Distribution of Values on Quadratic Surfaces

O. Sargent

Groups Geometry and Dynamics, 2012

Motivation

Consider the following:

- $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ a polynomial map.
- $X \subseteq \mathbb{R}^{d}$ defined over \mathbb{Q} such that $\left|X \cap \mathbb{Z}^{d}\right|=\infty$.

Question

What can one say about $P\left(X \cap \mathbb{Z}^{d}\right) \subseteq \mathbb{R}^{s}$?

- When is it dense? (conditions on P and X ?)
- If it is dense, then exactly how dense?

Motivation

Consider the following:

- $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ a polynomial map.
- $X \subseteq \mathbb{R}^{d}$ defined over \mathbb{Q} such that $\left|X \cap \mathbb{Z}^{d}\right|=\infty$.

Question

What can one say about $P\left(X \cap \mathbb{Z}^{d}\right) \subseteq \mathbb{R}^{s}$?

- When is it dense? (conditions on P and X ?)
- If it is dense, then exactly how dense?

Motivation

Consider the following:

- $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ a polynomial map.
- $X \subseteq \mathbb{R}^{d}$ defined over \mathbb{Q} such that $\left|X \cap \mathbb{Z}^{d}\right|=\infty$.

Question

What can one say about $P\left(X \cap \mathbb{Z}^{d}\right) \subseteq \mathbb{R}^{s}$?

- When is it dense? (conditions on P and X ?)
- If it is dense, then exactly how dense?

Motivation

Consider the following:

- $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ a polynomial map.
- $X \subseteq \mathbb{R}^{d}$ defined over \mathbb{Q} such that $\left|X \cap \mathbb{Z}^{d}\right|=\infty$.

Question

What can one say about $P\left(X \cap \mathbb{Z}^{d}\right) \subseteq \mathbb{R}^{s}$?

- When is it dense? (conditions on P and X ?)
- If it is dense, then exactly how dense?

Motivation

Consider the following:

- $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ a polynomial map.
- $X \subseteq \mathbb{R}^{d}$ defined over \mathbb{Q} such that $\left|X \cap \mathbb{Z}^{d}\right|=\infty$.

Question

What can one say about $P\left(X \cap \mathbb{Z}^{d}\right) \subseteq \mathbb{R}^{s}$?

- When is it dense? (conditions on P and X ?)
- If it is dense, then exactly how dense?

Motivation

Consider the following:

- $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ a polynomial map.
- $X \subseteq \mathbb{R}^{d}$ defined over \mathbb{Q} such that $\left|X \cap \mathbb{Z}^{d}\right|=\infty$.

Question

What can one say about $P\left(X \cap \mathbb{Z}^{d}\right) \subseteq \mathbb{R}^{s}$?

- When is it dense? (conditions on P and X ?)
- If it is dense, then exactly how dense?

Motivation

Consider the following:

- $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ a polynomial map.
- $X \subseteq \mathbb{R}^{d}$ defined over \mathbb{Q} such that $\left|X \cap \mathbb{Z}^{d}\right|=\infty$.

Question

What can one say about $P\left(X \cap \mathbb{Z}^{d}\right) \subseteq \mathbb{R}^{s}$?

- When is it dense? (conditions on P and X ?)
- If it is dense, then exactly how dense?

Special Cases

$X=\mathbb{R}^{d}, P=\left(L_{1}, \ldots, L_{s}\right)$ a linear map.

- If $s<d$ and $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}^{s}$.
- Classical.

$X=\mathbb{R}^{d}, P$ a quadratic form.

- If $d>2$ and P is indefinite, non degenerate, not a multiple of a rational form, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}$.
- Oppenheim Conjecture, proved by G. Margulis in 1989.

Special Cases

$$
X=\mathbb{R}^{d}, P=\left(L_{1}, \ldots, L_{s}\right) \text { a linear map. }
$$

- If $s<d$ and $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}^{s}$.
- Classical.

$X=\mathbb{R}^{d}, P$ a quadratic form.

- If $d>2$ and P is indefinite, non degenerate, not a multiple of a rational form, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}$.
- Oppenheim Conjecture, proved by G. Margulis in 1989.

Special Cases

$$
X=\mathbb{R}^{d}, P=\left(L_{1}, \ldots, L_{s}\right) \text { a linear map. }
$$

- If $s<d$ and $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}^{s}$.

$X=\mathbb{R}^{d}, P$ a quadratic form.

- If $d>2$ and P is indefinite, non degenerate, not a multiple of a rational form, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}$.
- Oppenheim Conjecture, proved by G. Margulis in 1989.

Special Cases

$$
X=\mathbb{R}^{d}, P=\left(L_{1}, \ldots, L_{s}\right) \text { a linear map. }
$$

- If $s<d$ and $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}^{s}$.
- Classical.

$X=\mathbb{R}^{d}, P$ a quadratic form.

- If $d>2$ and P is indefinite, non degenerate, not a multiple of a rational form, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}$.
- Oppenheim Conjecture, proved by G. Margulis in 1989.

Special Cases

$$
X=\mathbb{R}^{d}, P=\left(L_{1}, \ldots, L_{s}\right) \text { a linear map. }
$$

- If $s<d$ and $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}^{s}$.
- Classical.
$X=\mathbb{R}^{d}, P$ a quadratic form.
- If $d>2$ and P is indefinite, non degenerate, not a multiple of a rational form, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}$.
- Oppenheim Conjecture, proved by G. Margulis in 1989.

Special Cases

$$
X=\mathbb{R}^{d}, P=\left(L_{1}, \ldots, L_{s}\right) \text { a linear map. }
$$

- If $s<d$ and $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}^{s}$.
- Classical.
$X=\mathbb{R}^{d}, P$ a quadratic form.
- If $d>2$ and P is indefinite, non degenerate, not a multiple of a rational form, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}$.
- Oppenheim Conjecture, proved by G. Margulis in 1989.

Special Cases

$$
X=\mathbb{R}^{d}, P=\left(L_{1}, \ldots, L_{s}\right) \text { a linear map. }
$$

- If $s<d$ and $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}^{s}$.
- Classical.

$X=\mathbb{R}^{d}, P$ a quadratic form.

- If $d>2$ and P is indefinite, non degenerate, not a multiple of a rational form, then $\overline{P\left(\mathbb{Z}^{d}\right)}=\mathbb{R}$.
- Oppenheim Conjecture, proved by G. Margulis in 1989.

Today: Another Special Case (Density).

- $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$, indefinite quadratic form, non degenerate, rational coefficients.
- $M=\left(L_{1}, \ldots, L_{s}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$, linear map.
${ }^{-X_{a}}(\mathbb{K})=\left\{x \in \mathbb{K}^{d}: Q(x)=a\right\} .(\mathbb{K}=\mathbb{Z}$ or $\mathbb{R})$
- Take $a \in \mathbb{Q}$ such that $\left|X_{a}(\mathbb{Z})\right|=\infty$.

Theorem (1. (O.S 2012))

If
(a) $d>2 s$ and $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$,
(2) $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite,
(3) $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i.

