Distribution of Values on Quadratic Surfaces

O. Sargent

Groups Geometry and Dynamics, 2012

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Consider the following:

- $P: \mathbb{R}^d \to \mathbb{R}^s$ a polynomial map.
- $X \subseteq \mathbb{R}^d$ defined over \mathbb{Q} such that $|X \cap \mathbb{Z}^d| = \infty$.

Question

What can one say about $P(X \cap \mathbb{Z}^d) \subseteq \mathbb{R}^s$?

• When is it dense? (conditions on P and X?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider the following:

- $P : \mathbb{R}^d \to \mathbb{R}^s$ a polynomial map.
- $X \subseteq \mathbb{R}^d$ defined over \mathbb{Q} such that $|X \cap \mathbb{Z}^d| = \infty$.

Question

What can one say about $P(X \cap \mathbb{Z}^d) \subseteq \mathbb{R}^s$?

• When is it dense? (conditions on P and X?)

Consider the following:

- $P : \mathbb{R}^d \to \mathbb{R}^s$ a polynomial map.
- $X \subseteq \mathbb{R}^d$ defined over \mathbb{Q} such that $|X \cap \mathbb{Z}^d| = \infty$.

Question

What can one say about $P(X \cap \mathbb{Z}^d) \subseteq \mathbb{R}^s$?

• When is it dense? (conditions on P and X?)

Consider the following:

- $P : \mathbb{R}^d \to \mathbb{R}^s$ a polynomial map.
- $X \subseteq \mathbb{R}^d$ defined over \mathbb{Q} such that $|X \cap \mathbb{Z}^d| = \infty$.

Question

What can one say about $P(X \cap \mathbb{Z}^d) \subseteq \mathbb{R}^s$?

• When is it dense? (conditions on *P* and *X*?)

Consider the following:

- $P : \mathbb{R}^d \to \mathbb{R}^s$ a polynomial map.
- $X \subseteq \mathbb{R}^d$ defined over \mathbb{Q} such that $|X \cap \mathbb{Z}^d| = \infty$.

Question

What can one say about $P(X \cap \mathbb{Z}^d) \subseteq \mathbb{R}^s$?

• When is it dense? (conditions on *P* and *X*?)

Consider the following:

- $P : \mathbb{R}^d \to \mathbb{R}^s$ a polynomial map.
- $X \subseteq \mathbb{R}^d$ defined over \mathbb{Q} such that $|X \cap \mathbb{Z}^d| = \infty$.

Question

What can one say about $P(X \cap \mathbb{Z}^d) \subseteq \mathbb{R}^s$?

• When is it dense? (conditions on P and X?)

Consider the following:

- $P : \mathbb{R}^d \to \mathbb{R}^s$ a polynomial map.
- $X \subseteq \mathbb{R}^d$ defined over \mathbb{Q} such that $\left| X \cap \mathbb{Z}^d \right| = \infty$.

Question

What can one say about $P(X \cap \mathbb{Z}^d) \subseteq \mathbb{R}^s$?

• When is it dense? (conditions on P and X?)

$X=\mathbb{R}^d,\ P=(L_1,\ldots,L_s)$ a linear map.

• If s < d and $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all i, then $\overline{P(\mathbb{Z}^d)} = \mathbb{R}^s$.

• Classical.

$X = \mathbb{R}^d, P$ a quadratic form.

If d > 2 and P is indefinite, non degenerate, not a multiple of a rational form, then P(Z^d) = ℝ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$X = \mathbb{R}^d, \ P = (L_1, \dots, L_s)$ a linear map.

• If s < d and $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all i, then $\overline{P(\mathbb{Z}^d)} = \mathbb{R}^s$.

• Classical.

$X = \mathbb{R}^d$, *P* a quadratic form.

If d > 2 and P is indefinite, non degenerate, not a multiple of a rational form, then P(Z^d) = ℝ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$X = \mathbb{R}^d, \ P = (L_1, \dots, L_s)$ a linear map.

• If s < d and $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all i, then $\overline{P(\mathbb{Z}^d)} = \mathbb{R}^s$.

• Classical.

$X = \mathbb{R}^d, P$ a quadratic form.

If d > 2 and P is indefinite, non degenerate, not a multiple of a rational form, then P(Z^d) = ℝ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$X=\mathbb{R}^d,\ P=(L_1,\ldots,L_s)$ a linear map.

• If s < d and $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all i, then $\overline{P(\mathbb{Z}^d)} = \mathbb{R}^s$.

• Classical.

$X = \mathbb{R}^d, P$ a quadratic form.

If d > 2 and P is indefinite, non degenerate, not a multiple of a rational form, then P(Z^d) = ℝ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$X=\mathbb{R}^d,\ P=(L_1,\ldots,L_s)$ a linear map.

• If s < d and $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all i, then $\overline{P(\mathbb{Z}^d)} = \mathbb{R}^s$.

Classical.

$X = \mathbb{R}^d$, P a quadratic form.

If d > 2 and P is indefinite, non degenerate, not a multiple of a rational form, then P(Z^d) = ℝ.

$X=\mathbb{R}^d,\ P=(L_1,\ldots,L_s)$ a linear map.

- If s < d and $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all i, then $\overline{P(\mathbb{Z}^d)} = \mathbb{R}^s$.
- Classical.

$X = \mathbb{R}^d$, *P* a quadratic form.

If d > 2 and P is indefinite, non degenerate, not a multiple of a rational form, then P(Z^d) = ℝ.

$X=\mathbb{R}^d,\ P=(L_1,\ldots,L_s)$ a linear map.

- If s < d and $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all i, then $\overline{P(\mathbb{Z}^d)} = \mathbb{R}^s$.
- Classical.

$X = \mathbb{R}^d$, *P* a quadratic form.

If d > 2 and P is indefinite, non degenerate, not a multiple of a rational form, then P(Z^d) = ℝ.

Q: ℝ^d → ℝ, indefinite quadratic form, non degenerate, rational coefficients.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $M = (L_1, \ldots, L_s) : \mathbb{R}^d \to \mathbb{R}^s$, linear map.
- $X_a(\mathbb{K}) = \{x \in \mathbb{K}^d : Q(x) = a\}.$ ($\mathbb{K} = \mathbb{Z}$ or \mathbb{R})
- Take $a \in \mathbb{Q}$ such that $|X_a(\mathbb{Z})| = \infty$.

Theorem (1. (0.S 2012))

lf

-) d > 2s and rank $\left(Q|_{Ker(M)}
 ight)$ > 2,
- $Q|_{Ker(M)}$ is indefinite,
- (a) $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all *i*.

• $Q: \mathbb{R}^d \to \mathbb{R}$, indefinite quadratic form, non degenerate, rational coefficients.

•
$$M = (L_1, \ldots, L_s) : \mathbb{R}^d \to \mathbb{R}^s$$
, linear map.

