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Motivation

Consider the following:

e P:RY — R* a polynomial map.

e X CRRY defined over Q such that [XNZ7| = co.

What can one say about P (XNZY) CR*?

@ When is it dense? (conditions on P and X?)

e If it is dense, then exactly how dense?
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Motivation

Consider the following:

e P:RY - R* a polynomial map.
o X CRY defined over Q such that [XNZ7| = co.

What can one say about P (XNZ9) C RS?

@ When is it dense? (conditions on P and X?)

o If it is dense, then exactly how dense?




Special Cases

X=RI pP= (L1,...,Ls) a linear map.

e lfs<dand yli+ -+ osls ¢ Q unless o; =0 for all i, then
P(Z9) = R®.

o Classical.

o

X =RY, P a quadratic form.

o If d > 2 and P is indefinite, non degenerate, not a multiple of a
rational form, then P(Z9) =R.

@ Oppenheim Conjecture, proved by G. Margulis in 1989.
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Special Cases

X=RI pP= (L1,...,Ls) a linear map.

o Ifs<dand oyly+---+asLs ¢ Q unless a; =0 for all 7, then
P(Z9) =TR".

@ Classical.

4

X =RY, P a quadratic form.

o If d > 2 and P is indefinite, non degenerate, not a multiple of a
rational form, then P(Z9) =R.

@ Oppenheim Conjecture, proved by G. Margulis in 19809.
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Today: Another Special Case (Density).

o Q:RY =R, indefinite quadratic form, non degenerate, rational
coefficients.

o M=(Ly,...,Ls) : RY = RS, linear map.
o X;(K)={xecK:Q(x)=a}. (K=Z or R)
e Take a € Q such that | X;(Z)| = ce.

Theorem (1. (O.S 2012))
If

Q d > 2s and rank (Q|ker(m)) > 2

Q Qlker(m) is indefinite,

Q@ ouli+--+asls ¢ Q unless a; =0 for all i.
Then M (X, (Z)) = RS.
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@ d > 2s probably not necessary. (d > s+ 2 should work??)

° rank(Q|Ker(M)) > 2 is probably necessary although so far no
counterexamples?

° Q\Ker(,\/,) is indefinite is possibly too strong but it implies that
Xa(R)N{x € R?: M(x) = b} is non compact which is necessary.

o auli+---+osls ¢ Q unless o; = 0 for all i is necessary.



Today: Another Special Case (Quantification).

Theorem (2. (0.S 2012))
If

Q@ d>2s and rank(Q|Ker(M)) =d-—s,

Q Qlker(m) has signature (r1,r2) where rp > 1 and rp > 3,
Q@ ouli+--+asls ¢ Q unless a; =0 for all i.

Then there exists Cy > 0 such that for all 8 > 0 there exists Tg > 0 such
that for all T > Tg and R C R°- compact with smooth boundary

(1-6)CWI(R) T2 <
HveZd:Q(v):a,M(v)eR,HvH < T}’ <

(1+6) CoVol(R) T2,

v
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Remarks about the conditions of Theorem 2.

@ (g is such that
CoVol (R) T2 ~ Vol (X, (R)N {v e RT: M(v) € R, |v]| < T })
evaluated w.r.t the Haar measure on X, (R).

@ The condition that rank(Q\Ker(M)) = d — s should be able to be
relaxed to rank (Q|ker(n)) > 2.

® The cases where Q|[ger(n) has signature (1,2) or (2,2) are ‘exceptional
and there are more integer points than expected by a factor of log T.



|deas about the proof of Theorem 1: Strategy.



|deas about the proof of Theorem 1: Strategy.

@ Use Ratner’s Theorem.



|deas about the proof of Theorem 1: Strategy.

@ Use Ratner’s Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. U < G, generated by I-parameter unipotent
subgroups. T < G a lattice. Then for all x € G/T, Ux = Fx for F a closed
connected subgroup U < F < G.




|deas about the proof of Theorem 1: Strategy.

@ Use Ratner’s Theorem.

Theorem (Ratner’s Orbit closure Theorem, 1990)

G - connected Lie group. U < G, generated by I-parameter unipotent
subgroups. T < G a lattice. Then for all x € G/T, Ux = Fx for F a closed
connected subgroup U < F < G.

@ For our purpose, set:



|deas about the proof of Theorem 1: Strategy.

@ Use Ratner’s Theorem.

Theorem (Ratner’s Orbit closure Theorem, 1990)

G - connected Lie group. U < G, generated by I-parameter unipotent
subgroups. T < G a lattice. Then for all x € G/T, Ux = Fx for F a closed
connected subgroup U < F < G.