Then $M\left(X_{a}(\mathbb{Z})\right)=\mathbb{R}^{s}$.

Today: Another Special Case (Density).

- $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$, indefinite quadratic form, non degenerate, rational coefficients.
- $M=\left(L_{1}, \ldots, L_{s}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$, linear map.
- $X_{a}(\mathbb{K})=\left\{x \in \mathbb{K}^{d}: Q(x)=a\right\} .(\mathbb{K}=\mathbb{Z}$ or $\mathbb{R})$
- Take $a \in \mathbb{Q}$ such that $\left|X_{a}(\mathbb{Z})\right|=\infty$.

Today: Another Special Case (Density).

- $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$, indefinite quadratic form, non degenerate, rational coefficients.
- $M=\left(L_{1}, \ldots, L_{s}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$, linear map.
- $X_{a}(\mathbb{K})=\left\{x \in \mathbb{K}^{d}: Q(x)=a\right\} .(\mathbb{K}=\mathbb{Z}$ or $\mathbb{R})$
- Take $a \in \mathbb{Q}$ such that $\left|X_{a}(\mathbb{Z})\right|=\infty$.

Today: Another Special Case (Density).

- $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$, indefinite quadratic form, non degenerate, rational coefficients.
- $M=\left(L_{1}, \ldots, L_{s}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$, linear map.
- $X_{a}(\mathbb{K})=\left\{x \in \mathbb{K}^{d}: Q(x)=a\right\} .(\mathbb{K}=\mathbb{Z}$ or $\mathbb{R})$
- Take $a \in \mathbb{Q}$ such that $\left|X_{a}(\mathbb{Z})\right|=\infty$.

Today: Another Special Case (Density).

- $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$, indefinite quadratic form, non degenerate, rational coefficients.
- $M=\left(L_{1}, \ldots, L_{s}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$, linear map.
- $X_{a}(\mathbb{K})=\left\{x \in \mathbb{K}^{d}: Q(x)=a\right\} .(\mathbb{K}=\mathbb{Z}$ or $\mathbb{R})$
- Take $a \in \mathbb{Q}$ such that $\left|X_{a}(\mathbb{Z})\right|=\infty$.

Today: Another Special Case (Density).

- $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$, indefinite quadratic form, non degenerate, rational coefficients.
- $M=\left(L_{1}, \ldots, L_{s}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$, linear map.
- $X_{a}(\mathbb{K})=\left\{x \in \mathbb{K}^{d}: Q(x)=a\right\} .(\mathbb{K}=\mathbb{Z}$ or $\mathbb{R})$
- Take $a \in \mathbb{Q}$ such that $\left|X_{a}(\mathbb{Z})\right|=\infty$.

Theorem (1. (O.S 2012))

If
(1) $d>2 s$ and $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$,
(2) $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite,
(3) $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i.

Then $\overline{M\left(X_{a}(\mathbb{Z})\right)}=\mathbb{R}^{s}$.

Remarks about the conditions of Theorem 1.

- $d>2 s$ probably not necessary. $(d>s+2$ should work??)
- $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ is probably necessary although so far no counterexamples?
- $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_{a}(\mathbb{R}) \cap\left\{x \in \mathbb{R}^{d}: M(x)=b\right\}$ is non compact which is necessary.
- $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i is necessary.

Remarks about the conditions of Theorem 1.

- $d>2 s$ probably not necessary. ($d>s+2$ should work??)
- $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ is probably necessary although so far no counterexamples?
- $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_{a}(\mathbb{R}) \cap\left\{x \in \mathbb{R}^{d}: M(x)=b\right\}$ is non compact which is necessary
- $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i is necessary.

Remarks about the conditions of Theorem 1.

- $d>2 s$ probably not necessary. ($d>s+2$ should work??)
- $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ is probably necessary although so far no counterexamples?
- $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_{a}(\mathbb{R}) \cap\left\{x \in \mathbb{R}^{d}: M(x)=b\right\}$ is non compact which is necessary
- $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i is necessary.

Remarks about the conditions of Theorem 1.

- $d>2 s$ probably not necessary. $(d>s+2$ should work??)
- $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ is probably necessary although so far no counterexamples?
- $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_{a}(\mathbb{R}) \cap\left\{x \in \mathbb{R}^{d}: M(x)=b\right\}$ is non compact which is necessary.
- $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i is necessary.

Remarks about the conditions of Theorem 1.

- $d>2 s$ probably not necessary. $(d>s+2$ should work??)
- rank $\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ is probably necessary although so far no counterexamples?
- $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite is possibly too strong but it implies that $X_{a}(\mathbb{R}) \cap\left\{x \in \mathbb{R}^{d}: M(x)=b\right\}$ is non compact which is necessary.
- $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i is necessary.

Today: Another Special Case (Quantification).

Theorem (2. (O.S 2012))

If
(1) $d>2 s$ and $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$,
(2) $\left.Q\right|_{\operatorname{Ker}(M)}$ has signature $\left(r_{1}, r_{2}\right)$ where $r_{1} \geq 1$ and $r_{2} \geq 3$,
(3) $\alpha_{1} L_{1}+\cdots+\alpha_{s} L_{s} \notin \mathbb{Q}$ unless $\alpha_{i}=0$ for all i.

Then there exists $C_{0}>0$ such that for all $\theta>0$ there exists $T_{0}>0$ such that for all $T>T_{0}$ and $R \subseteq \mathbb{R}^{s}$ - compact with smooth boundary

$$
\begin{aligned}
& (1-\theta) C_{0} \operatorname{Vol}(R) T^{d-s-2} \leq \\
& \left|\left\{v \in \mathbb{Z}^{d}: Q(v)=a, M(v) \in R,\|v\| \leq T\right\}\right| \leq \\
& (1+\theta) C_{0} \operatorname{Vol}(R) T^{d-s-2}
\end{aligned}
$$

Remarks about the conditions of Theorem 2.

- C_{0} is such that
$C_{0} \operatorname{Vol}(R) T^{d-s-2} \sim \operatorname{Vol}\left(X_{a}(\mathbb{R}) \cap\left\{v \in \mathbb{R}^{d}: M(v) \in R,\|v\| \leq T\right\}\right)$
evaluated w.r.t the Haar measure on $X_{a}(\mathbb{R})$.
- The condition that rank $\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$ should be able to be relaxed to $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$.
- The cases where $\left.Q\right|_{\operatorname{Ker}(M)}$ has signature $(1,2)$ or $(2,2)$ are 'exceptional and there are more integer points than expected by a factor of $\log T$.

Remarks about the conditions of Theorem 2.

- C_{0} is such that
$C_{0} \operatorname{Vol}(R) T^{d-s-2} \sim \operatorname{Vol}\left(X_{a}(\mathbb{R}) \cap\left\{v \in \mathbb{R}^{d}: M(v) \in R,\|v\| \leq T\right\}\right)$
evaluated w.r.t the Haar measure on $X_{a}(\mathbb{R})$.
- The condition that $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$ should be able to be relaxed to $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$.
- The cases where $\left.Q\right|_{\operatorname{Ker}(M)}$ has signature $(1,2)$ or $(2,2)$ are 'exceptional and there are more integer points than expected by a factor of $\log T$

Remarks about the conditions of Theorem 2.

