perfectly hedged.

For a European call on an underlying with price Sn at time n, H = (SN − K)+, K = the
strike price. Hence the price of this option at time n is given by

(1 + r)−(N−n)E∗[(SN −K)+|Fn].

For a European put on the same underlying with the same strike price, the option price at
time n is given by

(1 + r)−(N−n)E∗[(K − SN)+|Fn].

Cox-Ross-Rubinstein (CRR) Model

In this model we consider a risky asset whose price is Sn at time n, 0 ≤ n ≤ N, and a risk
free asset whose return is r over one period of time. Thus the price of the risk free asset at
time n is given by

S0
n = (1 + r)n, S0

0 = 1.

Thus the discount factor is given by

βn = βn = (1 + r)−n.

The risky asset is modelled as follows: between two consecutive periods, the relative price
change is either a or b, where −1 < a < b, with strictly positive probability for each event,
i.e.,

Sn+1 :=

{
Sn(1 + a) with probability p0 > 0
Sn(1 + b) with probability (1 − p0) > 0.
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The initial stock price S0 is prescribed. The set of possible states is then

Ω := {1 + a, 1 + b}N .

Each N -tuple represents the successive values of Sn+1

Sn
, n = 0, 1, . . . , N − 1. Let Fn =

σ(S0, S1, . . . , Sn). Let

Tn =
Sn

Sn−1

, n = 1, 2, . . . , N.

If (x1, x2, . . . , xN) ∈ Ω, set

P ({x1, . . . , xN}) = P (T1 = x1, . . . , TN = xN).

Note that P is completely determined by T1, . . . , TN . We first show that the discounted price
{S̃n} is a martingale if and only if

E[Tn+1|Fn] = 1 + r, n = 0, 1, . . . , N − 1.

Indeed
E[S̃n+1|Fn] = S̃n

if and only if

E[
S̃n+1

S̃n

|Fn] = 1

if and only if
E[Tn+1|Fn] = 1 + r.

Next we claim that for the market to be viable (i.e., arbitrage free) r ∈ (a, b), i.e., a < r < b.
Indeed, if the market is viable then there exists probability measure P ∗ such that {S̃n} is a
P ∗-martingale. Thus

E∗[Tn+1|Fn] = 1 + r

which implies
E∗Tn+1 = 1 + r.

Since Tn+1 is either equal to 1 + a or 1 + b with positive probability, it follows that

1 + a < 1 + r < 1 + b.

We thus have
a < r < b.

Let

p :=
b− r

b− a
> 0.

We now show that {S̃n} is a P ∗ -martingale if and only if T1, T2, . . . , TN are independent and
identically distributed (iid) with

P ∗(Ti = 1 + a) = p = 1 − P ∗(Ti = 1 + b), i = 1, 2, . . . , N.

11



Suppose that {Ti} are iid with the above distribution. Then

E∗[Tn+1|Fn] = E∗[Tn+1] = p(1 + a) + (1 − p)(1 + b) = 1 + r.

Thus {S̃n} is a P ∗-martingale.
Conversely assume that {S̃n} is a P ∗-martingale. Then

E∗[Tn+1|Fn] = 1 + r, n = 0, 1, . . . , N − 1

which implies that
E∗[Tn+1] = 1 + r.

Thus
(1 + a)P ∗(Tn+1 = 1 + a) + (1 + b)(1 − P ∗(Tn+1 = 1 + a)) = 1 + r

which implies

P ∗(Tn+1 = 1 + a) =
b− r

b− a
= p.

Therefore Ti’s are identically distributed. Again

E∗[Tn+1|Fn] = 1 + r

which implies

(1 + a)E∗[I{Tn+1 = 1 + a)}|Fn] + (1 + b)E∗[I{Tn+1 = 1 + b)}|Fn] = 1 + r.

But
E∗[I{Tn+1 = 1 + a)}|Fn] + E∗[I{Tn+1 = 1 + b)}|Fn] = 1.

Thus
P ∗(Tn+1 = 1 + a|Fn] = p = 1 − P ∗(Tn+1 = 1 + a|Fn].