- $X_a(\mathbb{K}) = \{x \in \mathbb{K}^d : Q(x) = a\}.$ ($\mathbb{K} = \mathbb{Z}$ or \mathbb{R})
- Take $a \in \mathbb{Q}$ such that $|X_a(\mathbb{Z})| = \infty$.

Theorem (1. (0.S 2012))

lf

- **)** d > 2s and $rank(Q|_{Ker(M)}) > 2$,
- $Q|_{Ker(M)}$ is indefinite,
- (a) $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all *i*.

Q: ℝ^d → ℝ, indefinite quadratic form, non degenerate, rational coefficients.

- $M = (L_1, \ldots, L_s) : \mathbb{R}^d \to \mathbb{R}^s$, linear map.
- $X_a(\mathbb{K}) = \{x \in \mathbb{K}^d : Q(x) = a\}.$ ($\mathbb{K} = \mathbb{Z}$ or \mathbb{R})
- Take $a \in \mathbb{Q}$ such that $|X_a(\mathbb{Z})| = \infty$.

Theorem (1. (0.S 2012))

lf

-) d > 2s and rank $\left(Q|_{Ker(M)}
 ight)$ > 2,
- $Q|_{Ker(M)}$ is indefinite,
- (a) $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all *i*.

Q: ℝ^d → ℝ, indefinite quadratic form, non degenerate, rational coefficients.

•
$$M = (L_1, \ldots, L_s) : \mathbb{R}^d \to \mathbb{R}^s$$
, linear map.

•
$$X_a(\mathbb{K}) = \{x \in \mathbb{K}^d : Q(x) = a\}.$$
 ($\mathbb{K} = \mathbb{Z}$ or \mathbb{R})

• Take $a \in \mathbb{Q}$ such that $|X_a(\mathbb{Z})| = \infty$.

Theorem (1. (0.S 2012))

lf

- In d>2s and $rank\left(Q|_{Ker(M)}
 ight) >2,$
- $Q|_{Ker(M)}$ is indefinite,
- (a) $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all *i*.

Q: ℝ^d → ℝ, indefinite quadratic form, non degenerate, rational coefficients.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$M = (L_1, \ldots, L_s) : \mathbb{R}^d \to \mathbb{R}^s$$
, linear map.

• $X_a(\mathbb{K}) = \{x \in \mathbb{K}^d : Q(x) = a\}.$ ($\mathbb{K} = \mathbb{Z}$ or \mathbb{R})

• Take
$$a \in \mathbb{Q}$$
 such that $|X_a(\mathbb{Z})| = \infty$.

Theorem (1. (0.S 2012))

lf

- In d>2s and $rank\left(Q|_{Ker(M)}
 ight) >2,$
- $Q|_{Ker(M)}$ is indefinite,
- (a) $\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$ unless $\alpha_i = 0$ for all *i*.

• $Q: \mathbb{R}^d \to \mathbb{R}$, indefinite quadratic form, non degenerate, rational coefficients.

•
$$M = (L_1, \ldots, L_s) : \mathbb{R}^d \to \mathbb{R}^s$$
, linear map.

•
$$X_a(\mathbb{K}) = \{x \in \mathbb{K}^d : Q(x) = a\}.$$
 ($\mathbb{K} = \mathbb{Z}$ or \mathbb{R})

• Take
$$a \in \mathbb{Q}$$
 such that $|X_a(\mathbb{Z})| = \infty$.

Theorem (1. (O.S 2012))

lf

9
$$d>2s$$
 and $rank\left(Q|_{Ker(M)}
ight)>2$,

$$Q |_{Ker(M)}$$
 is indefinite,

3
$$\alpha_1 L_1 + \dots + \alpha_s L_s \notin \mathbb{Q}$$
 unless $\alpha_i = 0$ for all *i*.

- d > 2s probably not necessary. (d > s + 2 should work??)
- rank (Q|_{Ker(M)}) > 2 is probably necessary although so far no counterexamples?
- $Q|_{\text{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact which is necessary.

• d > 2s probably not necessary. (d > s + 2 should work??)

- rank (Q|_{Ker(M)}) > 2 is probably necessary although so far no counterexamples?
- $Q|_{\text{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact which is necessary.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- d > 2s probably not necessary. (d > s + 2 should work??)
- rank $(Q|_{\text{Ker}(M)}) > 2$ is probably necessary although so far no counterexamples?
- $Q|_{\text{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact which is necessary.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- d > 2s probably not necessary. (d > s + 2 should work??)
- rank (Q|_{Ker(M)}) > 2 is probably necessary although so far no counterexamples?
- $Q|_{\text{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact which is necessary.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- d > 2s probably not necessary. (d > s + 2 should work??)
- rank (Q|_{Ker(M)}) > 2 is probably necessary although so far no counterexamples?
- $Q|_{\text{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact which is necessary.

Today: Another Special Case (Quantification).

Theorem (2. (O.S 2012))

lf

- d > 2s and $rank(Q|_{Ker(M)}) = d s$,
- \bigcirc $Q|_{Ker(M)}$ has signature (r_1, r_2) where $r_1 \ge 1$ and $r_2 \ge 3$,
- $a_1L_1 + \dots + \alpha_sL_s \notin \mathbb{Q} \text{ unless } \alpha_i = 0 \text{ for all } i.$

Then there exists $C_0 > 0$ such that for all $\theta > 0$ there exists $T_0 > 0$ such that for all $T > T_0$ and $R \subseteq \mathbb{R}^s$ - compact with smooth boundary

$$(1-\theta) C_0 Vol(R) T^{d-s-2} \leq \left| \left\{ v \in \mathbb{Z}^d : Q(v) = a, M(v) \in R, \|v\| \leq T \right\} \right| \leq (1+\theta) C_0 Vol(R) T^{d-s-2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• C_0 is such that

 $C_0 \operatorname{Vol}(R) T^{d-s-2} \sim \operatorname{Vol}\left(X_a(\mathbb{R}) \cap \left\{v \in \mathbb{R}^d : M(v) \in R, \|v\| \le T\right\}\right)$

evaluated w.r.t the Haar measure on $X_a(\mathbb{R})$.

- The condition that $\operatorname{rank}(Q|_{\operatorname{Ker}(M)}) = d s$ should be able to be relaxed to $\operatorname{rank}(Q|_{\operatorname{Ker}(M)}) > 2$.
- The cases where $Q|_{\text{Ker}(M)}$ has signature (1,2) or (2,2) are 'exceptional and there are more integer points than expected by a factor of log T.

• C_0 is such that

$$C_0 \operatorname{Vol}(R) T^{d-s-2} \sim \operatorname{Vol}\left(X_a(\mathbb{R}) \cap \left\{v \in \mathbb{R}^d : M(v) \in R, \|v\| \leq T\right\}\right)$$

evaluated w.r.t the Haar measure on $X_a(\mathbb{R})$.

- The condition that $\operatorname{rank}(Q|_{\operatorname{Ker}(M)}) = d s$ should be able to be relaxed to $\operatorname{rank}(Q|_{\operatorname{Ker}(M)}) > 2$.
- The cases where $Q|_{\text{Ker}(M)}$ has signature (1,2) or (2,2) are 'exceptional and there are more integer points than expected by a factor of log T.

