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INTRODUCTION

These notes, written jointly by Angel Cano and José Seade, have been prepared for
the lectures of Seade at the “GROUPS, GEOMETRY AND DYNAMICS” School and
Discussion Meeting, to be held at the Center of Excellence in Mathematical Sciences of
the Kumaun University, at Almora, Uttarakhand, India, during December 3-16.

Our aim is to provide an introduction to the geometric and dynamical study of discrete
group actions on complex projective spaces, a subject that in dimension one goes back
to Poincaré and others, but which is in its childhood when we look at higher dimensions.
We refer to the bibliography in these notes, and to our recent monograph [10], for more
on this subject.

The first section provides a glimpse of the classical theory of Kleinian groups of isome-
tries of real hyperbolic spaces. That is our starting point and the paradigm of what comes
next. This paves the ground for the following sections.

In Section 2 we enter into the topic we aim to study in these lectures: The theory of
Complex Kleinian groups. These are by definition groups of holomorphic automorphisms
of complex projective spaces CPn. For n = 1 this coincides with the setting discussed in
Section 1, but in higher dimensions, new features appear. A significant difference between
complex dimension 1 and higher dimensions, comes from the role played by “the limit
set”. While in dimension 1 that concept is classical, this is not so in higher dimensions. It
turns out that the “limit set” introduced by R. Kulkarni in the late 1970s plays a key-role
in this discussion.

In Section 3 we discuss the classification of the elements in PSL(n+1,C), following the
classical classification of the elements in PSL(2,C) into elliptic, parabolic and loxodromic
transformations. The material in this section is based on work by A. Cano, L. Loeza and J.
P. Navarrete. We discuss here the geometry and dynamics of each type of transformations.
We know from Navarrete’s work that every elliptic or parabolic element in PSL(3,C) is
conjugate to (respectively) an elliptic or parabolic element in PU(2, 1), but there are new
types of loxodromic elements in PSL(3,C) that cannot exist in PU(2, 1). It is interesting
that when we come into higher dimensions, n > 2, the work of Cano and Loeza shows
that one also has parabolic elements in PSL(n + 1,C) which do not exist in PU(n, 1):
These are actually conjugate to parabolic elements in some projectivized group PU(k, l) ⊂
PSL(n+ 1,C).

Finally, Section 4 is a brief description of the structure of the Kulkarni limit set for
complex Kleinian subgroups of PSL(3,C). This is based on work, published and also in
progress, by A. Cano, W. Barrera, L. Loeza, J. P. Navarrete and J. Seade.

We are grateful to Krishnendu Gongopadhyay for inviting us to deliver these lectures,
thus giving us the opportunity to disseminate our work on this beautiful subject, which
is still full of interesting questions and research problems, waiting to be explored.
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1 KLEINIAN GROUPS IN REAL HYPERBOLIC

SPACE

1.1 Inversions and the Möbius group

The material in this section is all well-known and there is a vast literature about it. Two
general references for this section are Beardon’s book [2] and the excellent notes of M.
Kapovich [21].

Let us consider a classical type of transformations, which are analogous to reflections,
the inversions. Given a circle C = C(a, r) in the plane R2 with centre at a point a ∈ R2

and radius r, the inversion in C is the map ι = ι(a, r) of the 2-sphere S2 ∼= R̂2 := R2 ∪∞
defined for each z = (x, y) 6= a,∞ by:

ιa,r(x, y) = (a1, a2) +
r2

|(x, y)− (a1, a2)|2
(
x− a1, y − a2

)
;

define ι(a) = ∞ and ι(∞) = a. Notice that each z = (x, y) 6= a,∞ is carried into the
unique point z′ = (x′, y′) in the line determined by z and a which satisfies:

d(z, a) · d(z′, a) = r2 ,
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where d( , a) is the usual distance to a. We remark that for circles of maximal length (i.e.,
radius 1 in the 2-sphere) this map is just a reflection in the corresponding line in R2.

Notice this formula is easily adapted to describing inversions in (n − 1)-spheres in
Sn ∼= Rn ∪∞.

It is an exercise to show that inversions are conformal maps, i.e., they preserve angles.
That is, if two curves in S2 meet with an angle θ, then their images under an inversion
also meet with an angle θ. Moreover, one has that if C1 , C2 are circles in S2 and ι1 is the
inversion with respect to C1, then ι1(C2) = C2 if and only if C1 and C2 meet orthogonally.

In fact the same statement holds in all dimensions:

Theorem 1.1 Let Cn−1
1 , Cn−1

2 be spheres of dimension n− 1 in Sn and ι1 the inversion
with respect to C1. Then ι1(C2) = C2 if and only if C1 and C2 meet orthogonally.

We now let Möb(Sn) be the group of diffeomorphisms of Sn ∼= R̂ = Rn∪{∞} generated
by inversions on all (n− 1)-spheres in Sn, and let Möb(Bn) be the subgroup of Möb(Sn)
consisting of maps that preserve the unit ball Bn in Rn.

Notice that if the (n−1)-sphere S1 meets Sn−1 = ∂Bn orthogonally then C := S1∩Sn−1
is an (n− 2)-sphere in Sn−1 and the restriction to Sn−1 of the inversion ιS1 coincides with
the inversion on Sn−1 defined by the (n− 2)-sphere C. In other words one has a canonical
group homomorphism Möb(Bn)→ Möb(Sn−1).