@ For our purpose, set:

» Go=S5S0(Q)°={g€SLs(R): Q(gx) = Q(x)}°- connected Lie group.



|deas about the proof of Theorem 1: Strategy.

@ Use Ratner’s Theorem.

Theorem (Ratner’s Orbit closure Theorem, 1990)

G - connected Lie group. U < G, generated by I-parameter unipotent
subgroups. T < G a lattice. Then for all x € G/T, Ux = Fx for F a closed
connected subgroup U < F < G.

@ For our purpose, set:
» Go=S5S0(Q)°={g€SLs(R): Q(gx) = Q(x)}°- connected Lie group.

» o= GoNSLy(Z) - lattice because Q is rational.



|deas about the proof of Theorem 1: Strategy.

@ Use Ratner’s Theorem.

Theorem (Ratner’s Orbit closure Theorem, 1990)

G - connected Lie group. U < G, generated by I-parameter unipotent
subgroups. T < G a lattice. Then for all x € G/T, Ux = Fx for F a closed
connected subgroup U < F < G.

@ For our purpose, set:
» Go=S5S0(Q)°={g€SLs(R): Q(gx) = Q(x)}°- connected Lie group.
» o= GoNSLy(Z) - lattice because Q is rational.

> Hom=1{g € Gq: M(gx)=M(x)}.



|deas about the proof of Theorem 1: Strategy.

@ Use Ratner’s Theorem.

Theorem (Ratner’s Orbit closure Theorem, 1990)

G - connected Lie group. U < G, generated by I-parameter unipotent
subgroups. T < G a lattice. Then for all x € G/T, Ux = Fx for F a closed
connected subgroup U < F < G.

@ For our purpose, set:
» Go=S5S0(Q)°={g€SLs(R): Q(gx) = Q(x)}°- connected Lie group.
» o= GoNSLy(Z) - lattice because Q is rational.

> Hom=1{g € Gq: M(gx)=M(x)}.

o Look at Hom ™ Gg/T @, if Hg m is generated by 1-p unip. s.g then
use Ratner!



Canonical Form
@ An equivalence relation:

» (QM)~(Q M) <= 3gy € GL4(R),gs € GLs(R) such that
Vx € RY(Q(gax),gsM (gax)) = (Q' (x), M’ (x)).

e To simplify, from now on take M = M : RY — RS such that s =1 or
rank(Q|Ker(M)) =d—s.

Theorem (Canonical Form )

Q rank (Q|ger(my) =d—s and (Q, M) ~

d-1

(Q,(Xlw"axs)_‘_Z?:S-‘rlXiz_Zld:P-l—lXI?’(Xl"”’Xs)) a (QhMl)
@ s=1and (Q,M)~ (2X1Xd+2?:2xi2_z

2
i=p+1Xi » X1

) =(Q2, M)
@ Note that in case 2. rank(Q|Ker(M)) =d-2
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Canonical Form

@ An equivalence relation:

> (QM) ~ (Q, M) <= 3gg € GLy4(R),gs € GLg (R) such that
Vx € RY(Q(ggx),8sM (g8ax)) = (@ (x), M’ (x)).

e To simplify, from now on take M = M : RY — RS such that s=1 or
rank(Q|Ker(M)) =d-—s.

Theorem (Canonical Form )

Q rank (Q|ger(m)) =d—s and (Q, M) ~
(Q,(Xb XS)+Z/ 5+1X Zl p+1X,2a(X1a Xs)) :(Ql7Ml)

Q s:land(Q,M)~<2x1xd+):, S xP—Yydl o1 X2, X ) =(@2, M)

@ Note that in case 2. rank(Q|Ker(M)) =d-2.
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What is Ho y?

. . . I, O
@ Notation: I, - nx n identity matrix, I, », = B .

0 In,
@ In case 1.
(ks 0
TP =g SO(p—n,q—n) )’
@ In case 2.

0 0
» D= ( SO(p— 1 ,g—1) 0 ) < Hg, M,
1

1
0
0
0 0
lg—2 0 ) :teRY2 5 < Ho, m,.
t /p 19— 1t/2 —tT/p,qul 1



What is Ho y?
@ Notation: I, - nx n identity matrix, I, », = <

@ In case 1.

P 0
TP =g SO(p—n,q—n) )’

@ In case 2.

tT/pfqul t/2 —tT/pfl,qfl 1

» U is normalised by D and UD = Hg, u,.

In, 0
0 —ly
cteRI2



What is Ho y?