Proceeding inductively it can be shown that (Exercise)

P ∗(T1 = x1, T2 = x2, . . . , Tn = xn) = p1p2...pn

where pi = p if xi = 1+a, pi = 1−p if xi = 1+b. Hence Ti’s are independent. Also note that
the joint distribution of T1, T2, . . . , Tn is uniquely determined under P ∗. Hence P ∗ is unique.
Thus the market is viable and complete. Using this we first derive the put-call parity:

Cn − Pn = Sn −K(1 + r)−(N−n).

Under P ∗, we have

Cn − Pn = (1 + r)−(N−n)E∗[(SN −K)+ − (K − SN)+|Fn]

= (1 + r)−(N−n)E∗[(SN −K)|Fn]

= (1 + r)nE∗[S̃N |Fn] −K(1 + r)−(N−n)

= (1 + r)nS̃n −K(1 + r)−(N−n)

= Sn −K(1 + r)−(N−n).
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We next derive a formula for Cn in terms of a, b, r. We have

Cn = (1 + r)−(N−n)E∗[(SN −K)+|Fn]

= (1 + r)−(N−n)E∗[(SnΠN
i=n+1Ti −K)+|Fn].

Let C(n, x) stand for Cn when Sn = x. Then

C(n, x) = (1 + r)(−N+n)

N−n∑
j=0

(N − n)!

(N − n− j)!j!
pj(1 − p)N−n−j[x(1 + a)j(1 + b)N−n−j −K]+.

We now find the replicating strategy for a call. Let ϕnbe the number of risky asset at time
n, and ϕ0

n the number of risk free asset at time n. Then

ϕ0
n(1 + r)n + ϕnSn = C(n, Sn).

This implies

ϕ0
n(1 + r)n + ϕnSn−1(1 + a) = C(n, Sn−1(1 + a))

ϕ0
n(1 + r)n + ϕnSn−1(1 + b) = C(n, Sn−1(1 + b)).

Putting Sn−1 = x, we have

ϕn = ϕ(n, x) =
C(n, x(1 + b)) − C(n, x(1 + a))

x(b− a)
.

Finally we derive the asymptotic formula as N → ∞. We wish to compute the price of a
call or put with maturity T > 0 on a single stock with strike price K. Put r = RT

N
, R =

instantaneous interest rate (also referred to as the spot interest rate). Note that

eRT = lim
N→∞

(1 + T )N .

Also put

ln
(1 + a

1 + r

)
= − σ√

N
.

Then using Cental Limit Theorem we obtain

lim
N→∞

P
(N)
0 = lim

N→∞
(1 +

RT

N
)−NE∗[K − S0Π

N
n=1Tn]

=
1√
2π

∫ ∞

−∞
(Ke−RT − S0e

− σ2

(2+σy) )+e−
y2

2 dy

= KE−RTΦ(−d2) − S0Φ(−d1)

where

d1 =
(lnS0

K
+RT + σ2

2
)

σ
, d2 = d1 − σ.

Exercise 2.1 Consider the CRR model described above. Suppose that r ≤ a. Show that
this leads to an arbitrage opportunity. Deduce the same conclusion if r ≥ b.

13



3 Black-Scholes Theory

Let (Ω,F , P ) be a complete probability space and {Ft} a filtration which is right continuous,
and complete w.r.t P . Let Y be the class of stochastic processes ϕ = {ϕt, t ≥ 0} of the form

ϕt(ω) = ψ0(ω)I{0}(t) +
n−1∑
j=1

ψj(ω)I(tj ,tj+1](t)

where 0 = t0 < t1 < · · · < tn, ψj is a bounded Ttj - adapted random variable for 0 ≤ j <
n, n ≥ 1. Let Ω̄ = [0,∞]×Ω. The predictable σ-field P is defined to be the smallest σ-field
on Ω̄ with respect to which every element of Y is measurable.

We consider a market consisting of one stock and one bond. The stock price S = {St, t ≥ 0}
is assumed to follow a geometric Brownian motion (gBM) given by

dSt = µStdt+ σStdWt, S0 > 0, (3.1)

i.e.,

St = S0 exp{(µ− 1

2
σ2)t+ σWt} (3.2)

where {Wt} is a standard Brownian motion. Without any loss of generality we assume that
{Ft} = {FW

t }, i.e., the basic filtration is generated by the Brownian motion.