• C₀ is such that

$$C_0 \operatorname{Vol}(R) T^{d-s-2} \sim \operatorname{Vol}\left(X_a(\mathbb{R}) \cap \left\{v \in \mathbb{R}^d : M(v) \in R, \|v\| \leq T\right\}\right)$$

evaluated w.r.t the Haar measure on $X_a(\mathbb{R})$.

- The condition that $\operatorname{rank}(Q|_{\operatorname{Ker}(M)}) = d s$ should be able to be relaxed to $\operatorname{rank}(Q|_{\operatorname{Ker}(M)}) > 2$.
- The cases where $Q|_{\text{Ker}(M)}$ has signature (1,2) or (2,2) are 'exceptional and there are more integer points than expected by a factor of log T.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• C₀ is such that

$$C_0 \operatorname{Vol}(R) T^{d-s-2} \sim \operatorname{Vol}\left(X_a(\mathbb{R}) \cap \left\{v \in \mathbb{R}^d : M(v) \in R, \|v\| \leq T\right\}
ight)$$

evaluated w.r.t the Haar measure on $X_a(\mathbb{R})$.

- The condition that $\operatorname{rank}(Q|_{\operatorname{Ker}(M)}) = d s$ should be able to be relaxed to $\operatorname{rank}(Q|_{\operatorname{Ker}(M)}) > 2$.
- The cases where $Q|_{\text{Ker}(M)}$ has signature (1,2) or (2,2) are 'exceptional and there are more integer points than expected by a factor of log T.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \leq G$, generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G/\Gamma$, $\overline{Ux} = Fx$ for F a closed connected subgroup $U \leq F \leq G$.

• For our purpose, set:

► $G_Q = SO(Q)^\circ = \{g \in SL_d(\mathbb{R}) : Q(gx) = Q(x)\}^\circ$ - connected Lie group.

► $\Gamma_Q = G_Q \cap SL_d(\mathbb{Z})$ - lattice because Q is rational.

• $H_{Q,M} = \{g \in G_Q : M(gx) = M(x)\}.$

• Look at $H_{Q,M} \curvearrowright G_Q/\Gamma_Q$, if $H_{Q,M}$ is generated by 1-p unip. s.g then use Ratner!

• Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \leq G$, generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G/\Gamma$, $\overline{Ux} = Fx$ for F a closed connected subgroup $U \leq F \leq G$.

- For our purpose, set:
 - ► $G_Q = SO(Q)^o = \{g \in SL_d(\mathbb{R}) : Q(gx) = Q(x)\}^o$ connected Lie group.
 - ► $\Gamma_Q = G_Q \cap SL_d(\mathbb{Z})$ lattice because Q is rational.
 - $H_{Q,M} = \{g \in G_Q : M(gx) = M(x)\}.$
- Look at $H_{Q,M} \curvearrowright G_Q/\Gamma_Q$, if $H_{Q,M}$ is generated by 1-p unip. s.g then use Ratner!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \le G$, generated by 1-parameter unipotent subgroups. $\Gamma \le G$ a lattice. Then for all $x \in G/\Gamma$, $\overline{Ux} = Fx$ for *F* a closed connected subgroup $U \le F \le G$.

• For our purpose, set:

► $G_Q = SO(Q)^\circ = \{g \in SL_d(\mathbb{R}) : Q(gx) = Q(x)\}^\circ$ - connected Lie group.

- ► $\Gamma_Q = G_Q \cap SL_d(\mathbb{Z})$ lattice because Q is rational.
- $H_{Q,M} = \{g \in G_Q : M(gx) = M(x)\}.$
- Look at $H_{Q,M} \curvearrowright G_Q/\Gamma_Q$, if $H_{Q,M}$ is generated by 1-p unip. s.g then use Ratner!

• Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \le G$, generated by 1-parameter unipotent subgroups. $\Gamma \le G$ a lattice. Then for all $x \in G/\Gamma$, $\overline{Ux} = Fx$ for *F* a closed connected subgroup $U \le F \le G$.

• For our purpose, set:

► $G_Q = SO(Q)^\circ = \{g \in SL_d(\mathbb{R}) : Q(gx) = Q(x)\}^\circ$ - connected Lie group.

- ► $\Gamma_Q = G_Q \cap SL_d(\mathbb{Z})$ lattice because Q is rational.
- $H_{Q,M} = \{g \in G_Q : M(gx) = M(x)\}.$
- Look at $H_{Q,M} \curvearrowright G_Q/\Gamma_Q$, if $H_{Q,M}$ is generated by 1-p unip. s.g then use Ratner!

• Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \le G$, generated by 1-parameter unipotent subgroups. $\Gamma \le G$ a lattice. Then for all $x \in G/\Gamma$, $\overline{Ux} = Fx$ for *F* a closed connected subgroup $U \le F \le G$.

- For our purpose, set:
 - ► $G_Q = SO(Q)^o = \{g \in SL_d(\mathbb{R}) : Q(gx) = Q(x)\}^o$ connected Lie group.
 - ► $\Gamma_Q = G_Q \cap SL_d(\mathbb{Z})$ lattice because Q is rational.
 - $H_{Q,M} = \{g \in G_Q : M(gx) = M(x)\}.$
- Look at $H_{Q,M} \curvearrowright G_Q/\Gamma_Q$, if $H_{Q,M}$ is generated by 1-p unip. s.g then use Ratner!
Ideas about the proof of Theorem 1: Strategy.

• Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \le G$, generated by 1-parameter unipotent subgroups. $\Gamma \le G$ a lattice. Then for all $x \in G/\Gamma$, $\overline{Ux} = Fx$ for *F* a closed connected subgroup $U \le F \le G$.

- For our purpose, set:
 - ► $G_Q = SO(Q)^o = \{g \in SL_d(\mathbb{R}) : Q(gx) = Q(x)\}^o$ connected Lie group.
 - $\Gamma_Q = G_Q \cap SL_d(\mathbb{Z})$ lattice because Q is rational.
 - $H_{Q,M} = \{g \in G_Q : M(gx) = M(x)\}.$
- Look at $H_{Q,M} \curvearrowright G_Q/\Gamma_Q$, if $H_{Q,M}$ is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

• Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \le G$, generated by 1-parameter unipotent subgroups. $\Gamma \le G$ a lattice. Then for all $x \in G/\Gamma$, $\overline{Ux} = Fx$ for *F* a closed connected subgroup $U \le F \le G$.

- For our purpose, set:
 - ► $G_Q = SO(Q)^o = \{g \in SL_d(\mathbb{R}) : Q(gx) = Q(x)\}^o$ connected Lie group.
 - $\Gamma_Q = G_Q \cap SL_d(\mathbb{Z})$ lattice because Q is rational.
 - $H_{Q,M} = \{g \in G_Q : M(gx) = M(x)\}.$
- Look at H_{Q,M} → G_Q/Γ_Q, if H_{Q,M} is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

• Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \le G$, generated by 1-parameter unipotent subgroups. $\Gamma \le G$ a lattice. Then for all $x \in G/\Gamma$, $\overline{Ux} = Fx$ for *F* a closed connected subgroup $U \le F \le G$.