Conversely, given an (n− 2)-sphere C in Sn−1 there is a unique (n− 1)-sphere S in Sn
that meets Sn−1 orthogonally at C. The inversion

ιC : Sn−1 → Sn−1

extends canonically to the inversion:

ιS : Bn → Bn ,

thus giving a canonical group homomorphism Möb(Sn−1)→ Möb(Bn), which is obviously
the inverse morphism of the previous one. Thence one has:

Lemma 1.2 There is a canonical group isomorphism Möb(Bn) ∼= Möb(Sn−1) .

Definition 1.3 We call Möb(Bn) (and also Möb(Sn)) the general Möbius group of the
ball (or of the sphere).

The subgroup Möb+(Bn) of Möb(Bn) of words of even length consists of the elements
in Möb(Bn) that preserve the orientation. This is an index two subgroup of Möb(Bn).
Similar considerations apply to Möb(Sn). We call Möb+(Bn) and Möb+(Sn) Möbius groups
(of the ball and of the sphere, respectively).

It is easy to see that Möb(Sn) includes:
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• Euclidean translations: t(x) = x+a, where a ∈ Rn. These are obtained by reflections
on parallel hyperplanes.

• Rotations: t(x) = Ox, where O ∈ SO(n) ; obtained by reflections on hyperplanes
through the origin.

• Homotecies, obtained by inversions on spheres with same centre and different radius.

In fact one has:

Theorem 1.4 The group Möb(Sn) of Möbius transformations is generated by the previ-
ous transformations: Translations, rotations and homotecies, together with the inversion:
t(x) = x/‖x‖2.

In fact one has that Möb+(Bn) contains the orthogonal group SO(n) as the stabilizer
(or isotropy) subgroup at the origin 0 of its action on the open ball Bn. The stabilizer of
0 under the action of the full group Möb(Bn) is O(n). This implies that Möb+(Bn) acts
transitively on the space of lines through the origin in Bn. Moreover, Möb+(Bn) clearly
acts also transitively on the intersection with Bn of each ray through the origin. Thus it
follows that Möb+(Bn) acts transitively on Bn. In other words we have:

Theorem 1.5 The group Möb+(Bn) acts transitively on the unit open ball Bn with isotropy
Aff(n). Furthermore, this action extends to the boundary Sn−1 = ∂Bn and defines a canon-
ical isomorphism between this group and the Möbius group Möb+(Sn−1).

We remark that for n > 2, Möb+(Sn−1) is the group of (orientation preserving) con-
formal automorphisms of the sphere (see for instance Apanasov’s book [1]). That is, we
have:

Theorem 1.6 For all n > 2 we have group isomorphisms

Möb+(Bn) ∼= Möb+(Sn−1) ∼= Conf+(Sn−1) .

In fact the previous constructions show that every element in Möb+(Bn) extends canon-
ically to a conformal automorphism of the sphere at infinity Sn−1∞ := Hn

R \ Hn
R and con-

versely, every conformal automorphism of Sn−1∞ extends to an element in Möb+(Bn).

1.2 Hyperbolic space

We now use Theorem 1.5 to construct a model for hyperbolic n-space Hn
R. We recall that

a riemannian metric g on a smooth manifold M means a choice of a positive definite
quadratic form on each tangent space TxM , varying smoothly over the points in M . Such
a metric determines lengths of curves as usual, and so defines a metric on M in the usual
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way, by declaring the distance between two points to be the infimum of the lengths of
curves connecting them.

Now consider the open unit ball Bn, its tangent space T0Bn at the origin, and fix the
usual riemannian metric on it, which is invariant under the action of O(n). Given a point
x ∈ Bn, consider an element γ ∈ Möb(Bn) with γ(0) = x. Let Dγ0 denote the derivative
at 0 of the automorphism γ : Bn → Bn. This defines an isomorphism of vector spaces
Dγ0 : T0Bn → TxBn and allows us to define a riemannian metric on TxBn. In this way we
get a riemannian metric at each tangent space of Bn.

We claim that the above construction of a metric on the open ball is well defined,
i.e., that the metric one gets on TxBn does not depend on the choice of the element
γ ∈ Möb(Bn) taking 0 into x. In fact, if η ∈ Möb(Bn) is another element taking 0 into x,
then η−1 ◦ γ leaves 0 invariant and is therefore an element in O(n). Since the orthogonal
group O(n) preserves the metric at T0Bn, it follows that both maps, γ and η, induce the
same metric on TxBn. Hence this construction yields to a well-defined riemannian metric
on Bn.

It is easy to see that this metric is complete and homogeneous with respect to points,
directions and 2-planes, so it has constant (negative) sectional curvature.

Definition 1.7 The open unit ball Bn ⊂ Rn equipped with the above metric serves as
a model for the hyperbolic n-space Hn

R. The group Möb(Bn) is its group of isometries,
also denoted Iso(Hn

R), and its index two subgroup Möb+(Bn) is the group of orientation
preserving isometries of Hn

R, Iso+(Hn
R).