Since ESt = S0e
µt, µ may be treated as the mean growth rate of return from the stock; σ > 0

is the volatility. It measures the standard deviation of St in the logarithmic scale. Indeed,
the standard deviation of logSt is σ

√
t. The price of the bond at time t is given by

Bt = ert (3.3)

where r is the rate of interest which is assumed to be constant. One can show that this
market is complete, i.e., any contingent claim can be replicated by an admissible strategy.
We assume that the market is viable, i.e., there does not exist any arbitrage opportunity.
We derive the price of an option on the stock St.

A trading strategy is a pair ϕ = (ϕ0, ϕ1) of predictable processes, where ϕ0
t is the number of

bonds and ϕ1
t is the number of stocks the investor holds at time t. The value of the portfolio

corresponding to the strategy ϕ = (ϕ0
t , ϕ

1
t ) at time t is given by

Vt(ϕ) := ϕ0
tBt + ϕ1

tSt. (3.4)

The strategy ϕ = (ϕ0, ϕ1) is self-financing if no fresh investment is made at any time t > 0
and there is no consumption. We work with self-financing strategies only. The gain accrued
to the investor via the strategy ϕ up to time t is given by

Gt(ϕ) :=

∫ t

0

ϕ0
udBu +

∫ t

0

ϕ1
udSu. (3.5)

For a self-financing strategy ϕ:

Vt(ϕ) := V0(ϕ) +Gt(ϕ). (3.6)
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Suppose that a European call option with terminal time T and strike price K itself is traded
in the market. Let Ct denote the price of this call option at time t. Then

Ct = C(t, St) (3.7)

for some function C : [0, T ] × R → R

The augmented market with Bt, St, Ct is assumed to be viable. The following technical result
plays an important role in deriving Black-Scholes partial differential equation. For a proof
we refer to the book [2].

Lemma 3.1 Suppose ϕ = (ϕ0, ϕ1) is a self-financing strategy such that

VT (ϕ) = C(T, ST ) = (ST −K)+.

Then

Vt(ϕ) = C(t, St) ∀t ∈ [0, T ].

Black-Scholes Partial Differential Equations

We look for a strategy ϕ = (ϕ0, ϕ1) such that

CT = VT (ϕ).

In view of the previous lemma Ct = Vt(ϕ) for all t. Further we assume that C(t, x) is a
smooth function of t and x. Now

Vt = Vt(ϕ) = ϕ0
tBt + ϕ1

tSt

= V0(ϕ) +

∫ t

0

ϕ0
udBu +

∫ t

0

ϕ1
udSu.

Therefore

dVt = ϕ0
tdBt + ϕ1

tdSt.

Using (3.1) and (3.3) it follows that

dVt = rϕ0
tBtdt+ ϕ1

t (µStdt+ σStdWt)

i.e.,

dVt =
(
rϕ0

tBt + µϕ1
tSt

)
dt+ σϕ1

tStdWt. (3.8)

Since C(t, x) is a smooth function, by Ito’s formula

dCt = dC(t, St)

=

{
∂

∂t
C(t, St) + µ

∂

∂x
C(t, St)St +

1

2
σ2S2

t

∂2

∂x2
C(t, St)

}
dt

+ σ
∂

∂x
C(t, St)StdWt. (3.9)
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From (3.8) and (3.9), and the above lemma, we get

ϕ1
t =

∂C(t, St)

∂x
(3.10)

and

rϕ0
tBt + µϕ1

tSt =
∂C(t, St)

∂t
+ µ

∂C(t, St)

∂x
St +

1

2
σ2S2

t

∂2C(t, St)

∂x2
. (3.11)

From (3.10) and (3.11) we get

rϕ0
tBt =

∂C(t, St)

∂t
+

1

2
σ2S2

t

∂2C(t, St)

∂x2
. (3.12)

Again
ϕ1
tSt + ϕ0

tBt = Vt(ϕ) = C(t, St).

Therefore

ϕ0
t =

1

Bt

[
C(t, St) −

∂C(t, St)

∂x
St

]
. (3.13)

Therefore

∂C(t, St)

∂t
+

1

2
σ2S2

t

∂2C(t, St)

∂x2
+ rSt

∂C(t, St)

∂x
− rC(t, St) = 0, 0 ≤ t < T

with C(T, ST = (ST −K)+.