- For our purpose, set:
 - ► $G_Q = SO(Q)^o = \{g \in SL_d(\mathbb{R}) : Q(gx) = Q(x)\}^o$ connected Lie group.
 - $\Gamma_Q = G_Q \cap SL_d(\mathbb{Z})$ lattice because Q is rational.
 - $H_{Q,M} = \{g \in G_Q : M(gx) = M(x)\}.$
- Look at $H_{Q,M} \curvearrowright G_Q/\Gamma_Q$, if $H_{Q,M}$ is generated by 1-p unip. s.g then use Ratner!

- An equivalence relation:
 - ► $(Q, M) \sim (Q', M') \iff \exists g_d \in GL_d(\mathbb{R}), g_s \in GL_s(\mathbb{R})$ such that $\forall x \in \mathbb{R}^d (Q(g_d x), g_s M(g_d x)) = (Q'(x), M'(x)).$
- To simplify, from now on take $M = M : \mathbb{R}^d \to \mathbb{R}^s$ such that s = 1 or rank $(Q|_{\text{Ker}(M)}) = d s$.

Theorem (Canonical Form

•
$$rank(Q|_{Ker(M)}) = d - s \text{ and } (Q, M) \sim (Q'(x_1, \ldots, x_s) + \sum_{i=s+1}^{p} x_i^2 - \sum_{i=p+1}^{d} x_i^2, (x_1, \ldots, x_s)) = (Q_1, M_1)$$

• $s = 1 \text{ and } (Q, M) \sim (2x_1x_d + \sum_{i=2}^{p} x_i^2 - \sum_{i=p+1}^{d-1} x_i^2, x_1) = (Q_2, M_2)$

• Note that in case 2. rank $(Q|_{\text{Ker}(M)}) = d - 2$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

• An equivalence relation:

- ▶ $(Q, M) \sim (Q', M') \iff \exists g_d \in GL_d(\mathbb{R}), g_s \in GL_s(\mathbb{R})$ such that $\forall x \in \mathbb{R}^d (Q(g_d x), g_s M(g_d x)) = (Q'(x), M'(x)).$
- To simplify, from now on take $M = M : \mathbb{R}^d \to \mathbb{R}^s$ such that s = 1 or rank $(Q|_{\text{Ker}(M)}) = d s$.

Theorem (Canonical Form

•
$$rank(Q|_{Ker(M)}) = d - s \text{ and } (Q, M) \sim$$

$$(Q'(x_1, \ldots, x_s) + \sum_{i=s+1}^{p} x_i^2 - \sum_{i=p+1}^{d} x_i^2, (x_1, \ldots, x_s)) = (Q_1, M_1)$$
• $s = 1 \text{ and } (Q, M) \sim (2x_1x_d + \sum_{i=2}^{p} x_i^2 - \sum_{i=p+1}^{d-1} x_i^2, x_1) = (Q_2, M_2)$

• An equivalence relation:

- ► $(Q, M) \sim (Q', M') \iff \exists g_d \in GL_d(\mathbb{R}), g_s \in GL_s(\mathbb{R})$ such that $\forall x \in \mathbb{R}^d (Q(g_d x), g_s M(g_d x)) = (Q'(x), M'(x)).$
- To simplify, from now on take $M = M : \mathbb{R}^d \to \mathbb{R}^s$ such that s = 1 or rank $(Q|_{\text{Ker}(M)}) = d s$.

Theorem (Canonical Form

•
$$rank(Q|_{Ker(M)}) = d - s \text{ and } (Q, M) \sim (Q'(x_1, \ldots, x_s) + \sum_{i=s+1}^{p} x_i^2 - \sum_{i=p+1}^{d} x_i^2, (x_1, \ldots, x_s)) = (Q_1, M_1)$$

• $s = 1 \text{ and } (Q, M) \sim (2x_1x_d + \sum_{i=2}^{p} x_i^2 - \sum_{i=p+1}^{d-1} x_i^2, x_1) = (Q_2, M_2)$

• Note that in case 2. rank $(Q|_{\text{Ker}(M)}) = d - 2$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへぐ

- An equivalence relation:
 - ► $(Q, M) \sim (Q', M') \iff \exists g_d \in GL_d(\mathbb{R}), g_s \in GL_s(\mathbb{R})$ such that $\forall x \in \mathbb{R}^d (Q(g_d x), g_s M(g_d x)) = (Q'(x), M'(x)).$
- To simplify, from now on take $M = M : \mathbb{R}^d \to \mathbb{R}^s$ such that s = 1 or rank $(Q|_{\text{Ker}(M)}) = d s$.

Theorem (Canonical Form

•
$$rank(Q|_{Ker(M)}) = d - s \text{ and } (Q, M) \sim$$

$$(Q'(x_1, \ldots, x_s) + \sum_{i=s+1}^{p} x_i^2 - \sum_{i=p+1}^{d} x_i^2, (x_1, \ldots, x_s)) = (Q_1, M_1)$$
• $s = 1 \text{ and } (Q, M) \sim (2x_1x_d + \sum_{i=2}^{p} x_i^2 - \sum_{i=p+1}^{d-1} x_i^2, x_1) = (Q_2, M_2)$

- An equivalence relation:
 - ► $(Q, M) \sim (Q', M') \iff \exists g_d \in GL_d(\mathbb{R}), g_s \in GL_s(\mathbb{R})$ such that $\forall x \in \mathbb{R}^d (Q(g_d x), g_s M(g_d x)) = (Q'(x), M'(x)).$
- To simplify, from now on take $M = M : \mathbb{R}^d \to \mathbb{R}^s$ such that s = 1 or rank $(Q|_{\text{Ker}(M)}) = d s$.

Theorem (Canonical Form)

a rank
$$(Q|_{Ker(M)}) = d - s$$
 and $(Q, M) \sim$

$$(Q'(x_1, \ldots, x_s) + \sum_{i=s+1}^{p} x_i^2 - \sum_{i=p+1}^{d} x_i^2, (x_1, \ldots, x_s)) = (Q_1, M_1)$$
a $s = 1$ and $(Q, M) \sim (2x_1x_d + \sum_{i=2}^{p} x_i^2 - \sum_{i=p+1}^{d-1} x_i^2, x_1) = (Q_2, M_2)$

- An equivalence relation:
 - ► $(Q, M) \sim (Q', M') \iff \exists g_d \in GL_d(\mathbb{R}), g_s \in GL_s(\mathbb{R})$ such that $\forall x \in \mathbb{R}^d (Q(g_d x), g_s M(g_d x)) = (Q'(x), M'(x)).$
- To simplify, from now on take $M = M : \mathbb{R}^d \to \mathbb{R}^s$ such that s = 1 or rank $(Q|_{\text{Ker}(M)}) = d s$.

