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Motivation

Consider the following:

P : Rd → Rs a polynomial map.
X ⊆ Rd defined over Q such that

∣∣X ∩Zd ∣∣= ∞.

Question
What can one say about P

(
X ∩Zd)⊆ Rs?

When is it dense? (conditions on P and X?)

If it is dense, then exactly how dense?
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Special Cases

X = Rd , P = (L1, . . . ,Ls) a linear map.
If s < d and α1L1 + · · ·+ αsLs /∈Q unless αi = 0 for all i , then
P (Zd ) = Rs .

Classical.

X = Rd , P a quadratic form.
If d > 2 and P is indefinite, non degenerate, not a multiple of a
rational form, then P (Zd ) = R.

Oppenheim Conjecture, proved by G. Margulis in 1989.
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Today: Another Special Case (Density).

Q : Rd → R, indefinite quadratic form, non degenerate, rational
coefficients.

M = (L1, . . . ,Ls) : Rd → Rs , linear map.

Xa (K) =
{
x ∈Kd : Q (x) = a

}
. (K =Z or R)

Take a ∈Q such that |Xa (Z)|= ∞.

Theorem (1. (O.S 2012))
If

1 d > 2s and rank
(
Q|Ker(M)

)
> 2,

2 Q|Ker(M) is indefinite,
3 α1L1 + · · ·+ αsLs /∈Q unless αi = 0 for all i .

Then M (Xa (Z)) = Rs .
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Remarks about the conditions of Theorem 1.

d > 2s probably not necessary. (d > s +2 should work??)

rank
(
Q|Ker(M)

)
> 2 is probably necessary although so far no

counterexamples?

Q|Ker(M) is indefinite is possibly too strong but it implies that
Xa (R)∩

{
x ∈ Rd : M (x) = b

}
is non compact which is necessary.

α1L1 + · · ·+ αsLs /∈Q unless αi = 0 for all i is necessary.
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Today: Another Special Case (Quantification).

Theorem (2. (O.S 2012))
If

1 d > 2s and rank
(
Q|Ker(M)

)
= d− s,

2 Q|Ker(M) has signature (r1, r2) where r1 ≥ 1 and r2 ≥ 3,
3 α1L1 + · · ·+ αsLs /∈Q unless αi = 0 for all i .

Then there exists C0 > 0 such that for all θ > 0 there exists T0 > 0 such
that for all T > T0 and R ⊆ Rs - compact with smooth boundary

(1−θ)C0Vol(R)T d−s−2 ≤∣∣∣{v ∈ Zd : Q (v) = a,M (v) ∈ R,‖v‖ ≤ T
}∣∣∣≤

(1+ θ)C0Vol(R)T d−s−2.



Remarks about the conditions of Theorem 2.

C0 is such that

C0Vol(R)T d−s−2 ∼ Vol
(
Xa (R)∩

{
v ∈ Rd : M (v) ∈ R,‖v‖ ≤ T

})
evaluated w.r.t the Haar measure on Xa (R).

The condition that rank
(
Q|Ker(M)

)
= d− s should be able to be

relaxed to rank
(
Q|Ker(M)

)
> 2.

The cases where Q|Ker(M) has signature (1,2) or (2,2) are ‘exceptional
and there are more integer points than expected by a factor of logT .
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Ideas about the proof of Theorem 1: Strategy.

Use Ratner’s Theorem.

Theorem (Ratner’s Orbit closure Theorem, 1990)
G - connected Lie group. U ≤ G, generated by 1-parameter unipotent
subgroups. Γ≤ G a lattice. Then for all x ∈ G/Γ, Ux = Fx for F a closed
connected subgroup U ≤ F ≤ G.

For our purpose, set:
I GQ = SO (Q)o = {g ∈ SLd (R) : Q (gx) = Q (x)}o- connected Lie group.

I ΓQ = GQ ∩SLd (Z) - lattice because Q is rational.

I HQ,M = {g ∈ GQ : M (gx) = M (x)}.

Look at HQ,M y GQ/ΓQ, if HQ,M is generated by 1-p unip. s.g then
use Ratner!
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Canonical Form

An equivalence relation:
I (Q,M)∼ (Q′,M ′)⇐⇒∃gd ∈ GLd (R) ,gs ∈ GLs (R) such that
∀x ∈ Rd (Q (gdx) ,gsM (gdx)) = (Q′ (x) ,M ′ (x)).

To simplify, from now on take M = M : Rd → Rs such that s = 1 or
rank

(
Q|Ker(M)

)
= d− s.