Thus the option price process Ct = C(t, St) satisfies the partial differential equation

∂C

∂t
+

1

2
σ2x2

∂2C

∂x2
+ rx

∂C

∂x
− rC = 0 (3.14)

with the boundary condition :
C(T, x) = (x−K)+. (3.15)

The equation (3.14) is referred to as the Black-Scholes pde.

Explicit Solution of Black-Scholes PDE

Introduce the new variables τ, ς by

τ = γ(T − t), ς = α
{

log
x

K
+ β(T − t)

}
, (3.16)

where α, β, γ are constants to be chosen later. Define the function y(τ, ς) by

C(t, x) = e−r(T−t)y(τ, ς). (3.17)

Then

∂C

∂t
= re−r(T−t)y + e−r(T−t)∂y

∂t
∂y

∂t
=

∂y

∂ς

∂ς

∂t
− ∂y

∂τ
γ = −αβ∂y

∂ς
− γ

∂y

∂τ
.
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Hence

∂C

∂t
= re−r(T−t)y − αβe−r(T−t)∂y

∂ς
− γe−r(T−t)∂y

∂τ
. (3.18)

Also

∂C

∂x
= e−r(T−t) ∂y

∂x
= e−r(T−t)∂y

∂ς

∂ς

∂x

= e−r(T−t)∂y

∂ς

α

x
.

Therefore

x
∂C

∂x
= αe−r(T−t)∂y

∂ς
. (3.19)

Also

∂2C

∂x2
= e−r(T−t) ∂

∂x

[
∂y

∂ς
.
∂ς

∂x

]
= e−r(T−t)

[
∂2y

∂ς2

(
∂ς

∂x

)2

+
∂y

∂ς

∂2ς

∂x2

]
.

Substituting
∂ς

∂x
=
α

x
,

∂2ς

∂x2
= − α

x2

in the above relation, we obtain

∂2C

∂x2
= e−r(T−t)

[
α2

x2
∂2y

∂ς2
− α

x2
∂y

∂ς

]
.

Therefore

x2
∂2C

∂x2
= e−r(T−t)

[
α2∂

2y

∂ς2
− α

∂y

∂ς

]
. (3.20)

Then we have

∂C

∂t
+

1

2
σ2x2

∂2C

∂x2
+ rx

∂C

∂x
− rC

= e−r(T−t)

[
ry − αβ

∂y

∂ς
− γ

∂y

∂τ
+
σ2

2

(
α2∂

2y

∂ς2
− α

∂y

∂ς

)
+rα

∂y

∂ς
− ry

]
.

Simplifying and using (3.14), we obtain

−αβ∂y
∂ς

− γ
∂y

∂τ
+
σ2

2

[
α2∂

2y

∂ς2
− α

∂y

∂ς

]
+ rα

∂y

∂ς
= 0 (3.21)

The coefficient of ∂y
∂ς

in (3.21) is equal to

−αβ − ασ2

2
+ rα = α

[
r − β − σ2

2

]
.
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Choose β = r − σ2

2
. Then (3.21) becomes

−γ ∂y
∂τ

+
1

2
σ2α2∂

2y

∂ς2
= 0.

Now choose γ = σ2α2 (where α ̸= 0 is arbitrary). Then Black-Scholes pde (3.14) becomes

∂y

∂τ
=

1

2

∂2y

∂ς2
. (3.22)

Choosing α = 1, the boundary condition becomes:

C(T, x) = y
(

0, log
x

K

)
.

Thus
y(0, u) = K (eu − 1)+ . (3.23)

The unique solution of (3.22) with the boundary condition (3.23) (in the class of function
not growing faster than eax

2
) is given by

y(τ, ς) =
1√
2πτ

∫ ∞

−∞
e−(u−ς)2/2τK(eu − 1)+du

=
K√
2πτ

∫ ∞

−∞
e−(u−ς)2/2τ (eu − 1)+du.

Thus

y(τ, ς) = Keς+
1
2
τΦ

(
ς√
τ

+
√
τ

)
−KΦ

(
ς√
τ

)
. (3.24)

Now in terms of t, x, note that

α = 1, β = r − σ2

2
, γ = σ2.