Theorem (Canonical Form)

a rank
$$(Q|_{Ker(M)}) = d - s$$
 and $(Q, M) \sim$

$$(Q'(x_1, \ldots, x_s) + \sum_{i=s+1}^{p} x_i^2 - \sum_{i=p+1}^{d} x_i^2, (x_1, \ldots, x_s)) = (Q_1, M_1)$$
a $s = 1$ and $(Q, M) \sim (2x_1x_d + \sum_{i=2}^{p} x_i^2 - \sum_{i=p+1}^{d-1} x_i^2, x_1) = (Q_2, M_2)$

• Notation: $I_n - n \times n$ identity matrix, $I_{n_1,n_2} = \begin{pmatrix} I_{n_1} & 0 \\ 0 & -I_{n_2} \end{pmatrix}$.

• In case 1.

•
$$H_{Q_1,M_1} = \begin{pmatrix} I_s & 0 \\ 0 & SO(p-r_1,q-r_2) \end{pmatrix}.$$

• In case 2.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & SO(p-1,q-1) & 0 \\ 0 & 0 & 1 \end{pmatrix} \leq H_{Q_2,M_2}. \\ U = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ t & l_{d-2} & 0 \\ t^T l_{p-1q-1} t/2 & -t^T l_{p-1,q-1} & 1 \end{pmatrix} : t \in \mathbb{R}^{d-2} \right\} \leq H_{Q_2,M_2}.$$

• U is normalised by D and $UD = H_{Q_2, M_2}$.

• Notation: $I_n - n \times n$ identity matrix, $I_{n_1,n_2} = \begin{pmatrix} I_{n_1} & 0 \\ 0 & -I_{n_2} \end{pmatrix}$.

• In case 1.

•
$$H_{Q_1,M_1} = \begin{pmatrix} I_s & 0 \\ 0 & SO(p-r_1,q-r_2) \end{pmatrix}.$$

• In case 2.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & SO(p-1,q-1) & 0 \\ 0 & 0 & 1 \end{pmatrix} \leq H_{Q_2,M_2}. \\ U = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ t & l_{d-2} & 0 \\ t^T l_{p-1q-1} t/2 & -t^T l_{p-1,q-1} & 1 \end{pmatrix} : t \in \mathbb{R}^{d-2} \right\} \leq H_{Q_2,M_2}.$$

• U is normalised by D and $UD = H_{Q_2, M_2}$.

• Notation: $I_n - n \times n$ identity matrix, $I_{n_1,n_2} = \begin{pmatrix} I_{n_1} & 0 \\ 0 & -I_{n_2} \end{pmatrix}$.

• In case 1.

•
$$H_{Q_1,M_1} = \begin{pmatrix} I_s & 0 \\ 0 & SO(p-r_1,q-r_2) \end{pmatrix}.$$

• In case 2.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & SO(p-1,q-1) & 0 \\ 0 & 0 & 1 \end{pmatrix} \leq H_{Q_2,M_2}. \\ U = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ t & l_{d-2} & 0 \\ t^T l_{p-1q-1} t/2 & -t^T l_{p-1,q-1} & 1 \end{pmatrix} : t \in \mathbb{R}^{d-2} \right\} \leq H_{Q_2,M_2}.$$

• U is normalised by D and $UD = H_{Q_2, M_2}$.

• Notation: $I_n - n \times n$ identity matrix, $I_{n_1,n_2} = \begin{pmatrix} I_{n_1} & 0 \\ 0 & -I_{n_2} \end{pmatrix}$.

In case 1.

•
$$H_{Q_1,M_1} = \begin{pmatrix} I_s & 0 \\ 0 & SO(p-r_1,q-r_2) \end{pmatrix}.$$

In case 2.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & SO(p-1,q-1) & 0 \\ 0 & 0 & 1 \end{pmatrix} \leq H_{Q_2,M_2}.$$

$$U = \begin{cases} \begin{pmatrix} 1 & 0 & 0 \\ t & l_{d-2} & 0 \\ t^T l_{p-1q-1}t/2 & -t^T l_{p-1,q-1} & 1 \end{cases} : t \in \mathbb{R}^{d-2} \end{cases} \leq H_{Q_2,M_2}.$$

• U is normalised by D and $UD = H_{Q_2, M_2}$.

• Notation: $I_n - n \times n$ identity matrix, $I_{n_1,n_2} = \begin{pmatrix} I_{n_1} & 0 \\ 0 & -I_{n_2} \end{pmatrix}$.

In case 1.

•
$$H_{Q_1,M_1} = \begin{pmatrix} I_s & 0 \\ 0 & SO(p-r_1,q-r_2) \end{pmatrix}.$$

In case 2.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & SO(p-1,q-1) & 0 \\ 0 & 0 & 1 \end{pmatrix} \leq H_{Q_2,M_2}. \\ U = \begin{cases} \begin{pmatrix} 1 & 0 & 0 \\ t & I_{d-2} & 0 \\ t^T I_{p-1q-1} t/2 & -t^T I_{p-1,q-1} & 1 \end{pmatrix} : t \in \mathbb{R}^{d-2} \end{cases} \leq H_{Q_2,M_2}.$$

• U is normalised by D and $UD = H_{Q_2, M_2}$.

• Notation: $I_n - n \times n$ identity matrix, $I_{n_1,n_2} = \begin{pmatrix} I_{n_1} & 0 \\ 0 & -I_{n_2} \end{pmatrix}$.

In case 1.

•
$$H_{Q_1,M_1} = \begin{pmatrix} I_s & 0 \\ 0 & SO(p-r_1,q-r_2) \end{pmatrix}.$$

In case 2.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & SO(p-1,q-1) & 0 \\ 0 & 0 & 1 \end{pmatrix} \leq H_{Q_2,M_2}. \\ U = \begin{cases} \begin{pmatrix} 1 & 0 & 0 \\ t & I_{d-2} & 0 \\ t^T I_{p-1q-1} t/2 & -t^T I_{p-1,q-1} & 1 \end{pmatrix} : t \in \mathbb{R}^{d-2} \end{cases} \leq H_{Q_2,M_2}.$$

• U is normalised by D and $UD = H_{Q_2,M_2}$.

• Notation: $I_n - n \times n$ identity matrix, $I_{n_1,n_2} = \begin{pmatrix} I_{n_1} & 0 \\ 0 & -I_{n_2} \end{pmatrix}$.

In case 1.

•
$$H_{Q_1,M_1} = \begin{pmatrix} I_s & 0 \\ 0 & SO(p-r_1,q-r_2) \end{pmatrix}.$$

In case 2.

•
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & SO(p-1,q-1) & 0 \\ 0 & 0 & 1 \end{pmatrix} \le H_{Q_2,M_2}.$$

• $U = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ t & I_{d-2} & 0 \\ t^T I_{p-1q-1} t/2 & -t^T I_{p-1,q-1} & 1 \end{pmatrix} : t \in \mathbb{R}^{d-2} \right\} \le H_{Q_2,M_2}.$

• U is normalised by D and $UD = H_{Q_2, M_2}$.