In the sequel we denote the real hyperbolic space by Hn
R, to distinguish it from the

complex hyperbolic space Hn
C (of real dimension 2n) that we will consider later. Also,

we denote by Sn−1∞ the sphere at infinity, that is, the boundary of Hn
R in Sn. We set

Hn

R := Hn
R ∪ Sn−1∞ .

Given that we have a metric in Hn
R, we can speak of length of curves, area, volume,

and so on. We also have the concept of geodesics: curves that minimize (locally) the
distance between points. These are the segments of curves in Hn

R which are contained in
circles that meet the boundary Sn−1∞ orthogonally.

Notice that the constructions above show that every isometry of Iso(Hn
R) extends

canonically to a conformal automorphism of the sphere at infinity Sn−1∞ and conversely,
every conformal automorphism of Sn−1∞ extends to an isometry of Hn

R.

1.3 Kleinian groups

We now consider a subgroup Γ ⊂ Iso(Hn
R) and look at its action on the hyperbolic space

Hn
R. We want to study how the orbits of points in Hn

R (and in Hn

R) behave under the
action of Γ.
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Definition 1.8 Let Γ ⊂ Iso(Hn
R) be a discrete subgroup. The limit set of Γ is the subset

Λ = Λ(Γ) of Sn−1∞ of points which are accumulation points of orbits in Hn
R. That is,

Λ :=
{
y ∈ Sn−1∞ | y = lim{gm(x)} for some x ∈ Hn

R and {gm} a sequence in Iso(Hn
R)
}
.

By definition, this is a closed, invariant subset of Sn−1∞ which is non-empty, unless Γ
is finite. This is the set where the dynamics concentrate. It can happen that Λ is the
whole sphere at infinity, as for instance in the previous example of the triangle subgroups
of isometries of H2

R.

Definition 1.9 A discrete subgroup of Iso(Hn+1) ∼= Conf(Sn) is Kleinian if its limit set
is not the whole sphere at infinity.

In the sequel we refer to these as conformal Kleinian groups, to distinguish them from
the complex Kleinian groups that we shall study later.

We remark that nowadays the term “Kleinian group” is often used for an arbitrary
discrete subgroup of hyperbolic motions, regardless of whether or not the region of dis-
continuity is empty.

Let us consider for a moment a more general setting. Let G be some Lie group acting
on a smooth Riemannian manifold M by smooth maps.

Definition 1.10 i. The action of G is discontinuous at x ∈M if there is a neighbour-
hood U of x such that the set

{g ∈ G | gU ∩ U 6= ∅}

is finite. The set of points in M at which G acts discontinuously is called the region
of discontinuity. The action is discontinuous on M if it is discontinuous at every
point in M .

ii. The action is properly discontinuous on an open invariant set U ⊂M if for each non
empty compact set K ⊂M the set

{g ∈ G | gK ∩K 6= ∅} ,

is finite.

iii. The action is equicontinuous on an open invariant set U ⊂ M if all the transfor-
mations have “equal variation”. More precisely, the action is equicontinuous at a
point x0 ∈ U if for every ε > 0, there exists a δ > 0 such that d(g(x0), g(x)) < ε
for all g ∈ G and all x such that d(x0, x) < δ. The family is equicontinuous if it is
equicontinuous at each point of U .
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We remark that by Arzelà-Ascoli’s theorem, equicontinuity is equivalent to demanding
that the transformations defined by the group action form a normal family, i.e., every
sequence {gn} ⊂ G contains a subsequence which converges uniformly on compact sets in
U .

Notice also that, clearly, every properly discontinuous action is a fortiori discontinuous,
but not conversely. For instance:

Example 1.11 (Kulkarni) Consider the map T in R2 given by (x, y) 7→ (1
2
x, 2y) and

all its iterates {Tn}n∈Z. This gives an action of Z in R2 which is discontinuous away from
the origin 0. Notice that if we take a circle C around the origin, then its forward orbit
accumulates on the whole {y}-axe, while the backwards orbit accumulates on the {x}-axe.
So this action is not properly discontinuous on R2 \ {0}. Yet we notice that the action is
properly discontinuous on R2 \ {x = 0} and also on R2 \ {y = 0}.

This example shows that not every discontinuous action is properly discontinuous:
Yet, for Kleinian groups one has (see the literature for a proof):

Theorem 1.12 Let G be a discrete subgroup of Iso(Hn
R). Then G acts properly discon-

tinuously on Hn
R and its limit set is the complement of the region of discontinuity Ω of

its action on Sn−1∞ . Furthermore, Ω is the largest region in Sn−1∞ where the action is
properly discontinuous, and it is also the largest region in the sphere where the action is
equicontinuous.

So, whenever we have a Kleinian group, the sphere Sn−1∞ splits in two sets, which are
invariant under the group action: the limit set Λ, where the dynamics concentrates, and
the region of discontinuity Ω where the dynamics is “mild” and plays an important role
in geometry, as we will see later.

1.4 The low dimensions: the group PSL(2,C)

The two and three dimensional cases are classical and can be regarded simultaneously.
Consider the open 3-ball B3 and its boundary ∂B3, which is the 2-sphere, that we regard as
being the Riemann sphere S2, i.e., the usual 2-sphere equipped with a complex structure,
making it biholomorphic to the extended complex plane Ĉ = C ∪ ∞, also called the
Cauchy plane.