Thus

eς+
1
2
τ =

x

K
er(T−t)

ς√
τ

+
√
τ =

log x
K

+
(
r + 1

2
σ2
)

(T − t)

σ
√
T − t

:= d1(x, T − t)

and
ς√
τ

=
log x

K
+
(
r − 1

2
σ2
)

(T − t)

σ
√
T − t

:= d2(x, T − t). (3.25)

Then
C(t, x) = xΦ(d1(x, T − t)) −Ke−r(T−t)Φ(d2(x, T − t)). (3.26)
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Remark 3.1 Note that in deriving Black-Scholes pde, we have chosen

ϕ0
t =

1

Bt

{
C(t, St) −

∂C

∂x
(t, St)

}
(3.27)

ϕ1
t =

∂C(t, St)

∂x
. (3.28)

The value function is then given by

Vt(ϕ) = ϕ0
tBt + ϕ1

tSt = C(t, St).

The gain Gt(ϕ) is given by

Gt(ϕ) =

∫ t

0

ϕ0
udBu +

∫ t

0

ϕ1
udBu

= r

∫ t

0

{
C(u, Su) − ∂C(u, Su)

∂x
Su

}
du+

∫ t

0

∂C(u, Su)

∂x
dSu

=

∫ t

0

∂C

∂x
dSu +

∫ t

0

{
∂C

∂u
+

1

2
σ2S2∂

2C

∂x2

}
du

= C(t, St) − C(0, St)

= Vt(ϕ) − V0(ϕ).

Thus Vt(ϕ) = V0(ϕ) +Gt(ϕ)

Therefore ϕ = (ϕ0, ϕ1) is self-financing. Since VT (ϕ) = C(T, ST ), it follows that ϕ is a
hedging strategy.

4 The Greeks

The derivatives of the function C(t, x) in (3.26) with respect to t, x are referred to as the
Greeks.

Three important Greeks are :

Delta ∆

∆ = ∆(t) :=
∂C(t, x)

∂x
= Φ (d1(x, T − t)) , (4.29)

Theta Θ

Θ = Θ(t) : =
∂C(t, x)

∂t
= −rKe−r(T−t)Φ (d2(x, T − t))

− σx

2
√
T − t

Φ′ (d1(x, T − t)) , (4.30)

where d1, d2 are as in (3.25).
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Gamma Γ

Γ = Γ(t) =
∂2C(t, x)

∂x2

= Φ′ (d1(x, T − t))
∂

∂x
d1(x, T − t)

=
1

σx
√
T − t

Φ′ (d1(x, T − t)) . (4.31)

Since Φ and Φ′ are always positive ∆ and Γ are always positive and Θ is always negative.
We now explain the significance of these Greeks. If at time t the stock price is x, then the
short option hedge calls for holding ∆ = ∂C

∂x
(t, x) shares of stock, a position whose value is

x
∂C

∂x
(t, x) = xΦ (d1(x, T − t)) .

The hedging portfolio value from (3.26) is given by

C(t, x) = xΦ(d1(x, T − t)) −Ke−r(T−t)Φ(d2(x, T − t)).

Therefore the amount invested in the bond (or money market) must be

C(t, x) − x
∂C

∂x
(t, x) = −Ke−r(T−t)Φ (d2(x, T − t))

a negative number. Thus to hedge a short position in a call option one must borrow money.
To hedge a long position in a call option one does the opposite, i.e., to hedge a long call
position one should hold −∂C

∂x
(t, x) shares of stock (i.e. have a short position in the stock)

and invest Ke−r(T−t)Φ (d1(x, T − t)) in the bond (or money market).

Since ∆ > 0,Γ > 0, for a fixed t, C(t, x) is increasing and convex in the variable x.

-
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Figure 3: Delta- neutral Position
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Suppose at time t the stock price is x1, and we wish to take a long position in the option
and hedge it. We do this by purchasing the option for C(t, x1), shorting ∂C

∂x
(t, x1) shares of

stock, which generates an income x1
∂C
∂x

(t, x1), and investing the difference.