- C_{0} is such that
$C_{0} \operatorname{Vol}(R) T^{d-s-2} \sim \operatorname{Vol}\left(X_{a}(\mathbb{R}) \cap\left\{v \in \mathbb{R}^{d}: M(v) \in R,\|v\| \leq T\right\}\right)$
evaluated w.r.t the Haar measure on $X_{a}(\mathbb{R})$.
- The condition that $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$ should be able to be relaxed to $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$.
- The cases where $\left.Q\right|_{\operatorname{Ker}(M)}$ has signature $(1,2)$ or $(2,2)$ are 'exceptional and there are more integer points than expected by a factor of $\log T$.

Remarks about the conditions of Theorem 2.

- C_{0} is such that
$C_{0} \operatorname{Vol}(R) T^{d-s-2} \sim \operatorname{Vol}\left(X_{a}(\mathbb{R}) \cap\left\{v \in \mathbb{R}^{d}: M(v) \in R,\|v\| \leq T\right\}\right)$
evaluated w.r.t the Haar measure on $X_{a}(\mathbb{R})$.
- The condition that $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$ should be able to be relaxed to $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$.
- The cases where $\left.Q\right|_{\operatorname{Ker}(M)}$ has signature $(1,2)$ or $(2,2)$ are 'exceptional and there are more integer points than expected by a factor of $\log T$.

Ideas about the proof of Theorem 1: Strategy.

- Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U<G$, generated by 1-pararneter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G / \Gamma, \overline{U x}=F x$ for F a closed connected subgroup $U \leq F \leq G$.

- For our purpose, set:

$$
\begin{aligned}
& \text { - } G_{Q}=S O(Q)^{\circ}=\left\{g \in S L_{d}(\mathbb{R}): Q(g x)=Q(x)\right\}^{\circ} \text { - connected Lie group. } \\
& \text { - } \Gamma_{Q}=G_{Q} \cap S L_{d}(\mathbb{Z}) \text { - lattice because } Q \text { is rational. } \\
& \text { - } H_{Q, M}=\left\{g \in G_{Q}: M(g x)=M(x)\right\} .
\end{aligned}
$$

- Look at $H_{Q, M} \curvearrowright G_{Q} / \Gamma_{Q}$, if $H_{Q, M}$ is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

- Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U<G$. generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G / \Gamma, \overline{U x}=F x$ for F a closed connected subgroup $U \leq F \leq G$.

- For our purpose, set:

$$
\begin{aligned}
& \text { - } G_{Q}=S O(Q)^{\circ}=\left\{g \in S L_{d}(\mathbb{R}): Q(g x)=Q(x)\right\}^{\circ} \text { - connected Lie group. } \\
& \text { - } \Gamma_{Q}=G_{Q} \cap S L_{d}(\mathbb{Z}) \text { - lattice because } Q \text { is rational. } \\
& \text { - } H_{Q, M}=\left\{g \in G_{Q}: M(g x)=M(x)\right\} .
\end{aligned}
$$

- Look at $H_{Q, M} \curvearrowright G_{Q} / \Gamma_{Q}$, if $H_{Q, M}$ is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

- Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \leq G$, generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G / \Gamma, \overline{U x}=F x$ for F a closed connected subgroup $U \leq F \leq G$.

- Look at $H_{Q, M} \curvearrowright G_{Q} / \Gamma_{Q}$, if $H_{Q, M}$ is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

- Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \leq G$, generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G / \Gamma, \overline{U x}=F x$ for F a closed connected subgroup $U \leq F \leq G$.

- For our purpose, set:

```
* GQ =SO(Q)}={g\inS\mp@subsup{L}{d}{}(\mathbb{R}):Q(gx)=Q(x)\mp@subsup{}}{}{\circ}\mathrm{ - connected Lie group
- }\mp@subsup{\Gamma}{Q}{}=\mp@subsup{G}{Q}{}\capS\mp@subsup{L}{d}{}(\mathbb{Z})\mathrm{ - lattice because Q is rational.
= }\mp@subsup{H}{Q,M}{}={g\in\mp@subsup{G}{Q}{}:M(gx)=M(x)
```

- Look at $H_{Q, M} \curvearrowright G_{Q} / \Gamma_{Q}$, if $H_{Q, M}$ is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

- Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \leq G$, generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G / \Gamma, \overline{U x}=F x$ for F a closed connected subgroup $U \leq F \leq G$.

- For our purpose, set:
- $G_{Q}=S O(Q)^{0}=\left\{g \in S L_{d}(\mathbb{R}): Q(g x)=Q(x)\right\}^{0}$ - connected Lie group.
- $\Gamma_{Q}=G_{Q} \cap S L_{d}(\mathbb{Z})$ - lattice because Q is rational.
- Look at $H_{Q, M} \curvearrowright G_{Q} / \Gamma_{Q}$, if $H_{Q, M}$ is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

- Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \leq G$, generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G / \Gamma, \overline{U x}=F x$ for F a closed connected subgroup $U \leq F \leq G$.

- For our purpose, set:
- $G_{Q}=S O(Q)^{\circ}=\left\{g \in S L_{d}(\mathbb{R}): Q(g x)=Q(x)\right\}^{0}$ - connected Lie group.
- $\Gamma_{Q}=G_{Q} \cap S L_{d}(\mathbb{Z})$ - lattice because Q is rational.

- Look at $H_{Q, M} \curvearrowright G_{Q} / \Gamma_{Q}$, if $H_{Q, M}$ is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

- Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \leq G$, generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G / \Gamma, \overline{U x}=F x$ for F a closed connected subgroup $U \leq F \leq G$.

- For our purpose, set:
- $G_{Q}=S O(Q)^{0}=\left\{g \in S L_{d}(\mathbb{R}): Q(g x)=Q(x)\right\}^{0}$ - connected Lie group.
- $\Gamma_{Q}=G_{Q} \cap S L_{d}(\mathbb{Z})$ - lattice because Q is rational.
- $H_{Q, M}=\left\{g \in G_{Q}: M(g x)=M(x)\right\}$.
- Look at $H_{Q, M} \curvearrowright G_{Q} / \Gamma_{Q}$, if $H_{Q, M}$ is generated by 1-p unip. s.g then use Ratner!

Ideas about the proof of Theorem 1: Strategy.

- Use Ratner's Theorem.

Theorem (Ratner's Orbit closure Theorem, 1990)

G - connected Lie group. $U \leq G$, generated by 1-parameter unipotent subgroups. $\Gamma \leq G$ a lattice. Then for all $x \in G / \Gamma, \overline{U x}=F x$ for F a closed connected subgroup $U \leq F \leq G$.