It is explained in many text books that in this dimension, an orientation preserving
diffeomorphism of S2 is conformal if and only if it is holomorphic. This is essentially a
consequence of the Cauchy-Riemann equations. Moreover, every holomorphic automor-
phism of the Riemann sphere is a Möbius transformation z 7→ az+b

cz+d
, where a, b, c, d are

complex numbers such that ad− bc = 1.
Let us look now at the group SL(2,C) of 2 × 2 complex matrices with determinant

1. This group acts linearly on C2, so it acts on the complex projective line CP1 which is



1.4 The low dimensions: the group PSL(2,C) 9

biholomorphic to the Riemann sphere S2 ∼= C∪∞ := Ĉ . The induced action of SL(2,C)
on CP1 is via the Möbius transformations:

z 7→ az + b

cz + d
.

Thus one has a natural projection

SL(2,C) −→ Conf+(S2) ∼= Iso+(H3
R),

given by

(
a b
c d

)
7→ az+b

cz+d
. This is in fact a homomorphism of groups: the product of two

matrices in SL(2,C) maps to the composition of the corresponding Möbius transforma-
tions.

It is clear that the above projection is surjective. Furthermore, two matrices in
SL(2,C) define the same Möbius transformation if and only if they differ by multipli-
cation by ±1. Hence the group PSL(2,C) ∼= SL(2,C)/{±I} can be identified with the
group of all Möbius transformations

{
az+b
cz+d

}
, which is isomorphic to the group of orien-

tation preserving isometries of the hyperbolic 3-space. This coincides with the group of
holomorphic automorphisms of the Riemann sphere; it also coincides with Conf+(S2), the
group of orientation preserving conformal automorphisms on S2.

Summarizing:

Theorem 1.13 One has the following isomorphisms of groups:

Iso+(H3
R) ∼= Möb+(B3) ∼= Conf+(S2) ∼=

∼=
{ az + b

cz + d
; a, b, c, d,∈ C , ad− bc = 1

}
∼= PSL(2,C) .

Now recall that a Möbius transformation az+b
cz+d

with ad−bc = 1 preserves the upper half
plane H ⊂ C if and only if a, b, c, d are real numbers. These correspond to compositions
of inversions in Ĉ = C∪∞ on circles (or lines) orthogonal to the x-axis. Hence these are
isometries of H2

R and one has:

Theorem 1.14

Iso+(H2
R) ∼= Möb+(B2) ∼=

{ az + b

cz + d
; a, b, c, d,∈ R , ad− bc = 1

}
∼= PSL(2,R) .
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1.5 Geometric classification of the elements in Iso+(Hn
R)

We now classify the elements of Iso+(Hn
R) in terms of their fixed points. We start with the

case n = 2 which is classical and there is a vast literature about this topic (see for instance
[23], [2]). By the theorem above, an isometry of the hyperbolic plane can be regarded as
a Möbius transformation T given by z 7→ az+b

cz+d
with a, b, c, d,∈ R and ad − bc = 1. The

fixed points of T are the points where T (z) = z. These are the solutions of the equation:

z =
(a− d)±

√
(d− a)2 + 4bc

2c
.

Since the coefficients a, b, c, d are all real numbers we have the following three possibilities:

i) (d− a)2 + 4bc < 0 ;

ii) (d− a)2 + 4bc = 0 ;

iii) (d− a)2 + 4bc > 0 .

Assuming, as we do, ad− bc = 1, we have:

(d− a)2 + 4bc = (a+ d)2 − 4 ,

and a + d is the trace of the matrix

(
a b
c d

)
, so we call Tr(T ) := a + d the trace of T .

Then the three cases above can be written as::

i) 0 ≤ Tr2(T ) < 4. The map T is called elliptic;

ii) Tr2(T ) = 4. The map T is called parabolic

iii) Tr2(T ) > 4. The map T is called hyperbolic.

In the first case the map T has one fixed point in H2
R, regarded as the upper half-

plane H = {Im z > 0}; the other fixed point is the complex conjugate of the previous
one, so it is in the lower half-plane. In the second case T has only one fixed point (of
multiplicity two) and this is contained in the x-axis (union ∞), which is the “boundary”
of the hyperbolic plane, the sphere at infinity. In the third case T has two distinct fixed
points, both contained in the sphere at infinity.

If T is elliptic then one can conjugate it by an automorphism of the Riemann sphere
to make it have its fixed points at 0 and ∞, and T becomes a rotation around the origin,
T (z) = eiθz.

If T is parabolic then it is conjugate in PSL(2,C) to a map of the form S(z) = z + k ,
with k ∈ R constant. This map is a translation and has ∞ as its fixed point.

If T is hyperbolic then it is conjugate in PSL(2,C) to a map of the form S(z) = λ2z ,
with λ real and 6= ±1. This map has 0 and ∞ as fixed points and all other points move
along straight lines through the origin. This description is good in some sense, but it is
not satisfactory because the map S does not preserve H, which is our model for H2

R. To
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describe its dynamics in H it is better to consider its fixed points x1, x2, and assume for
simplicity that both are finite and contained in the real-axis. These two points determine
a unique geodesic in H2

R, namely the unique half-circle in H with end-points x1, x2 and
meeting orthogonally the x-axis. This geodesic is invariant under T . Moreover, given any
other point x ∈ H, there is a unique circle passing through x1, x2 and x. These circles
fill out the whole space C and they are invariant under T , so they are unions of orbits.
When the fixed points are taken to be 0 and ∞, these circles become the straight lines
through the origin, or the meridians through the North and South poles if we think of T
as acting on the Riemann sphere.