M = x1
∂C

∂x
(t, x1) − C(t, x1)

in the bond (or money market). We wish to consider the sensitivity to stock price changes
of the portfolio that has three components: long option, short stock, and long bond. The
initial portfolio value

C(t, x1) − x1
∂C

∂x
(t, x1) +M

is zero at the moment t when we set up these positions. If the stock price were to instanta-
neously fall to x0 and we do not change our positions in the stock or bond, then the value
of the option we hold would fall to C(t, x0) and the liability due to our short position in the
stock would decrease to x0

∂C
∂x

(t, x1). Our total portfolio value would be

C(t, x0) − x0
∂

∂x
C(t, x1) +M = C(t, x0) −

∂

∂x
C(t, x1)(x0 − x1) − C(t, x1).

This is the difference at x0 between the curve y = C(t, x) and the line y = ∂
∂x
C(t, x1)(x −

x1) +C(t, x1) ( as shown by a vertical segment above x0 in the figure). Since this difference
is positive, our portfolio benefits from an instantaneous drop in the stock price.

On the other hand, if the stock price were to rise instantaneously to x2 and we do not change
our position in the stock or bond, the value of the option would rise to C(t, x2), and the

liability due to our short position in stock would increase to x2
∂C(t,x1)

∂x
. Our total portfolio

value would be

C(t, x2) − x2
∂C(t, x1)

∂x
+M

= C(t, x2) −
∂C(t, x1)

∂x
(x2 − x1) − C(t, x1).

This is the difference at x2 between the curve y = C(t, x) and the line y = ∂C(t,x1)
∂x

(x2−x1) +
C(t, x1) in the above figure. Since the difference is positive, so our portfolio benefits from
an instantaneous rise in stock price.

The portfolio we have set up is called delta-neutral and long gamma. The portfolio is long
gamma because it benefits from the convexity of C(t, x) as described above. If there is
an instantaneous rise or an instantaneous fall in the stock price, the value of the portfolio
increases. A long gamma portfolio is profitable in terms of high stock volatility.

“Delta-neutral” refers to the fact that the line in the above figure is tangent to the curve
y = C(t, x). Therefore, when the stock price makes a small move, the change of portfolio
value due to the corresponding change in option price is nearly offset by the change in value
of our short position in the stock. The straight line is a good approximation to the option
price for small stock price moves. If the straight line were steeper than the option price at
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the starting point x1, then we would be short delta; an upward move in the stock price would
hurt the portfolio because the liability from the short position in stock would rise faster than
the value of the option. On the other hand a downward move would increase the portfolio
because the option price would fall more slowly than the rate of decrease in the liability from
the short stock position. Unless an investor has a view on the market, he tries to set up
portfolios that are delta-neutral. If he expects high volatility, he would at the same time try
to choose the portfolio to be long gamma.

The portfolio described above may at first appear to offer an arbitrage opportunity. When
we let time move forward, not only does the long gamma position offers an opportunity for
profit, but the positive investment in the bond enhances this opportunity. The drawback is
that the theta Θ (as in (4.30)) , the derivative of C(t, x) w.r.t time is negative. As we move
forward in time, the curve y = C(t, x) is shifting downwards. In principle, the portfolio can
lose money because the curve y = C(t, x) is shifting downward more rapidly than the bond
investment and the long gamma position generate income. The essence of hedging argument
is that if the stock is really a GBM with a known σ, then so long as we continuously re-balance
our portfolio, all these effects exactly cancel.

There are two other Greeks vega and rho;
∂C

∂σ
is called the vega and

∂C

∂r
is called the rho.

With a suitable balance of the underlying stock and other derivatives, hedgers can eliminate
the short term dependence of the portfolio movement in time, stock price, volatility or
interest rate.

5 Risk Neutral Valuation by a Change of Measure

In this section we revisit the Black-Scholes theory using a martingale method. Let the market
be given as in the previous section. Consider the stochastic process W̃t = Wt + qt where q
is a constant. Under the probability measure P , {Wt} is a standard Brownian motion, but
W̃t is not a standard Brownian motion (for q ̸= 0). However, if we change the underlying
probability measure for an appropriate probability measure P̃ , W̃t can be shown to be a
standard Brownian motion under P̃ . Using Girsanov’s theorem the following holds.

Theorem 5.1 The following statement holds:

• The stochastic process

Mt = exp{−qWt −
1

2
q2t}, t ∈ [0, T ]

is a martingale with respect to the filtration {Ft} under the probability measure P .