/
@ Notation: I, - nx n identity matrix, I, », = < m 0 )

0 In,
@ In case 1.
(s 0
QuML = | ¢ SO(p—n,q—n) )’
@ In case 2.

» U is normalised by D and UD = Hg, u,.

@ In either case, Hg, p; is generated by 1-p unip. s.g, because of
conditions that rank(Q|Ker(M)) > 2 and that Q[ger(nm) is indefinite.



Intermediate Subgroups.



Intermediate Subgroups.

@ The task now is to determine closed connected subgroups, F such
that HQ7M <F< GQ.



Intermediate Subgroups.

@ The task now is to determine closed connected subgroups, F such
that HQM <F< GQ.

@ In case 1, if s is relatively large there are quite a few possibilities for F.



Intermediate Subgroups.

@ The task now is to determine closed connected subgroups, F such
that HQM <F< GQ.

@ In case 1, if s is relatively large there are quite a few possibilities for F.
a o0 0

@ Incase 2. Let A= 0 Iy O rac R\ {0}
0 0 a't



Intermediate Subgroups.

@ The task now is to determine closed connected subgroups, F such
that HQM <F< GQ.

@ In case 1, if s is relatively large there are quite a few possibilities for F.

a o0 0
@ Incase 2. Let A= 0 Iy O rac R\ {0}
0 0 a't

» Then F = Hg um, F:gAHszMzg_l or F = Gg.



Intermediate Subgroups.

@ The task now is to determine closed connected subgroups, F such
that HQM <F< GQ.

@ In case 1, if s is relatively large there are quite a few possibilities for F.

a o0 0
@ Incase 2. Let A= 0 Iy O rac R\ {0}
0 0 a't

» Then F = Hg um, F:gAHszMzg_l or F = Gg.

» Here g € GLy4(R) is such that ¥x € RY
(Q2(8x), M2(gx)) = (Q(x), M(x)).
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F invariant subspaces.

@ Show that, if V is an F invariant subspace of dimension smaller than
d —s, then V is defined over Q.

» This works, by using the fact that Hg p» < F and so any F invariant
subspace must be Hg p invariant.
» Leads to two types of F invariant subspaces:
* those contained in (x1,...,xs)

* those that contain (Xsy1,...,Xq)

» The assumption that d > 2s means the latter type have dimension
larger than d —s.

» The former type will be fixed by Aut(C/Q) and hence defined over Q.
(Assumption that d > 2s is needed).
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Which subgroups can actually occur.

@ Consider case 2, in this case if F has a 1 dimensional invariant
subspace it will be defined over Q.
» Clearly (L) is Hg um invariant, and also (check!) gAHg, m,g !

invariant.

» But (L) is not defined over Q by the assumptions and so F = Gg.

@ In case 1, there are too many intermediate subgroups to go through
case by case.

> Clearly Hg p has invariant subspaces of dimension less than d —s not
defined over Q, so F # Hg m.

» Show that F must contain a larger copy of Hg p, and continue this
process inductively until F = Gg. (Technical, involves looking at the
Lie algebra of F)



Final proof.

invariant.

o {M(x):x€Xs(Z)} = {M(Hqmx): x € Xa(Z)} because M is Ho u

o {M(Homx):x € X5(Z)} = {M(Homlgx): x € Xa(Z)} because
X3 (Z) is T ¢ invariant.

o {M(Homlgx):x € Xa(Z)} 2 {M(Fx) : x € X5(Z)} by using
Ratner's Theorem.

o {M(Fx):xe X,3(Z)} ={M(Ggx): x € X5(Z)} from our earlier
discussion.

o {M(Ggx):xeXs(Z)} ={M(x):x € Xs(R)} because Gg acts
transitively on X, (R).

o {M(x):x € Xs(R)} =R because X;(R)N{x € R?: M(x)=b} is
non compact for every b € R.
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Final proof.

o {M(x):x€Xs(Z)} = {M(Hqmx): x € Xa(Z)} because M is Ho m
invariant.

° {M(HQMX) :x € X, (Z)} = {M(HQMFQX) i x € X; (Z)} because
X5(Z) is T g invariant.

o {M(Homlgx):x € Xa(Z)} 2 {M(Fx): x € X5(Z)} by using
Ratner’'s Theorem.

o {M(Fx):xe X,(Z)} ={M(Ggx): x € X5(Z)} from our earlier
discussion.

o {M(Ggx):xeXs(Z)} ={M(x):x € Xs(R)} because Gg acts
transitively on X, (R).

o {M(x):x € X,s(R)} =R because X, (R)N{x € RY: M(x) = b} is
non compact for every b € R.



Thanks!

Thank you for listening!