If we consider now an isometry T of H3
R and we think of it as a Möbius transformation

with (possibly) complex coefficients, then we have again three possibilities:

i. The map T has two distinct fixed points which are both complex conjugate numbers.
In this case T is said to be elliptic, as before. Again, T is conjugate in PSL(2,C) to
a rotation.

ii. The map T has only one fixed point which is real. In this case T is said to be
parabolic and it is conjugate in PSL(2,C) to a translation.

iii. The map T has two distinct fixed points which are both real numbers. In this case,
as before, T is conjugate in PSL(2,C) to a map of the form z 7→ λ2z, but this time
λ can be a complex number with |λ| 6= 1. In this case T is said to be loxodromic.
Now T leaves invariant the geodesic in H3 that has end-points at the fixed points of
T and the dynamics of all other points is a translation along that geodesic, together
with a rotation around it. The number λ is called the multiplier of T . When this
number is real the map is said to be hyperbolic, and in that case there is no rotation,
only translation along the geodesic.

In order to give a similar classification in higher dimensions it is convenient to look at
these transformations “from the inside” of the hyperbolic space Hn

R (see [20] for a deeper
and more complete description of this classification). Let T be an isometry of Hn

R and
pick up a point p ∈ Hn

R such that the points p, T (p) and T 2(p) are not in an Euclidean
straight line. Let L be the line that bisects the angle that they form, and look at the lines
T−1(L), L and T (L). There are three possibilities:

i. These three lines intersect in Hn
R.

ii. These three lines intersect at the (n− 1)-sphere at infinity of Hn
R.

iii. These three lines do not intersect neither in Hn
R nor at the sphere at infinity.

In the first case T has a fixed point at the meeting point of the three lines. The map
T is said to be elliptic. These maps form an open set in Iso(Hn

R).



12 2 COMPLEX KLEINIAN GROUPS

Figure 1: The three types of isometries

In the second situation the three lines are parallel in hyperbolic space and one has a
fixed point at infinity. The map is a translation and it is said to be parabolic; this can be
regarded as a limit case between the other two.

The last case is when the lines are ultra-parallel, i.e., they do not meet in Hn

R (see
Thurston’s book for more on the topic). Now T leaves invariant the geodesic γ that
minimises the length between the lines L and T (L). In this case T is a translation along
γ and a rotation around it. The end-points of γ are fixed points of T . These maps are
called loxodromic (or just hyperbolic) and they also form an open set in Iso(Hn

R).

2 COMPLEX KLEINIAN GROUPS

In the previous section we studied discrete subgroups of isometries of real hyperbolic
spaces Hn

R. When n = 3, the sphere at infinity is 2-dimensional and we can think of it as
being the Riemann sphere S2, which is a complex 1-dimensional manifold, diffeomorphic
to the projective line CP1. In this case one has that every (orientation preserving) element
in the conformal group Conf+(S2) is actually a Möbius transformation:

z 7→ az + b

cz + d
,

where a, b, c, d are complex numbers such that ad−bz = 1. The set of all such maps forms
a group, which is isomorphic to the group PSL(2,C) of projective automorphisms of CP1:

PSL(2,C) := SL(2,C)/± Id ,

where SL(2,C) is the group of 2× 2 matrices with complex coefficients and determinant
1, and Id is the identity matrix. Hence, considering discrete subgroups of Iso+(H3

R) is the
same thing as considering discrete subgroups of PSL(2,C).
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Let us focus now on studying discrete subgroups of PSL(n+ 1,C), the group of auto-
morphisms of the complex projective space CPn. We start by recalling some well-known
facts about these spaces.

2.1 Complex projective space

We recall that the complex projective space CPn is defined as:

CPn = (Cn+1 − {0})/ ∼ ,

where ”∼” denotes the equivalence relation given by x ∼ y if and only if x = αy for some
nonzero complex scalar α. In short, CPn is the space of complex lines through the origin
in Cn+1.

Consider for instance CP1. Every point here represents a complex line through the
origin in C2. Recall that a complex line ` through the origin is always determined by a
unit vector in it, say v, together with all its complex multiples. In other words, a unit
vector v in C2 determines the complex line

` = {λ · v |λ ∈ C} .

Notice that the unit vectors in C2 form the 3-sphere S3, just as the unit vectors in C form
the circle

S1 = {z ∈ C | z = eiθ , θ ∈ [0, 2π]} .
Notice that the circle S1 acts on C2 in the obvious way: eiθ · (z1, z2) 7→ (eiθz1, e

iθz2)). This
action preserves distances in C2, so given a point v ∈ S3 ⊂ C2, its orbit under this S1-
action is the set {(eiθ ·v}, which is a circle in S3 contained in the complex line determined
by v. That is, the intersection of S3 with every complex line through the origin in C2 is a
circle, and one has:

CP1 ∼= S3/S1 ∼= S2 .