• The relation

P̃ (A) =

∫
A

MT (ω)dP (ω)
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defines a probability measure P̃ which is equivalent to P . We often write this relation-
ship as dP̃

dP
= MT .

• Under the new probability measure P̃ the process W̃t is a standard Brownian motion.

We now get back to the Black-Scholes model. Note that under the market probability
measure P

• Bt grows at the rate r

• Expected growth rate of St is µ.

We change P to P ∗ (equivalent to P ) under which both Bt and St grow at the same rate.
Set

dP ∗

dP
= exp

(
−
∫ T

0

µ− r

σ
dWt −

1

2

∫ T

0

(
µ− r

σ

)2

dt
)
. (5.32)

Set

W ∗
t = Wt +

µ− r

σ
t.

Then P ≡ P ∗. Under P ∗, W ∗
t is a standard Brownian motion. Also under P ∗, St satisfies

dSt = rStdt+ σStdW
∗
t .

Thus under P ∗ the growth rates of Bt and St are the same.
Let

S∗
t := e−rtSt

. Then
dS∗

t = σS∗
t dW

∗
t .

Thus {S∗
t } is a martingale under P ∗. Hence the market is arbitrage free. The probability

measure P ∗ is the risk neutral measure for this model.

The arbitrage free price of call option at time t is given by

φt = E∗[e−r(T−t)(ST −K)+ | Ft].

The uniqueness of risk neutral measure P ∗ gives the completeness of the market, i.e., every
contingent claim is attainable by a self financing strategy. By Markov property

φt = E∗[e−r(T−t)(ST −K)+ | Ft] = E∗[e−r(T−t)(ST −K)+ | St] = C(t, St).

One can then show that the function C(t, x) satisfies the Black-Scholes pde described earlier.
Alternatively, since St is a gBM with parameters r, σ, one can evaluate the above expectation
directly to get the Black-Scholes formula (Exercise).

Remark 5.1 In the exercises given below, unless otherwise mentioned, the unit of time
should be taken as one year. The starting time of a call is taken to be 0.
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Exercise 5.1 Let C(x, T, σ, r,K) denote the price of a European call (at time 0). Show
that the function C is

(a) decreasing and convex in K;

(b) increasing and convex in x;

(c) increasing, but neither convex nor concave, in r, σ and T .

Exercise 5.2 The prices of a certain stock follows a geometric Brownian motion (gBM)
with parameters µ = 0.4, σ = 0.24. If the present price of the stock is 40, what is the
probability that a European call option, having four months until its expiration time and
with a strike price of K = 42, will be exercised? ( A stock whose price at the time of
expiration of a call option is above the strike price is said to be finish in the money).

Exercise 5.3 To determine the probability that a European call option finishes in the
money, is it enough to specify the five parameters K,S0, r, T , and σ? Explain your answer;
if it is “no”, what else is required?

Exercise 5.4 The price of a certain stock follows a gBM with parameters µ = 0.1, σ = 0.3.
The present price of the stock is 95.

(a) If r = 0.04, find the no-arbitrage price of a European call option that expires in three
months and has exercise price K = 100.

(b) What is the probability that the call option in part (a) is worthless at the time of
expiry?

Exercise 5.5 What should the price of a European call option if the strike price is equal
to zero?

Exercise 5.6 What should the price of a European call option become as the exercise time
becomes larger and larger? Explain your answer with both intuitive reasoning and detailed
analysis.

Exercise 5.7 What should be price of a European (K,T ) call option become as the
volatility parameter becomes smaller and smaller?

Exercise 5.8 Consider a stock whose price is given by

dSt = r(t)Stdt+ σ(t)dW ∗(t)

where r(t) and σ(t) are deterministic functions of t and W ∗ is a Brownian motion under the
risk-neutral measure P ∗.
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(a) Show that ST is of the form S0E
X , where X is a normal random variable. Determine

the mean and variance of X.

(b) Find the risk-neutral valuation of a European call option on ST .

(c4) Let C(T, x,K, r, σ) denote value of a European call option at time zero with parameters

T, x,K, r, σ in Black-Scholes model. Show that C(T, S0, K,
1
T

∫ T

0
r(t)dt,

√
1
T

∫ T

0
σ2(t)dt)

is a risk-neutral valuation of the option price in the above model.
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