Theorem (Canonical Form )
1 rank

(
Q|Ker(M)

)
= d− s and (Q,M)∼(

Q′ (x1, . . . ,xs) + ∑
p
i=s+1 x2

i −∑
d
i=p+1 x2

i ,(x1, . . . ,xs)
)

= (Q1,M1)

2 s = 1 and (Q,M)∼
(
2x1xd + ∑

p
i=2 x2

i −∑
d−1
i=p+1 x2

i ,x1
)

=(Q2,M2)

Note that in case 2. rank
(
Q|Ker(M)

)
= d−2.



Canonical Form

An equivalence relation:
I (Q,M)∼ (Q′,M ′)⇐⇒∃gd ∈ GLd (R) ,gs ∈ GLs (R) such that
∀x ∈ Rd (Q (gdx) ,gsM (gdx)) = (Q′ (x) ,M ′ (x)).

To simplify, from now on take M = M : Rd → Rs such that s = 1 or
rank

(
Q|Ker(M)

)
= d− s.

Theorem (Canonical Form )
1 rank

(
Q|Ker(M)

)
= d− s and (Q,M)∼(

Q′ (x1, . . . ,xs) + ∑
p
i=s+1 x2

i −∑
d
i=p+1 x2

i ,(x1, . . . ,xs)
)

= (Q1,M1)

2 s = 1 and (Q,M)∼
(
2x1xd + ∑

p
i=2 x2

i −∑
d−1
i=p+1 x2

i ,x1
)

=(Q2,M2)

Note that in case 2. rank
(
Q|Ker(M)

)
= d−2.



Canonical Form

An equivalence relation:
I (Q,M)∼ (Q′,M ′)⇐⇒∃gd ∈ GLd (R) ,gs ∈ GLs (R) such that
∀x ∈ Rd (Q (gdx) ,gsM (gdx)) = (Q′ (x) ,M ′ (x)).

To simplify, from now on take M = M : Rd → Rs such that s = 1 or
rank

(
Q|Ker(M)

)
= d− s.

Theorem (Canonical Form )
1 rank

(
Q|Ker(M)

)
= d− s and (Q,M)∼(

Q′ (x1, . . . ,xs) + ∑
p
i=s+1 x2

i −∑
d
i=p+1 x2

i ,(x1, . . . ,xs)
)

= (Q1,M1)

2 s = 1 and (Q,M)∼
(
2x1xd + ∑

p
i=2 x2

i −∑
d−1
i=p+1 x2

i ,x1
)

=(Q2,M2)

Note that in case 2. rank
(
Q|Ker(M)

)
= d−2.



Canonical Form

An equivalence relation:
I (Q,M)∼ (Q′,M ′)⇐⇒∃gd ∈ GLd (R) ,gs ∈ GLs (R) such that
∀x ∈ Rd (Q (gdx) ,gsM (gdx)) = (Q′ (x) ,M ′ (x)).

To simplify, from now on take M = M : Rd → Rs such that s = 1 or
rank

(
Q|Ker(M)

)
= d− s.

Theorem (Canonical Form )
1 rank

(
Q|Ker(M)

)
= d− s and (Q,M)∼(

Q′ (x1, . . . ,xs) + ∑
p
i=s+1 x2

i −∑
d
i=p+1 x2

i ,(x1, . . . ,xs)
)

= (Q1,M1)

2 s = 1 and (Q,M)∼
(
2x1xd + ∑

p
i=2 x2

i −∑
d−1
i=p+1 x2

i ,x1
)

=(Q2,M2)

Note that in case 2. rank
(
Q|Ker(M)

)
= d−2.



Canonical Form

An equivalence relation:
I (Q,M)∼ (Q′,M ′)⇐⇒∃gd ∈ GLd (R) ,gs ∈ GLs (R) such that
∀x ∈ Rd (Q (gdx) ,gsM (gdx)) = (Q′ (x) ,M ′ (x)).

To simplify, from now on take M = M : Rd → Rs such that s = 1 or
rank

(
Q|Ker(M)

)
= d− s.

Theorem (Canonical Form )
1 rank

(
Q|Ker(M)

)
= d− s and (Q,M)∼(

Q′ (x1, . . . ,xs) + ∑
p
i=s+1 x2

i −∑
d
i=p+1 x2

i ,(x1, . . . ,xs)
)

= (Q1,M1)

2 s = 1 and (Q,M)∼
(
2x1xd + ∑

p
i=2 x2

i −∑
d−1
i=p+1 x2

i ,x1
)

=(Q2,M2)

Note that in case 2. rank
(
Q|Ker(M)

)
= d−2.