The projection S3 → CP1 ∼= S2 is known as the Hopf fibration.
More generally, CPn is a compact, connected, complex n-dimensional manifold, dif-

feomorphic to the orbit space S2n+1/U(1), where U(1) ∼= S1 is acting coordinate-wise on
the unit sphere in Cn+1. In fact, we usually represent the points in CPn by homogeneous
coordinates (z1 : z2 : · · · : zn+1). This means that we are thinking of a point in CPn as
being the equivalence class of the point (z1, z2 : · · · , zn+1) up to multiplication by non-zero
complex numbers. Hence if, for instance, we look at points where the first coordinate z1
is not zero, then the point (z1 : z2 : · · · : zn+1) is the same as (1 : z2

z1
: · · · : zn+1

z1
). Notice

this is just a copy of Cn. That is, every point in CPn that can be represented by a point
(z1 : z2 : · · · : zn+1) with z1 6= 0, has a neighbourhood diffeomorphic to Cn, consisting of
all points with homogeneous coordinates (1 : w2 : · · · : wn+1). Of course similar remarks
apply for points where z2 6= 0 and so on. This provides the classical way for constructing
an atlas for CPn with (n+ 1) coordinate charts.
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Notice one has a projection S2n+1 → CPn, a Hopf fibration, and the usual riemannian
metric on S2n+1 is invariant under the action of U(1). Therefore this metric descends to
a riemannian metric on CPn, which is known as the Fubini-Study metric.

It is clear that every linear automorphism of Cn+1 defines a holomorphic automorphism
of CPn, and it is well-known that every automorphism of CPn arises in this way. Thus
one has that the group of projective automorphisms is:

PSL(n+ 1,C) := GL(n+ 1,C)/(C∗)n+1 ∼= SL(n+ 1,C)/Zn+1 ,

where (C∗)n+1 is being regarded as the subgroup of diagonal matrices with a single nonzero
eigenvalue, and we consider the action of Zn+1 (viewed as the roots of the unity) on
SL(n+ 1,C) given by the usual scalar multiplication. Then PSL(n+ 1,C) is a Lie group
whose elements are called projective transformations.

There is a classical way of decomposing the projective space that paves the way for
studying complex hyperbolic geometry. For this we think of Cn+1 as being a union N− ∪
N0 ∪N+, where each of these sets consists of the points (z1, · · · , zn+1) ∈ Cn+1 satisfying
that |zn+1|2 is, respectively, larger, equal or smaller than |z1|2 + · · ·+ |zn|2. It is clear that
each of these sets is a complex cone, that is, union of complex lines through the origin in
Cn+1, with (deleted) vertex at 0.

Obviously

S := {(z1, · · · , zn+1) ∈ N0 | zn+1 = 1 } ,

is a sphere of dimension (2n− 1), and N0 is the union of all complex lines in Cn+1 joining
the origin 0 ∈ Cn+1 with a point in S; each such line meets S in a single point. Hence
the projectivisation [S] = (N0 \ {0})/C∗ of N0 is a (2n − 1)-sphere in CPn that splits
this space in two sets, which are the projectivisations of N− and N+. The set N0 is often
called the cone of light.

Similarly, notice that the projectivisation of N− is an open (2n)-ball B in CPn, bounded
by the sphere [S]. This ball serves as model for complex hyperbolic geometry, as we will
see in the following section, where we describe its full group of holomorphic isometries,
which is naturally a subgroup of projective transformations. This gives a natural source
of discrete subgroups of PSL(n+ 1,C), those coming from complex hyperbolic geometry.

2.2 Complex Kleinian groups

Recall from the previous section that the action of a subgroup G ⊂ PSL(n + 1,C) is
properly discontinuous on an invariant open set U ⊂ CPn if for every compact set K ⊂ U
one has that the set

{g ∈ G | gK ∩K 6= ∅}

is finite.



2.3 Complex hyperbolic and complex affine groups 15

Definition 2.1 A discrete subgroup Γ of PSL(n+1,C) is complex Kleinian if there exists
a non-empty open invariant set in CPn where the action is properly discontinuous.

As we know already, for n = 1, CP1 is the Riemann sphere, PSL(2,C) can be regarded
as being the group of (orientation preserving) isometries of the hyperbolic space H3

R and
we are in the situation envisaged previously, of classical Kleinian groups.

Notice that in this classical case, there is a particularly interesting class of Kleinian
subgroups of PSL(2,C): Those which are conjugate to a subgroup of PSL(2,R). This
latter group can be regarded as the group of Möbius transformations with real coefficients:

z 7→ az + b

cz + d
, ad− bc = 1 , a, b, c, d ∈ R .

These are the Möbius transformations that preserve the upper half plane in C. And if
we identify the Riemann sphere with the extended plane C ∪ ∞, via stereographic pro-
jection, these are the conformal automorphisms of the sphere that preserve the Southern
hemisphere, i.e., they leave invariant a 2-ball in S2. Equivalently, these are subgroups
of IsoH3

R which actually are groups of isometries of the hyperbolic plane H2
R. These are

called Fuchsian groups. In higher dimensions, this role is played by the so-called complex
hyperbolic groups. These are, by definition, subgroups of PSL(n+1,R) which act on CPn
leaving invariant a certain open ball of complex dimension n, which serves as model for
complex hyperbolic geometry. In the subsection below we speak a few words about this
interesting subject. We will come back to it later.