- The task now is to determine closed connected subgroups, F such that $H_{Q,M} \leq F \leq G_Q$.
- In case 1, if s is relatively large there are quite a few possibilities for F. • In case 2. Let $A = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & l_{d-2} & 0 \\ 0 & 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R} \setminus \{0\} \right\}.$

A D N A 目 N A E N A E N A B N A C N

• Then $F = H_{Q,M}$, $F = gAH_{Q_2,M_2}g^{-1}$ or $F = G_Q$.

▶ Here $g \in GL_d(\mathbb{R})$ is such that $\forall x \in \mathbb{R}^d$, $(Q_2(gx), M_2(gx)) = (Q(x), M(x)).$

• The task now is to determine closed connected subgroups, F such that $H_{Q,M} \leq F \leq G_Q$.

• In case 1, if *s* is relatively large there are quite a few possibilities for *F*. • In case 2. Let $A = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & I_{d-2} & 0 \\ 0 & 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R} \setminus \{0\} \right\}.$

• Then $F = H_{Q,M}$, $F = gAH_{Q_2,M_2}g^{-1}$ or $F = G_Q$.

Here
$$g \in GL_d(\mathbb{R})$$
 is such that $\forall x \in \mathbb{R}^d$,
 $(Q_2(gx), M_2(gx)) = (Q(x), M(x)).$

- The task now is to determine closed connected subgroups, F such that $H_{Q,M} \leq F \leq G_Q$.
- In case 1, if s is relatively large there are quite a few possibilities for F.

• In case 2. Let
$$A = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & l_{d-2} & 0 \\ 0 & 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R} \setminus \{0\} \right\}.$$

• Then
$$F = H_{Q,M}$$
, $F = gAH_{Q_2,M_2}g^{-1}$ or $F = G_Q$.

Here $g \in GL_d(\mathbb{R})$ is such that $\forall x \in \mathbb{R}^d$, $(Q_2(gx), M_2(gx)) = (Q(x), M(x)).$

- The task now is to determine closed connected subgroups, F such that H_{Q,M} ≤ F ≤ G_Q.
- In case 1, if s is relatively large there are quite a few possibilities for F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• In case 2. Let
$$A = \left\{ \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & I_{d-2} & 0 \\ 0 & 0 & a^{-1} \end{array} \right) : a \in \mathbb{R} \setminus \{0\} \right\}$$

• Then $F = H_{Q,M}$, $F = gAH_{Q_2,M_2}g^{-1}$ or $F = G_Q$.

Here $g \in GL_d(\mathbb{R})$ is such that $\forall x \in \mathbb{R}^d$, $(Q_2(gx), M_2(gx)) = (Q(x), M(x)).$

- The task now is to determine closed connected subgroups, F such that $H_{Q,M} \leq F \leq G_Q$.
- In case 1, if *s* is relatively large there are quite a few possibilities for *F*. • In case 2. Let $A = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & l_{d-2} & 0 \\ 0 & a & -1 \end{pmatrix} : a \in \mathbb{R} \setminus \{0\} \right\}.$

$$\left(\left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right)^{-1} \right)^{-1} = \left(\left(\begin{array}{c} 0 \\ 0 \end{array} \right)^{-1} \right)^{-1} = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)^{-1} = \left(\begin{array}{c} 0$$

• Then
$$F = H_{Q,M}$$
, $F = gAH_{Q_2,M_2}g^{-1}$ or $F = G_Q$.

Here
$$g \in GL_d(\mathbb{R})$$
 is such that $\forall x \in \mathbb{R}^d$,
 $(Q_2(gx), M_2(gx)) = (Q(x), M(x)).$

- The task now is to determine closed connected subgroups, F such that $H_{Q,M} \leq F \leq G_Q$.
- In case 1, if s is relatively large there are quite a few possibilities for F. • In case 2. Let $A = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & I_{d-2} & 0 \\ 0 & 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R} \setminus \{0\} \right\}.$

• Then
$$F = H_{Q,M}$$
, $F = gAH_{Q_2,M_2}g^{-1}$ or $F = G_Q$.

► Here $g \in GL_d(\mathbb{R})$ is such that $\forall x \in \mathbb{R}^d$, $(Q_2(gx), M_2(gx)) = (Q(x), M(x)).$

Show that, if V is an F invariant subspace of dimension smaller than d − s, then V is defined over Q.

- ▶ This works, by using the fact that $H_{Q,M} \leq F$ and so any F invariant subspace must be $H_{Q,M}$ invariant.
- Leads to two types of F invariant subspaces:
 - ***** those contained in $\langle x_1, \ldots, x_s \rangle$
 - ***** those that contain $\langle x_{s+1}, \ldots, x_d \rangle$
- The assumption that d > 2s means the latter type have dimension larger than d s.
- ► The former type will be fixed by Aut (C/Q) and hence defined over Q. (Assumption that d > 2s is needed).

Show that, if V is an F invariant subspace of dimension smaller than d − s, then V is defined over Q.

- ► This works, by using the fact that H_{Q,M} ≤ F and so any F invariant subspace must be H_{Q,M} invariant.
- Leads to two types of F invariant subspaces:
 - ***** those contained in $\langle x_1, \ldots, x_s \rangle$
 - ***** those that contain $\langle x_{s+1}, \ldots, x_d \rangle$
- The assumption that d > 2s means the latter type have dimension larger than d s.
- ► The former type will be fixed by Aut (C/Q) and hence defined over Q. (Assumption that d > 2s is needed).

- Show that, if V is an F invariant subspace of dimension smaller than d − s, then V is defined over Q.
 - ▶ This works, by using the fact that $H_{Q,M} \leq F$ and so any F invariant subspace must be $H_{Q,M}$ invariant.
 - Leads to two types of F invariant subspaces:
 - ***** those contained in $\langle x_1, \ldots, x_s \rangle$
 - * those that contain $\langle x_{s+1}, \ldots, x_d \rangle$
 - The assumption that d > 2s means the latter type have dimension larger than d s.
 - ► The former type will be fixed by Aut (C/Q) and hence defined over Q. (Assumption that d > 2s is needed).

- Show that, if V is an F invariant subspace of dimension smaller than d − s, then V is defined over Q.
 - ► This works, by using the fact that H_{Q,M} ≤ F and so any F invariant subspace must be H_{Q,M} invariant.
 - Leads to two types of F invariant subspaces:
 - ★ those contained in $\langle x_1, \ldots, x_s \rangle$
 - ★ those that contain $\langle x_{s+1}, \ldots, x_d \rangle$
 - The assumption that d > 2s means the latter type have dimension larger than d s.
 - ► The former type will be fixed by Aut(C/Q) and hence defined over Q. (Assumption that d > 2s is needed).