- For our purpose, set:
- $G_{Q}=S O(Q)^{\circ}=\left\{g \in S L_{d}(\mathbb{R}): Q(g x)=Q(x)\right\}^{0}$ - connected Lie group.
- $\Gamma_{Q}=G_{Q} \cap S L_{d}(\mathbb{Z})$ - lattice because Q is rational.
- $H_{Q, M}=\left\{g \in G_{Q}: M(g x)=M(x)\right\}$.
- Look at $H_{Q, M} \curvearrowright G_{Q} / \Gamma_{Q}$, if $H_{Q, M}$ is generated by 1-p unip. s.g then use Ratner!

Canonical Form

- An equivalence relation:

$$
\begin{aligned}
& (Q M) \sim\left(Q^{\prime} M^{\prime}\right) \Longleftrightarrow g_{d} \in G L_{d}(\mathbb{R}), g_{s} \in G L_{s}(\mathbb{R}) \text { such that } \\
& \forall x \in \mathbb{R}^{d}\left(Q\left(g_{d} x\right), g_{s} M\left(g_{d} x\right)\right)=\left(Q^{\prime}(x), M^{\prime}(x)\right)
\end{aligned}
$$

- To simplify, from now on take $M=M: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ such that $s=1$ or $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$.

Theorem (Canonical Form)

(a) $\operatorname{rank}\left(\left.O\right|_{\text {Ker }(M)}\right)=d-s$ and (Q, M)

$$
\left(Q^{\prime}\left(x_{1}, \ldots, x_{s}\right)+\sum_{i=s+1}^{p} x_{i}^{2}-\sum_{i=p+1}^{d} x_{i}^{2},\left(x_{1}, \ldots, x_{s}\right)\right)=\left(Q_{1}, M_{1}\right)
$$

(2) $s=1$ and $(Q, M) \sim\left(2 x_{1} x_{d}+\sum_{i=2}^{p} x_{i}^{2}-\sum_{i=p+1}^{d-1} x_{i}^{2}, x_{1}\right)=\left(Q_{2}, M_{2}\right)$

- Note that in case 2. $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-2$.

Canonical Form

- An equivalence relation:
> - $(Q, M) \sim\left(Q^{\prime}, M^{\prime}\right) \Longleftrightarrow \exists g_{d} \in G L_{d}(\mathbb{R}), g_{s} \in G L_{s}(\mathbb{R})$ such that $\forall x \in \mathbb{R}^{d}\left(Q\left(g_{d} x\right), g_{s} M\left(g_{d} x\right)\right)=\left(Q^{\prime}(x), M^{\prime}(x)\right)$.
> - To simplify, from now on take $M=M: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ such that $s=1$ or $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$.

Theorem (Canonical Form)

(1) $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$ and $(Q, M) \sim$
$\left(Q^{\prime}\left(x_{1}, \ldots, x_{s}\right)+\sum_{i=s+1}^{p} x_{i}^{2}-\sum_{i=p+1}^{d} x_{i}^{2},\left(x_{1}, \ldots, x_{s}\right)\right)=\left(Q_{1}, M_{1}\right)$
(3) $s=1$ and $(Q, M) \sim\left(2 x_{1} x_{d}+\sum_{i=2}^{p} x_{i}^{2}-\sum_{i=p+1}^{d-1} x_{i}^{2}, x_{1}\right)=\left(Q_{2}, M_{2}\right)$

- Note that in case 2. $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-2$.

Canonical Form

- An equivalence relation:
- $(Q, M) \sim\left(Q^{\prime}, M^{\prime}\right) \Longleftrightarrow \exists g_{d} \in G L_{d}(\mathbb{R}), g_{s} \in G L_{s}(\mathbb{R})$ such that $\forall x \in \mathbb{R}^{d}\left(Q\left(g_{d} x\right), g_{s} M\left(g_{d} x\right)\right)=\left(Q^{\prime}(x), M^{\prime}(x)\right)$.
- To simplify, from now on take $M=M: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ such that $s=1$ or $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$.

Theorem (Canonical Form

- Note that in case 2. $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-2$.

Canonical Form

- An equivalence relation:
- $(Q, M) \sim\left(Q^{\prime}, M^{\prime}\right) \Longleftrightarrow \exists g_{d} \in G L_{d}(\mathbb{R}), g_{s} \in G L_{s}(\mathbb{R})$ such that $\forall x \in \mathbb{R}^{d}\left(Q\left(g_{d} x\right), g_{s} M\left(g_{d} x\right)\right)=\left(Q^{\prime}(x), M^{\prime}(x)\right)$.
- To simplify, from now on take $M=M: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ such that $s=1$ or $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$.

Theorem (Canonical Form

Canonical Form

- An equivalence relation:

$$
\begin{aligned}
& -(Q, M) \sim\left(Q^{\prime}, M^{\prime}\right) \Longleftrightarrow \exists g_{d} \in G L_{d}(\mathbb{R}), g_{s} \in G L_{s}(\mathbb{R}) \text { such that } \\
& \\
& \forall x \in \mathbb{R}^{d}\left(Q\left(g_{d} x\right), g_{s} M\left(g_{d} x\right)\right)=\left(Q^{\prime}(x), M^{\prime}(x)\right) .
\end{aligned}
$$

- To simplify, from now on take $M=M: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ such that $s=1$ or $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$.

Theorem (Canonical Form)

(1) $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$ and $(Q, M) \sim$ $\left(Q^{\prime}\left(x_{1}, \ldots, x_{s}\right)+\sum_{i=s+1}^{p} x_{i}^{2}-\sum_{i=p+1}^{d} x_{i}^{2},\left(x_{1}, \ldots, x_{s}\right)\right)=\left(Q_{1}, M_{1}\right)$
(2) $s=1$ and $(Q, M) \sim\left(2 x_{1} x_{d}+\sum_{i=2}^{p} x_{i}^{2}-\sum_{i=p+1}^{d-1} x_{i}^{2}, x_{1}\right)=\left(Q_{2}, M_{2}\right)$

- Note that in case 2. $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-2$.

Canonical Form

- An equivalence relation:

$$
\begin{aligned}
& -(Q, M) \sim\left(Q^{\prime}, M^{\prime}\right) \Longleftrightarrow \exists g_{d} \in G L_{d}(\mathbb{R}), g_{s} \in G L_{s}(\mathbb{R}) \text { such that } \\
& \\
& \forall x \in \mathbb{R}^{d}\left(Q\left(g_{d} x\right), g_{s} M\left(g_{d} x\right)\right)=\left(Q^{\prime}(x), M^{\prime}(x)\right) .
\end{aligned}
$$

- To simplify, from now on take $M=M: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ such that $s=1$ or $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$.