2.3 Complex hyperbolic and complex affine groups

Let us describe first two specially important subgroups of PSL(n + 1,C): The group
PU(n, 1) of holomorphic isometries of the complex hyperbolic space, and the complex
affine group. We start with PU(n, 1).

Let us look at the subset [N−] of CPn consisting of points whose homogeneous coor-
dinates satisfy:

|z1|2 + · · · |zn|2 < |zn+1|2 . (2.2)

As noticed above, this set is an open ball B of real dimension 2n and its boundary,

[N0] := {(z1 : · · · : zn+1) ∈ CPn
∣∣ |z1|2 + · · · |zn|2 = |zn+1|2} ,

is a sphere of real dimension 2n− 1. This set [N−] is the usual starting point for complex
hyperbolic geometry; for this one needs to introduce a metric, which is known as the
Bergman metric. We shall do that in a way similar to the one we used for real hyperbolic
space.

Let U(n) be the unitary group. By definition, its elements are the (n)× (n) matrices
which satisfy

〈Uz, Uw〉 = 〈z, w〉 ,
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for all complex vectors z = (z1..., zn) and w = (w1, ..., wn), where 〈·, ·〉 is the usual
hermitian product on Cn: 〈z, w〉 =

∑n
i=1 zi · w̄i. This is equivalent to saying that the

columns of U form an orthonormal basis of Cn with respect to the hermitian product.
We now let U(n, 1) be the subgroup of GL(n+ 1,C) of transformations that preserve

the quadratic form

Q(z1, · · · , zn+1) = |z1|2 + · · · |zn|2 − |zn+1|2 . (2.3)

In other words, an element U ∈ GL(n + 1,C) is in U(n, 1) if and only if Q(z) = Q(Uz)
for all points in Cn+1. Let PU(n, 1) be its projectivization. Then the action of PU(n, 1)
on CPn leaves invariant the set [N−]. To see this, recall that a point in CPn is in [N−]
if and only if its homogeneous coordinates satisfy equation (2.3). If (z1 : · · · : zn+1) is in
[N−] and γ is in PU(n, 1), then the point γ(z1 : · · · : zn+1) is again in [N−]. Therefore the
group PU(n, 1) acts on the ball [N−] ∼= B2n.

Recall that to construct the real hyperbolic space Hn
R we considered the unit open

ball Bn in Rn+1, and we looked at the action of the Möbius group Möb+(Bn) on this ball.
This action was transitive with isotropy O(n,R). So we can consider the usual metric
at the space T0(Bn), tangent to the ball at the origin, and spread it around using that
the action is transitive; we get a well-defined metric on the ball using the fact that the
isotropy O(n,R) preserves the usual metric.

Let us now do the analogous construction for the ball [N−] using the action of PU(n, 1):
It is an exercise to show that this action is transitive, with isotropy PU(n). Let P be the
center of this ball, P := (0 : 0 : · · · : 0 : 1). We equip the tangent space TP ([N−]) ∼= Cn

with the usual hermitian metric, and spread this metric around [N−] using the action of
PU(n, 1). Since the isotropy PU(n) preserves the metric in TP ([N−]) we get a well-defined
metric on the ball [N−] ∼= B2n. This is the Bergman metric on the ball [N−], which thus
becomes a model for the complex hyperbolic space Hn

C, with PU(n, 1) as its group of
holomorphic isometries. Its boundary [N0] is the sphere at infinity S2n−1

∞ .
Since the action of PU(n, 1) on Hn

C is by isometries, then one has (by general results of
groups of transformations) that every discrete subgroup of PU(n, 1) acts discontinuously
on Hn

C. Hence, regarded as a subgroup of PU(n + 1), such a group acts on CPn with
non-empty region of discontinuity.

The subgroups of PU(n, 1) are usually known as complex hyperbolic groups, and from
the previous discussion we deduce:

Every complex hyperbolic discrete group is a complex Kleinian group,

a statement that generalises to higher dimensions the well-known fact that every Fuchsian
subgroup of PSL(2,R) is Kleinian when regarded as a subgroup of PSL(2,C).

Now we look at complex affine groups. For this we recall that there is another classical
way of constructing the projective space, and this also plays a significant role for producing
discrete subgroups of PSL(n+ 1,C). This is by thinking of CPn as being the union of Cn
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and the “hyperplane at infinity”:

CPn = Cn ∪ CPn−1 .

A way for doing so is by writing

Cn+1 = Cn × C = {(Z, zn) |Z = (z1, ..., zn) ∈ Cn and zn ∈ C} .

Then every point in the hyperplane {(Z, 1)} determines a unique line through the origin
in Cn+1, i.e., a point in CPn; and every point in CPn is obtained in this way except for
those corresponding to lines (or “directions”) in the hyperplane {(Z, 0)}, which form the
“hyperplane at infinity” CPn−1. It is clear that every affine map of Cn+1 leaves invariant
the hyperplane at infinity CPn−1. Furthermore, every such map carries lines in Cn+1 into
lines in Cn+1, so the map naturally extends to the hyperplane at infinity. This gives a
natural inclusion of the affine group

Aff(Cn) ∼= GL(n,C) nCn ,

in the projective group PSL(n+ 1,C).
In particular, if Γ is a discrete subgroup of Aff(Cn) which are isometries in Cn with

respect to the usual Hermitian metric, then they have a non-empty region of discontinuity
in CPn. We get:

Every discrete group of Euclidian isometries in Cn is complex Kleinian.