- Show that, if V is an F invariant subspace of dimension smaller than d−s, then V is defined over Q.
 - ► This works, by using the fact that H_{Q,M} ≤ F and so any F invariant subspace must be H_{Q,M} invariant.
 - Leads to two types of F invariant subspaces:
 - ***** those contained in $\langle x_1, \ldots, x_s \rangle$
 - * those that contain $\langle x_{s+1}, \ldots, x_d \rangle$
 - The assumption that d > 2s means the latter type have dimension larger than d s.
 - ► The former type will be fixed by Aut (C/Q) and hence defined over Q. (Assumption that d > 2s is needed).

- Show that, if V is an F invariant subspace of dimension smaller than d−s, then V is defined over Q.
 - ► This works, by using the fact that H_{Q,M} ≤ F and so any F invariant subspace must be H_{Q,M} invariant.
 - Leads to two types of F invariant subspaces:
 - ***** those contained in $\langle x_1, \ldots, x_s \rangle$
 - * those that contain $\langle x_{s+1}, \ldots, x_d \rangle$
 - The assumption that d > 2s means the latter type have dimension larger than d s.
 - ► The former type will be fixed by Aut (C/Q) and hence defined over Q. (Assumption that d > 2s is needed).

- Consider case 2, in this case if *F* has a 1 dimensional invariant subspace it will be defined over \mathbb{Q} .
 - ► Clearly (L) is H_{Q,M} invariant, and also (check!) gAH_{Q2,M2}g⁻¹ invariant.
 - But $\langle L \rangle$ is not defined over \mathbb{Q} by the assumptions and so $F = G_Q$.
- In case 1, there are too many intermediate subgroups to go through case by case.
 - Clearly H_{Q,M} has invariant subspaces of dimension less than d − s not defined over Q, so F ≠ H_{Q,M}.
 - Show that F must contain a larger copy of $H_{Q,M}$, and continue this process inductively until $F = G_Q$. (Technical, involves looking at the Lie algebra of F)

- Consider case 2, in this case if F has a 1 dimensional invariant subspace it will be defined over Q.
 - ► Clearly (L) is H_{Q,M} invariant, and also (check!) gAH_{Q2,M2}g⁻¹ invariant.
 - But $\langle L \rangle$ is not defined over \mathbb{Q} by the assumptions and so $F = G_Q$.
- In case 1, there are too many intermediate subgroups to go through case by case.
 - Clearly H_{Q,M} has invariant subspaces of dimension less than d − s not defined over Q, so F ≠ H_{Q,M}.
 - Show that F must contain a larger copy of $H_{Q,M}$, and continue this process inductively until $F = G_Q$. (Technical, involves looking at the Lie algebra of F)

- Consider case 2, in this case if F has a 1 dimensional invariant subspace it will be defined over Q.
 - ► Clearly $\langle L \rangle$ is $H_{Q,M}$ invariant, and also (check!) $gAH_{Q_2,M_2}g^{-1}$ invariant.
 - But $\langle L \rangle$ is not defined over \mathbb{Q} by the assumptions and so $F = G_Q$.
- In case 1, there are too many intermediate subgroups to go through case by case.
 - Clearly H_{Q,M} has invariant subspaces of dimension less than d − s not defined over Q, so F ≠ H_{Q,M}.
 - Show that F must contain a larger copy of $H_{Q,M}$, and continue this process inductively until $F = G_Q$. (Technical, involves looking at the Lie algebra of F)

- Consider case 2, in this case if F has a 1 dimensional invariant subspace it will be defined over Q.
 - ► Clearly $\langle L \rangle$ is $H_{Q,M}$ invariant, and also (check!) $gAH_{Q_2,M_2}g^{-1}$ invariant.
 - But $\langle L \rangle$ is not defined over \mathbb{Q} by the assumptions and so $F = G_Q$.
- In case 1, there are too many intermediate subgroups to go through case by case.
 - Clearly H_{Q,M} has invariant subspaces of dimension less than d − s not defined over Q, so F ≠ H_{Q,M}.
 - Show that F must contain a larger copy of $H_{Q,M}$, and continue this process inductively until $F = G_Q$. (Technical, involves looking at the Lie algebra of F)

- Consider case 2, in this case if F has a 1 dimensional invariant subspace it will be defined over Q.
 - ► Clearly $\langle L \rangle$ is $H_{Q,M}$ invariant, and also (check!) $gAH_{Q_2,M_2}g^{-1}$ invariant.
 - But $\langle L \rangle$ is not defined over \mathbb{Q} by the assumptions and so $F = G_Q$.
- In case 1, there are too many intermediate subgroups to go through case by case.
 - Clearly H_{Q,M} has invariant subspaces of dimension less than d − s not defined over Q, so F ≠ H_{Q,M}.
 - Show that F must contain a larger copy of $H_{Q,M}$, and continue this process inductively until $F = G_Q$. (Technical, involves looking at the Lie algebra of F)

- Consider case 2, in this case if F has a 1 dimensional invariant subspace it will be defined over Q.
 - ► Clearly $\langle L \rangle$ is $H_{Q,M}$ invariant, and also (check!) $gAH_{Q_2,M_2}g^{-1}$ invariant.
 - But $\langle L \rangle$ is not defined over \mathbb{Q} by the assumptions and so $F = G_Q$.
- In case 1, there are too many intermediate subgroups to go through case by case.
 - Clearly H_{Q,M} has invariant subspaces of dimension less than d − s not defined over Q, so F ≠ H_{Q,M}.
 - Show that F must contain a larger copy of $H_{Q,M}$, and continue this process inductively until $F = G_Q$. (Technical, involves looking at the Lie algebra of F)

- Consider case 2, in this case if F has a 1 dimensional invariant subspace it will be defined over Q.
 - ► Clearly $\langle L \rangle$ is $H_{Q,M}$ invariant, and also (check!) $gAH_{Q_2,M_2}g^{-1}$ invariant.
 - But $\langle L \rangle$ is not defined over \mathbb{Q} by the assumptions and so $F = G_Q$.
- In case 1, there are too many intermediate subgroups to go through case by case.
 - Clearly H_{Q,M} has invariant subspaces of dimension less than d − s not defined over Q, so F ≠ H_{Q,M}.
 - Show that F must contain a larger copy of $H_{Q,M}$, and continue this process inductively until $F = G_Q$. (Technical, involves looking at the Lie algebra of F)

Final proof.