Theorem (Canonical Form)

(1) $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-s$ and $(Q, M) \sim$ $\left(Q^{\prime}\left(x_{1}, \ldots, x_{s}\right)+\sum_{i=s+1}^{p} x_{i}^{2}-\sum_{i=p+1}^{d} x_{i}^{2},\left(x_{1}, \ldots, x_{s}\right)\right)=\left(Q_{1}, M_{1}\right)$
(2) $s=1$ and $(Q, M) \sim\left(2 x_{1} x_{d}+\sum_{i=2}^{p} x_{i}^{2}-\sum_{i=p+1}^{d-1} x_{i}^{2}, x_{1}\right)=\left(Q_{2}, M_{2}\right)$

- Note that in case 2. $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)=d-2$.

What is $H_{Q, M}$?

- Notation: $I_{n}-n \times n$ identity matrix, $I_{n_{1}, n_{2}}=\left(\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right)$
- In case 1.
$=H_{Q_{1}, M_{1}}=\left(\begin{array}{cc}I_{S} & 0 \\ 0 & S O\left(p-r_{1}, q-r_{2}\right)\end{array}\right)$.
- In case 2.
$\begin{aligned} & D \\ & =\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & S O(p-1, q-1) & 0 \\ 0 & 0 & 1\end{array}\right) \leq H_{Q_{2}, M_{2}} . \\ & U=\left\{\left(\begin{array}{ccc}1 & 0 & 0 \\ t & l_{d-2} & 0 \\ t^{\top} /_{p-1 q-1} t / 2 & -t^{\top} /_{p-1, q-1} & 1\end{array}\right): t \in \mathbb{R}^{d-2}\right\} \leq H_{Q_{2}, M_{2}} .\end{aligned}$
- U is normalised by D and $U D=H_{Q_{2}, M_{2}}$.
- In either case, $H_{Q_{i}, M_{i}}$ is generated by 1-p uni. s.g, because of conditions that $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ and that $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite.

What is $H_{Q, M}$?

- Notation: $I_{n}-n \times n$ identity matrix, $I_{n_{1}, n_{2}}=\left(\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right)$.
- In case 1.

- In case 2.

- U is normalised by D and $U D=H_{Q_{2}, M_{2}}$.
- In either case, 'H Q_{i}, M_{i} is generated by 1-p unip. s.g, because of conditions that $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ and that $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite.

What is $H_{Q, M}$?

- Notation: $I_{n}-n \times n$ identity matrix, $I_{n_{1}, n_{2}}=\left(\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right)$.
- In case 1.
- $H_{Q_{1}, M_{1}}=\left(\begin{array}{cc}I_{s} & 0 \\ 0 & S O\left(p-r_{1}, q-r_{2}\right)\end{array}\right)$.
- In case 2.

- U is normalised by D and $U D=H_{Q_{2}, M_{2}}$.
- In either case, $H_{Q_{i} . M_{i}}$ is generated by 1-p unip. s.g, because of conditions that $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ and that $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite.

What is $H_{Q, M}$?

- Notation: $I_{n}-n \times n$ identity matrix, $I_{n_{1}, n_{2}}=\left(\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right)$.
- In case 1.

$$
\text { - } H_{Q_{1}, M_{1}}=\left(\begin{array}{cc}
I_{s} & 0 \\
0 & S O\left(p-r_{1}, q-r_{2}\right)
\end{array}\right) \text {. }
$$

- In case 2.

- U is normalised by D and $U D=H_{Q_{2}, M_{2}}$.
- In either case, $H_{Q_{i}, M_{i}}$ is generated by 1-p unip. s.g, because of conditions that $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ and that $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite.

What is $H_{Q, M}$?

- Notation: $I_{n}-n \times n$ identity matrix, $I_{n_{1}, n_{2}}=\left(\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right)$.
- In case 1.
- $H_{Q_{1}, M_{1}}=\left(\begin{array}{cc}I_{s} & 0 \\ 0 & S O\left(p-r_{1}, q-r_{2}\right)\end{array}\right)$.
- In case 2.
$\left.\left.\begin{array}{rl} & D\end{array} \quad \begin{array}{rl}1 & 0 \\ 0 & S O(p-1, q-1) \\ 0 & 0 \\ 0 & 0\end{array}\right) \leq H_{Q_{2}, M_{2}} . ~\left(\begin{array}{ccc}1 & 0 & 0 \\ t & I_{d-2} & 0 \\ t^{T} I_{p-1 q-1} t / 2 & -t^{\top} I_{p-1, q-1} & 1\end{array}\right): t \in \mathbb{R}^{d-2}\right\} \leq H_{Q_{2}, M_{2}}$.
- U is normalised by D and $U D=H_{Q_{2}, M_{2}}$.
- In either case, $H_{Q_{i}, M_{i}}$ is generated by 1-p unip. s.g, because of

What is $H_{Q, M}$?

- Notation: $I_{n}-n \times n$ identity matrix, $I_{n_{1}, n_{2}}=\left(\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right)$.
- In case 1.
- $H_{Q_{1}, M_{1}}=\left(\begin{array}{cc}I_{s} & 0 \\ 0 & S O\left(p-r_{1}, q-r_{2}\right)\end{array}\right)$.
- In case 2.
$\begin{aligned} & D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & S O(p-1, q-1) & 0 \\ 0 & 0 & 1\end{array}\right) \leq H_{Q_{2}, M_{2}} . \\ & \text { - } U=\left\{\left(\begin{array}{ccc}1 & 0 & 0 \\ t & I_{d-2} & 0 \\ t^{T} I_{p-1 q-1} t / 2 & -t^{T} I_{p-1, q-1} & 1\end{array}\right): t \in \mathbb{R}^{d-2}\right\} \leq H_{Q_{2}, M_{2}} .\end{aligned}$
- U is normalised by D and $U D=H_{Q_{2}, M_{2}}$.

What is $H_{Q, M}$?

- Notation: $I_{n}-n \times n$ identity matrix, $I_{n_{1}, n_{2}}=\left(\begin{array}{cc}I_{n_{1}} & 0 \\ 0 & -I_{n_{2}}\end{array}\right)$.
- In case 1.
- $H_{Q_{1}, M_{1}}=\left(\begin{array}{cc}I_{s} & 0 \\ 0 & S O\left(p-r_{1}, q-r_{2}\right)\end{array}\right)$.
- In case 2.
$\begin{aligned} & D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & S O(p-1, q-1) & 0 \\ 0 & 0 & 1\end{array}\right) \leq H_{Q_{2}, M_{2}} . \\ - & U=\left\{\left(\begin{array}{ccc}1 & 0 & 0 \\ t & I_{d-2} & 0 \\ t^{T} I_{p-1 q-1} t / 2 & -t^{\top} I_{p-1, q-1} & 1\end{array}\right): t \in \mathbb{R}^{d-2}\right\} \leq H_{Q_{2}, M_{2}} .\end{aligned}$
- U is normalised by D and $U D=H_{Q_{2}, M_{2}}$.
- In either case, $H_{Q_{i}, M_{i}}$ is generated by 1-p unip. s.g, because of conditions that $\operatorname{rank}\left(\left.Q\right|_{\operatorname{Ker}(M)}\right)>2$ and that $\left.Q\right|_{\operatorname{Ker}(M)}$ is indefinite.

Intermediate Subgroups.