Canonical Form

An equivalence relation:
I (Q,M)∼ (Q′,M ′)⇐⇒∃gd ∈ GLd (R) ,gs ∈ GLs (R) such that
∀x ∈ Rd (Q (gdx) ,gsM (gdx)) = (Q′ (x) ,M ′ (x)).
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What is HQ,M?
Notation: In - n×n identity matrix, In1,n2 =

(
In1 0
0 −In2

)
.

In case 1.
I HQ1,M1 =

(
Is 0
0 SO (p− r1,q− r2)

)
.

In case 2.

I D =

 1 0 0
0 SO (p−1,q−1) 0
0 0 1

≤ HQ2,M2 .

I U =


 1 0 0

t Id−2 0
tT Ip−1q−1t/2 −tT Ip−1,q−1 1

 : t ∈ Rd−2

≤ HQ2,M2 .

I U is normalised by D and UD = HQ2,M2 .

In either case, HQi ,Mi is generated by 1-p unip. s.g, because of
conditions that rank

(
Q|Ker(M)

)
> 2 and that Q|Ker(M) is indefinite.
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Intermediate Subgroups.

The task now is to determine closed connected subgroups, F such
that HQ,M ≤ F ≤ GQ.

In case 1, if s is relatively large there are quite a few possibilities for F .

In case 2. Let A =


 a 0 0

0 Id−2 0
0 0 a−1

 : a ∈ R\{0}

.

I Then F = HQ,M , F = gAHQ2,M2g−1 or F = GQ .

I Here g ∈ GLd (R) is such that ∀x ∈ Rd ,
(Q2 (gx) ,M2 (gx)) = (Q (x) ,M (x)).
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F invariant subspaces.

Show that, if V is an F invariant subspace of dimension smaller than
d− s, then V is defined over Q.

I This works, by using the fact that HQ,M ≤ F and so any F invariant
subspace must be HQ,M invariant.

I Leads to two types of F invariant subspaces:
F those contained in 〈x1, . . . ,xs〉
F those that contain 〈xs+1, . . . ,xd 〉

I The assumption that d > 2s means the latter type have dimension
larger than d− s.

I The former type will be fixed by Aut(C/Q) and hence defined over Q.
(Assumption that d > 2s is needed).
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Which subgroups can actually occur.

Consider case 2, in this case if F has a 1 dimensional invariant
subspace it will be defined over Q.

I Clearly 〈L〉 is HQ,M invariant, and also (check!) gAHQ2,M2g−1

invariant.

I But 〈L〉 is not defined over Q by the assumptions and so F = GQ .

In case 1, there are too many intermediate subgroups to go through
case by case.

I Clearly HQ,M has invariant subspaces of dimension less than d− s not
defined over Q, so F 6= HQ,M .

I Show that F must contain a larger copy of HQ,M , and continue this
process inductively until F = GQ . (Technical, involves looking at the
Lie algebra of F )
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Final proof.
{M (x) : x ∈ Xa (Z)}=

{
M (HQ,Mx) : x ∈ Xa (Z)

}
because M is HQ,M

invariant.{
M (HQ,Mx) : x ∈ Xa (Z)

}
=
{
M (HQ,MΓQx) : x ∈ Xa (Z)

}
because

Xa (Z) is ΓQ invariant.{
M (HQ,MΓQx) : x ∈ Xa (Z)

}
⊇ {M (Fx) : x ∈ Xa (Z)} by using

Ratner’s Theorem.

{M (Fx) : x ∈ Xa (Z)}= {M (GQx) : x ∈ Xa (Z)} from our earlier
discussion.

{M (GQx) : x ∈ Xa (Z)}= {M (x) : x ∈ Xa (R)} because GQ acts
transitively on Xa (R).

{M (x) : x ∈ Xa (R)}= R because Xa (R)∩
{
x ∈ Rd : M (x) = b

}
is

non compact for every b ∈ R.
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because

Xa (Z) is ΓQ invariant.{
M (HQ,MΓQx) : x ∈ Xa (Z)

}
⊇ {M (Fx) : x ∈ Xa (Z)} by using

Ratner’s Theorem.

{M (Fx) : x ∈ Xa (Z)}= {M (GQx) : x ∈ Xa (Z)} from our earlier
discussion.

{M (GQx) : x ∈ Xa (Z)}= {M (x) : x ∈ Xa (R)} because GQ acts
transitively on Xa (R).

{M (x) : x ∈ Xa (R)}= R because Xa (R)∩
{
x ∈ Rd : M (x) = b

}
is

non compact for every b ∈ R.



Thanks!

Thank you for listening!