- $\overline{\{M(x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}}$ because M is $H_{Q,M}$ invariant.
- $\overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}\Gamma_Qx): x \in X_a(\mathbb{Z})\}}$ because $X_a(\mathbb{Z})$ is Γ_Q invariant.
- $\overline{\{M(H_{Q,M}\Gamma_Q x) : x \in X_a(\mathbb{Z})\}} \supseteq \{M(Fx) : x \in X_a(\mathbb{Z})\}$ by using Ratner's Theorem.
- {M(Fx) : x ∈ X_a(ℤ)} = {M(G_Qx) : x ∈ X_a(ℤ)} from our earlier discussion.
- $\{M(G_Q x) : x \in X_a(\mathbb{Z})\} = \{M(x) : x \in X_a(\mathbb{R})\}$ because G_Q acts transitively on $X_a(\mathbb{R})$.
- {M(x): x ∈ X_a(ℝ)} = ℝ because X_a(ℝ) ∩ {x ∈ ℝ^d : M(x) = b} is non compact for every b ∈ ℝ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
- $\overline{\{M(x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}}$ because M is $H_{Q,M}$ invariant.
- $\overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}\Gamma_Qx): x \in X_a(\mathbb{Z})\}}$ because $X_a(\mathbb{Z})$ is Γ_Q invariant.
- $\overline{\{M(H_{Q,M}\Gamma_Q x) : x \in X_a(\mathbb{Z})\}} \supseteq \{M(Fx) : x \in X_a(\mathbb{Z})\}$ by using Ratner's Theorem.
- {M(Fx) : x ∈ X_a(ℤ)} = {M(G_Qx) : x ∈ X_a(ℤ)} from our earlier discussion.
- $\{M(G_Q x) : x \in X_a(\mathbb{Z})\} = \{M(x) : x \in X_a(\mathbb{R})\}$ because G_Q acts transitively on $X_a(\mathbb{R})$.
- $\{M(x) : x \in X_a(\mathbb{R})\} = \mathbb{R}$ because $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact for every $b \in \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\overline{\{M(x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}}$ because M is $H_{Q,M}$ invariant.
- $\overline{\left\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\right\}} = \overline{\left\{M(H_{Q,M}\Gamma_Qx): x \in X_a(\mathbb{Z})\right\}} \text{ because } X_a(\mathbb{Z}) \text{ is } \Gamma_Q \text{ invariant.}$
- $\overline{\{M(H_{Q,M}\Gamma_Q x) : x \in X_a(\mathbb{Z})\}} \supseteq \{M(Fx) : x \in X_a(\mathbb{Z})\}$ by using Ratner's Theorem.
- {M(Fx) : x ∈ X_a(ℤ)} = {M(G_Qx) : x ∈ X_a(ℤ)} from our earlier discussion.
- $\{M(G_Q x) : x \in X_a(\mathbb{Z})\} = \{M(x) : x \in X_a(\mathbb{R})\}$ because G_Q acts transitively on $X_a(\mathbb{R})$.
- $\{M(x) : x \in X_a(\mathbb{R})\} = \mathbb{R}$ because $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact for every $b \in \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\overline{\{M(x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}}$ because M is $H_{Q,M}$ invariant.
- $\overline{\left\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\right\}} = \overline{\left\{M(H_{Q,M}\Gamma_Qx): x \in X_a(\mathbb{Z})\right\}} \text{ because } X_a(\mathbb{Z}) \text{ is } \Gamma_Q \text{ invariant.}$
- $\overline{\{M(H_{Q,M}\Gamma_Q x) : x \in X_a(\mathbb{Z})\}} \supseteq \{M(Fx) : x \in X_a(\mathbb{Z})\}$ by using Ratner's Theorem.
- {M(Fx) : x ∈ X_a(ℤ)} = {M(G_Qx) : x ∈ X_a(ℤ)} from our earlier discussion.
- $\{M(G_Q x) : x \in X_a(\mathbb{Z})\} = \{M(x) : x \in X_a(\mathbb{R})\}$ because G_Q acts transitively on $X_a(\mathbb{R})$.
- $\{M(x) : x \in X_a(\mathbb{R})\} = \mathbb{R}$ because $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact for every $b \in \mathbb{R}$.

- $\overline{\{M(x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}}$ because M is $H_{Q,M}$ invariant.
- $\overline{\left\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\right\}} = \overline{\left\{M(H_{Q,M}\Gamma_Qx): x \in X_a(\mathbb{Z})\right\}} \text{ because } X_a(\mathbb{Z}) \text{ is } \Gamma_Q \text{ invariant.}$
- $\overline{\{M(H_{Q,M}\Gamma_Q x) : x \in X_a(\mathbb{Z})\}} \supseteq \{M(Fx) : x \in X_a(\mathbb{Z})\}$ by using Ratner's Theorem.
- {M(Fx) : x ∈ X_a(ℤ)} = {M(G_Qx) : x ∈ X_a(ℤ)} from our earlier discussion.
- $\{M(G_Q x) : x \in X_a(\mathbb{Z})\} = \{M(x) : x \in X_a(\mathbb{R})\}$ because G_Q acts transitively on $X_a(\mathbb{R})$.
- $\{M(x) : x \in X_a(\mathbb{R})\} = \mathbb{R}$ because $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact for every $b \in \mathbb{R}$.

- $\overline{\{M(x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}}$ because M is $H_{Q,M}$ invariant.
- $\overline{\left\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\right\}} = \overline{\left\{M(H_{Q,M}\Gamma_Qx): x \in X_a(\mathbb{Z})\right\}} \text{ because } X_a(\mathbb{Z}) \text{ is } \Gamma_Q \text{ invariant.}$
- $\overline{\{M(H_{Q,M}\Gamma_Q x) : x \in X_a(\mathbb{Z})\}} \supseteq \{M(Fx) : x \in X_a(\mathbb{Z})\}$ by using Ratner's Theorem.
- {M(Fx) : x ∈ X_a(ℤ)} = {M(G_Qx) : x ∈ X_a(ℤ)} from our earlier discussion.
- $\{M(G_Q x) : x \in X_a(\mathbb{Z})\} = \{M(x) : x \in X_a(\mathbb{R})\}$ because G_Q acts transitively on $X_a(\mathbb{R})$.
- $\{M(x) : x \in X_a(\mathbb{R})\} = \mathbb{R}$ because $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact for every $b \in \mathbb{R}$.

- $\overline{\{M(x): x \in X_a(\mathbb{Z})\}} = \overline{\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\}}$ because M is $H_{Q,M}$ invariant.
- $\overline{\left\{M(H_{Q,M}x): x \in X_a(\mathbb{Z})\right\}} = \overline{\left\{M(H_{Q,M}\Gamma_Qx): x \in X_a(\mathbb{Z})\right\}} \text{ because } X_a(\mathbb{Z}) \text{ is } \Gamma_Q \text{ invariant.}$
- $\overline{\{M(H_{Q,M}\Gamma_Q x) : x \in X_a(\mathbb{Z})\}} \supseteq \{M(Fx) : x \in X_a(\mathbb{Z})\}$ by using Ratner's Theorem.
- {M(Fx) : x ∈ X_a(ℤ)} = {M(G_Qx) : x ∈ X_a(ℤ)} from our earlier discussion.
- $\{M(G_Q x) : x \in X_a(\mathbb{Z})\} = \{M(x) : x \in X_a(\mathbb{R})\}$ because G_Q acts transitively on $X_a(\mathbb{R})$.
- $\{M(x) : x \in X_a(\mathbb{R})\} = \mathbb{R}$ because $X_a(\mathbb{R}) \cap \{x \in \mathbb{R}^d : M(x) = b\}$ is non compact for every $b \in \mathbb{R}$.

Thank you for listening!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