- The task now is to determine closed connected subgroups, F such that $H_{Q, M} \leq F \leq G_{Q}$.
- In case 1, if s is relatively large there are quite a few possibilities for F.
- In case 2. Let $A=\left\{\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & I_{d-2} & 0 \\ 0 & 0 & a^{-1}\end{array}\right): a \in \mathbb{R} \backslash\{0\}\right\}$.
- Then $F=H_{Q, M}, F=g A H_{Q_{2}, M_{2}} g^{-1}$ or $F=G_{Q}$.
- Here $g \in G L_{d}(\mathbb{R})$ is such that $\forall x \in \mathbb{R}^{d}$, $\left(Q_{2}(g x), M_{2}(g x)\right)=(Q(x), M(x))$.

Intermediate Subgroups.

- The task now is to determine closed connected subgroups, F such that $H_{Q, M} \leq F \leq G_{Q}$.
- In case 1, if s is relatively large there are quite a few possibilities for F.

- Then $F=H_{Q, M}, F=g A H_{Q_{2}, M_{2}} g^{-1}$ or $F=G_{Q}$.
- Here $g \in G L_{d}(\mathbb{P})$ is such that $\forall x \in \mathbb{R}^{d}$ $\left(Q_{2}(g x), M_{2}(g x)\right)=(Q(x), M(x))$.

Intermediate Subgroups.

- The task now is to determine closed connected subgroups, F such that $H_{Q, M} \leq F \leq G_{Q}$.
- In case 1 , if s is relatively large there are quite a few possibilities for F.

- Then $F=H_{Q, M}, F=g A H_{Q_{2}, M_{2}} g^{-1}$ or $F=G_{Q}$.
- Here $g \in G I_{d}(\mathbb{R})$ is such that $\forall x \in \mathbb{R}^{d}$ $\left(Q_{2}(g x), M_{2}(g x)\right)=(Q(x), M(x))$.

Intermediate Subgroups.

- The task now is to determine closed connected subgroups, F such that $H_{Q, M} \leq F \leq G_{Q}$.
- In case 1 , if s is relatively large there are quite a few possibilities for F.
- In case 2. Let $A=\left\{\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & I_{d-2} & 0 \\ 0 & 0 & a^{-1}\end{array}\right): a \in \mathbb{R} \backslash\{0\}\right\}$.
- Then $F=H_{Q, M}, F=g A H_{Q_{2}, M_{2}} g^{-1}$ or $F=G_{Q}$.
$\begin{aligned}- & \text { Here } g \in G L_{d}(\mathbb{R}) \text { is such that } \forall x \in \mathbb{R}^{d} \\ & \left(Q_{2}(g x), M_{2}(g x)\right)=(Q(x), M(x)) .\end{aligned}$

Intermediate Subgroups.

- The task now is to determine closed connected subgroups, F such that $H_{Q, M} \leq F \leq G_{Q}$.
- In case 1 , if s is relatively large there are quite a few possibilities for F.
- In case 2. Let $A=\left\{\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & I_{d-2} & 0 \\ 0 & 0 & a^{-1}\end{array}\right): a \in \mathbb{R} \backslash\{0\}\right\}$.
- Then $F=H_{Q, M}, F=g A H_{Q_{2}, M_{2}} g^{-1}$ or $F=G_{Q}$.
$\begin{aligned}- & \text { Here } g \in G L_{d}(\mathbb{R}) \text { is such that } \forall x \in \mathbb{R}^{d} \\ & \left(Q_{2}(g x), M_{2}(g x)\right)=(Q(x), M(x)) .\end{aligned}$

Intermediate Subgroups.

- The task now is to determine closed connected subgroups, F such that $H_{Q, M} \leq F \leq G_{Q}$.
- In case 1 , if s is relatively large there are quite a few possibilities for F.
- In case 2. Let $A=\left\{\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & I_{d-2} & 0 \\ 0 & 0 & a^{-1}\end{array}\right): a \in \mathbb{R} \backslash\{0\}\right\}$.
- Then $F=H_{Q, M}, F=g A H_{Q_{2}, M_{2}} g^{-1}$ or $F=G_{Q}$.
- Here $g \in G L_{d}(\mathbb{R})$ is such that $\forall x \in \mathbb{R}^{d}$, $\left(Q_{2}(g x), M_{2}(g x)\right)=(Q(x), M(x))$.

F invariant subspaces.

- Show that, if V is an F invariant subspace of dimension smaller than $d-s$, then V is defined over \mathbb{Q}.
- This works, by using the fact that $H_{Q, M} \leq F$ and so any F invariant subspace must be $H_{Q, M}$ invariant.
- Leads to two types of F invariant subspaces:
\star those contained in $\left\langle x_{1}, \ldots, x_{s}\right\rangle$
\star those that contain $\left\langle x_{s+1}, \ldots, x_{d}\right\rangle$
- The assumption that $d>2 s$ means the latter type have dimension larger than $d-s$.
- The former type will be fixed by $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ and hence defined over \mathbb{Q}. (Assumption that $d>2 s$ is needed).

F invariant subspaces.

- Show that, if V is an F invariant subspace of dimension smaller than $d-s$, then V is defined over \mathbb{Q}.
- This works, by using the fact that $H_{Q, M} \leq F$ and so any F invariant subspace must be $H_{Q, M}$ invariant.
- Leads to two types of F invariant subspaces:
\star those contained in $\left\langle x_{1}, \ldots, x_{s}\right\rangle$
\star those that contain $\left\langle x_{s+1}, \ldots, x_{d}\right\rangle$
- The assumption that $d>2 s$ means the latter type have dimension larger than $d-s$.
* The former type will be fixed by $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ and hence defined over \mathbb{Q}. (Assumption that $d>2 s$ is needed).

F invariant subspaces.

- Show that, if V is an F invariant subspace of dimension smaller than $d-s$, then V is defined over \mathbb{Q}.
- This works, by using the fact that $H_{Q, M} \leq F$ and so any F invariant subspace must be $H_{Q, M}$ invariant.
- Leads to two types of F invariant subspaces:
\star those contained in $\left\langle x_{1}, \ldots, x_{s}\right\rangle$
* those that contain $\left\langle x_{s+1}, \ldots, x_{d}\right\rangle$
- The assumption that $d>2 s$ means the latter type have dimension larger than $d-s$.
- The former type will be fixed by $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ and hence defined over \mathbb{Q}. (Assumption that $d>2 s$ is needed).

F invariant subspaces.

- Show that, if V is an F invariant subspace of dimension smaller than $d-s$, then V is defined over \mathbb{Q}.
- This works, by using the fact that $H_{Q, M} \leq F$ and so any F invariant subspace must be $H_{Q, M}$ invariant.
- Leads to two types of F invariant subspaces:
\star those contained in $\left\langle x_{1}, \ldots, x_{s}\right\rangle$
\star those that contain $\left\langle x_{s+1}, \ldots, x_{d}\right\rangle$
- The assumption that $d>2 s$ means the latter type have dimension larger than $d-s$.
- The former type will be fixed by $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ and hence defined over \mathbb{Q}. (Assumption that $d>2 s$ is needed).

F invariant subspaces.

- Show that, if V is an F invariant subspace of dimension smaller than $d-s$, then V is defined over \mathbb{Q}.
- This works, by using the fact that $H_{Q, M} \leq F$ and so any F invariant subspace must be $H_{Q, M}$ invariant.
- Leads to two types of F invariant subspaces:
\star those contained in $\left\langle x_{1}, \ldots, x_{s}\right\rangle$
\star those that contain $\left\langle x_{s+1}, \ldots, x_{d}\right\rangle$
- The assumption that $d>2 s$ means the latter type have dimension larger than $d-s$.
- The former type will be fixed by $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ and hence defined over \mathbb{Q}. (Assumption that $d>2 s$ is needed).

F invariant subspaces.

- Show that, if V is an F invariant subspace of dimension smaller than $d-s$, then V is defined over \mathbb{Q}.
- This works, by using the fact that $H_{Q, M} \leq F$ and so any F invariant subspace must be $H_{Q, M}$ invariant.
- Leads to two types of F invariant subspaces:
\star those contained in $\left\langle x_{1}, \ldots, x_{s}\right\rangle$
\star those that contain $\left\langle x_{s+1}, \ldots, x_{d}\right\rangle$
- The assumption that $d>2 s$ means the latter type have dimension larger than $d-s$.
- The former type will be fixed by $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ and hence defined over \mathbb{Q}. (Assumption that $d>2 s$ is needed).

Which subgroups can actually occur.

- Consider case 2, in this case if F has a 1 dimensional invariant subspace it will be defined over \mathbb{Q}.
- Clearly $\langle L\rangle$ is $H_{Q, M}$ invariant, and also (check!) $g A H_{Q_{2}, M_{2}} g^{-1}$ invariant.
- But $\langle L\rangle$ is not defined over \mathbb{Q} by the assumptions and so $F=G_{Q}$.
- In case 1, there are too many intermediate subgroups to go through case by case.
- Clearly $H_{Q, M}$ has invariant subspaces of dimension less than $d-s$ not defined over \mathbb{Q}, so $F \neq H_{Q, M}$.
- Show that F must contain a larger copy of $H_{Q . M}$, and continue this process inductively until $F=G_{Q}$. (Technical, involves looking at the Lie algebra of F)

Which subgroups can actually occur.

- Consider case 2 , in this case if F has a 1 dimensional invariant subspace it will be defined over \mathbb{Q}.
- Clearly $\langle L\rangle$ is $H_{Q, M}$ invariant, and also (check!) $g A H_{Q_{2}, M_{2}} g^{-1}$ invariant.
- But $\langle L\rangle$ is not defined over \mathbb{Q} by the assumptions and so $F=G_{Q}$.
- In case 1, there are too many intermediate subgroups to go through case by case.
- Clearly $H_{Q, M}$ has invariant subspaces of dimension less than $d-s$ not defined over \mathbb{Q}, so $F \neq H_{Q, M}$.
- Show that F must contain a larger copy of $H_{Q . M}$, and continue this process inductively until $F=G_{Q}$. (Technical, involves looking at the Lie algebra of F)

Which subgroups can actually occur.

- Consider case 2 , in this case if F has a 1 dimensional invariant subspace it will be defined over \mathbb{Q}.
- Clearly $\langle L\rangle$ is $H_{Q, M}$ invariant, and also (check!) $g A H_{Q_{2}, M_{2}} g^{-1}$ invariant.
- But $\langle L\rangle$ is not defined over \mathbb{Q} by the assumptions and so $F=G_{Q}$.
- In case 1, there are too many intermediate subgroups to go through case by case.
- Clearly $H_{Q, M}$ has invariant subspaces of dimension less than $d-s$ not defined over \mathbb{Q}, so $F \neq H_{Q, M}$.
= Show that F must contain a larger copy of $H_{Q . M}$, and continue this process inductively until $F=G_{Q}$. (Technical, involves looking at the Lie algebra of F)

Which subgroups can actually occur.

- Consider case 2 , in this case if F has a 1 dimensional invariant subspace it will be defined over \mathbb{Q}.
- Clearly $\langle L\rangle$ is $H_{Q, M}$ invariant, and also (check!) $g A H_{Q_{2}, M_{2}} g^{-1}$ invariant.
- But $\langle L\rangle$ is not defined over \mathbb{Q} by the assumptions and so $F=G_{Q}$.
- In case 1, there are too many intermediate subgroups to go through case by case.
- Clearly $H_{Q, M}$ has invariant subspaces of dimension less than $d-s$ not defined over \mathbb{Q}, so $F \neq H_{Q, M}$.
= Show that F must contain a larger copy of $H_{Q . M}$, and continue this process inductively until $F=G_{Q}$. (Technical, involves looking at the Lie algebra of F)

Which subgroups can actually occur.

- Consider case 2 , in this case if F has a 1 dimensional invariant subspace it will be defined over \mathbb{Q}.
- Clearly $\langle L\rangle$ is $H_{Q, M}$ invariant, and also (check!) $g A H_{Q_{2}, M_{2}} g^{-1}$ invariant.
- But $\langle L\rangle$ is not defined over \mathbb{Q} by the assumptions and so $F=G_{Q}$.
- In case 1, there are too many intermediate subgroups to go through case by case.
- Clearly $H_{Q, M}$ has invariant subspaces of dimension less than $d-s$ not defined over \mathbb{Q}, so $F \neq H_{Q, M}$.
- Show that F must contain a larger copy of $H_{Q . M}$, and continue this process inductively until $F=G_{Q}$. (Technical, involves looking at the Lie algebra of F)

Which subgroups can actually occur.

- Consider case 2 , in this case if F has a 1 dimensional invariant subspace it will be defined over \mathbb{Q}.
- Clearly $\langle L\rangle$ is $H_{Q, M}$ invariant, and also (check!) $g A H_{Q_{2}, M_{2}} g^{-1}$ invariant.
- But $\langle L\rangle$ is not defined over \mathbb{Q} by the assumptions and so $F=G_{Q}$.
- In case 1, there are too many intermediate subgroups to go through case by case.
- Clearly $H_{Q, M}$ has invariant subspaces of dimension less than $d-s$ not defined over \mathbb{Q}, so $F \neq H_{Q, M}$.

Which subgroups can actually occur.

- Consider case 2 , in this case if F has a 1 dimensional invariant subspace it will be defined over \mathbb{Q}.
- Clearly $\langle L\rangle$ is $H_{Q, M}$ invariant, and also (check!) $g A H_{Q_{2}, M_{2}} g^{-1}$ invariant.
- But $\langle L\rangle$ is not defined over \mathbb{Q} by the assumptions and so $F=G_{Q}$.
- In case 1, there are too many intermediate subgroups to go through case by case.
- Clearly $H_{Q, M}$ has invariant subspaces of dimension less than $d-s$ not defined over \mathbb{Q}, so $F \neq H_{Q, M}$.
- Show that F must contain a larger copy of $H_{Q, M}$, and continue this process inductively until $F=G_{Q}$. (Technical, involves looking at the Lie algebra of F)

Final proof.

- $\overline{\left\{M(x): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} x\right): x \in X_{a}(\mathbb{Z})\right\}}$ because M is $H_{Q, M}$ invariant.
- $\overline{\left\{M\left(H_{Q, M} \times\right): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} \Gamma Q^{x}\right): x \in X_{a}(\mathbb{Z})\right\}}$ because $X_{a}(\mathbb{Z})$ is Γ_{Q} invariant.
- $\left\{M\left(H_{Q} M^{\Gamma} Q^{x}\right): x \in X_{a}(\mathbb{Z})\right\} \supseteq\left\{M(F X): x \in X_{a}(\mathbb{Z})\right\}$ by using Ratner's Theorem.
- $\left\{M(F x): x \in X_{a}(\mathbb{Z})\right\}=\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}$ from our earlier discussion.
- $\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}=\left\{M(x): x \in X_{a}(\mathbb{R})\right\}$ because G_{Q} acts transitively on $X_{a}(\mathbb{R})$.
- $\left\{M(x): x \in X_{a}(\mathbb{Q})\right\}-\mathbb{R}$ because $X_{a}(\mathbb{R}) \cap\left\{x \in \mathbb{R}^{d}: M(x)=b\right\}$ is non compact for every $b \in \mathbb{R}$.

Final proof.

- $\overline{\left\{M(x): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} x\right): x \in X_{a}(\mathbb{Z})\right\}}$ because M is $H_{Q, M}$ invariant.
- \{M($\left.H_{Q, M \times}\right)$ $X_{a}(\mathbb{Z})$ is Γ_{Q} invariant.
- $\left\{M\left(H_{Q, M}\left\lceil Q_{Q}\right): x \in X_{a}(\mathbb{Z})\right\} \supseteq\left\{M(F x): x \in X_{a}(\mathbb{Z})\right\}\right.$ by using Ratner's Theorem.
- $\left\{M(F x): x \in X_{a}(\mathbb{Z})\right\}=\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}$ from our earlier discussion.
- $\left\{M\left(G_{Q}\right): x \in X_{a}(\mathbb{Z})\right\}=\left\{M(x): x \in X_{a}(\mathbb{R})\right\}$ because G_{Q} acts transitively on $X_{a}(\mathbb{R})$.
- $\left\{M(x): x \in X_{a}(\mathbb{R})\right\}=\mathbb{R}$ because $X_{a}(\mathbb{R}) \cap\left\{x \in \mathbb{R}^{d}: M(x)=b\right\}$ is non compact for every $b \in \mathbb{R}$.

Final proof.

- $\overline{\left\{M(x): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} x\right): x \in X_{a}(\mathbb{Z})\right\}}$ because M is $H_{Q, M}$ invariant.
- $\overline{\left\{M\left(H_{Q, M^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}$ because $X_{a}(\mathbb{Z})$ is Γ_{Q} invariant.
- $\left\{M\left(H_{Q, M}\left\lceil Q^{x}\right): x \in X_{a}(\mathbb{Z})\right\} \supseteq\left\{M(F x): x \in X_{a}(\mathbb{Z})\right\}\right.$ by using Ratner's Theorem.
- $\left\{M\left(F_{X}\right): x \in X_{a}(\mathbb{Z})\right\}=\left\{M\left(G_{Q X}\right): x \in X_{a}(\mathbb{Z})\right\}$ from our earlier discussion.
- $\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}=\left\{M(x): x \in X_{a}(\mathbb{R})\right\}$ because G_{Q} acts transitively on $X_{a}(\mathbb{R})$.

Final proof.

- $\overline{\left\{M(x): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} x\right): x \in X_{a}(\mathbb{Z})\right\}}$ because M is $H_{Q, M}$ invariant.
- $\overline{\left\{M\left(H_{Q, M^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}$ because $X_{a}(\mathbb{Z})$ is Γ_{Q} invariant.
- $\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}} \supseteq\left\{M(F x): x \in X_{a}(\mathbb{Z})\right\}$ by using Ratner's Theorem.
 discussion.

Final proof.

- $\overline{\left\{M(x): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} x\right): x \in X_{a}(\mathbb{Z})\right\}}$ because M is $H_{Q, M}$ invariant.
- $\overline{\left\{M\left(H_{Q, M^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}$ because $X_{a}(\mathbb{Z})$ is Γ_{Q} invariant.
- $\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}} \supseteq\left\{M(F x): x \in X_{a}(\mathbb{Z})\right\}$ by using Ratner's Theorem.
- $\left\{M\left(F_{x}\right): x \in X_{a}(\mathbb{Z})\right\}=\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}$ from our earlier discussion.

Final proof.

- $\overline{\left\{M(x): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} x\right): x \in X_{a}(\mathbb{Z})\right\}}$ because M is $H_{Q, M}$ invariant.
- $\overline{\left\{M\left(H_{Q, M^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}$ because $X_{a}(\mathbb{Z})$ is Γ_{Q} invariant.
- $\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}} \supseteq\left\{M(F x): x \in X_{a}(\mathbb{Z})\right\}$ by using Ratner's Theorem.
- $\left\{M(F x): x \in X_{a}(\mathbb{Z})\right\}=\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}$ from our earlier discussion.
- $\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}=\left\{M(x): x \in X_{a}(\mathbb{R})\right\}$ because G_{Q} acts transitively on $X_{a}(\mathbb{R})$.

Final proof.

- $\overline{\left\{M(x): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} x\right): x \in X_{a}(\mathbb{Z})\right\}}$ because M is $H_{Q, M}$ invariant.
- $\overline{\left\{M\left(H_{Q, M^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}}=\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{x}}\right): x \in X_{a}(\mathbb{Z})\right\}}$ because $X_{a}(\mathbb{Z})$ is Γ_{Q} invariant.
- $\overline{\left\{M\left(H_{Q, M} \Gamma_{Q^{X}}\right): x \in X_{a}(\mathbb{Z})\right\}} \supseteq\left\{M\left(F_{X}\right): x \in X_{a}(\mathbb{Z})\right\}$ by using Ratner's Theorem.
- $\left\{M\left(F_{x}\right): x \in X_{a}(\mathbb{Z})\right\}=\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}$ from our earlier discussion.
- $\left\{M\left(G_{Q} x\right): x \in X_{a}(\mathbb{Z})\right\}=\left\{M(x): x \in X_{a}(\mathbb{R})\right\}$ because G_{Q} acts transitively on $X_{a}(\mathbb{R})$.
- $\left\{M(x): x \in X_{a}(\mathbb{R})\right\}=\mathbb{R}$ because $X_{a}(\mathbb{R}) \cap\left\{x \in \mathbb{R}^{d}: M(x)=b\right\}$ is non compact for every $b \in \mathbb{R}$.

Thanks!

Thank you for listening!