Yet, the problem of deciding whether or not an arbitrary discrete subgroup of Aff(Cn) is
discrete in PSL(n+ 1,C) can be rather subtle.

2.4 The Kulkarni limit set and examples

In the first section of these notes we defined the limit set of a Kleinian group in the classical
way, as the set of accumulation points of the orbits. This is indeed a good definition in
that setting in all possible ways: its complement Ω is the largest region of discontinuity
for the action of the group on the sphere, and Ω is also the region of equicontinuity of the
group, i.e., the set of points where the group forms a normal family.

It would be nice to have such a “universal” concept in the setting of complex Kleinian
groups. Alas this is not possible in general and there is not a “correct” concept of limit
set. As we will see, there can be several definitions of “limit set”, each having its own
interest, its own characteristics and leading to interesting results. Yet, one has that for
complex dimension 2, “generically” the various natural possible definitions of a limit set
coincide (see [9]). We do not know whether or not there is a similar statement in higher
dimensions.

Indeed the question of giving “the definition” of limit set can be rather subtle, as
pointed out by R. Kulkarni in the general setting of discrete group actions [22], and
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in [28] for the particular setting we envisage here. This is illustrated by the following
example, taken from [24]. Let γ ∈ PSL(3,C) be the projectivisation of the linear map γ̃
given by:

γ̃ =

 α1 0 0
0 α2 0
0 0 α3


where α1α2α3 = 1 and |α1| < |α2| < |α3. We denote by Γ the cyclic subgroup of PSL(3,C)
generated by γ. Each αi corresponds to a 1-dimensional eigenspace in C3, hence to a fixed
point of γ in CP2, that we denote by ei. The point {e1} is a repelling point while {e3}
is an attractor. The projective lines ←−→e1, e2 and ←−→e2, e3 are both invariant lines. The orbits
of points in the line ←−→e1, e2 accumulate in e1 going backwards, and they accumulate in e2
going forwards. Similar considerations apply to the line ←−→e2, e3. Thus e2 is a saddle point

The orbit of each point in CP2 \ (←−→e1, e2∪←−→e2, e3) accumulates at the points {e1, e3}, and
it is not hard to see that Γ forms a normal family at all points in (H2

C ∪ S3
∞) \ {e1, e3}. It

is not hard to show that: one has (see [24] or [10, Chapter 3] for the proof):

i. Γ acts discontinuously on Ω0 = CP2 − (←−→e1, e2 ∪ ←−→e3, e2), and also on Ω1 = CP2 −
(←−→e1, e2 ∪ {e3}) and Ω2 = CP2 − (←−→e3, e2 ∪ {e1}).

ii. Ω1 and Ω2 are the maximal open sets where Γ acts properly discontinuously; and
Ω1/Γ and Ω2/Γ are compact complex manifolds. (In fact they are Hopf manifolds).

iii. Ω0 is the largest open set where Γ forms a normal family.

It follows that even if the set of accumulation points of the orbits consists of the points
{e1, e2, e3}, in order to actually get a properly discontinuous action we must remove a
larger set. Furthermore, in this example we see that there is not a largest region where
the action is properly discontinuous, since neither Ω1 nor Ω2 is contained in the other.

So one has several candidates to be called as “limit set”:

• The points {e1, e2, e3} where all orbits accumulate. But the action is not properly
discontinuous on all of its complement. Yet, this definition is good if we make this
group conjugate to one in PU(1, 2) and we restrict the discussion to the “hyperbolic
disc” H2

C contained in CP2. This corresponds to taking the Chen-Greenberg limit
set of Γ, that we shall define below.

• The two lines ←−→e1, e2 , ←−→e3, e2, which are attractive sets for the iterations of γ (in one
case) or γ−1 (in the other case). This corresponds to Kulkarni’s limit set of Γ, that
we define below, and it has the nice property that the action on its complement is
properly discontinuous and also, in this case, equicontinuous. And yet, the propo-
sition above says that away from either one of these two lines the action of Γ is
discontinuous. So this region is not “maximal”.
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• Then we may be tempted to taking as limit set the complement of the “maximal
region of discontinuity”, but there is no such region: there are two of them, the
complements of each of the two invariant lines, so which one we choose?

• Similarly we may want to define the limit set as the complement of “the equicon-
tinuity region”. In this particular example, that definition may seem appropriate.
The problem is that this would rule out important cases, as for instance the Hopf
manifolds, which can not be written in the form U/G where G is a discrete subgroup
of PSL(3,C) acting equicontinuously on an open set U of CP2. Moreover, there are
examples where Γ is the fundamental group of certain compact complex surfaces
(Inoue surfaces) and the action of Γ on CP2 has no points of equicontinuity.

Thus one may have different definitions of the limit set, each having interesting prop-
erties. Yet, the following notion of limit set, introduced by Ravi Kulkarni in [22], does
play a major role in the theory of complex Kleinian groups, and there is evidence that
in complex dimension 2, this is the good concept to look at. This definition of a limit
set applies in a very general setting of a discrete group G acting on a smooth manifold
X, and it has the important property of assuring that complement of the limit set, is an
open invariant set where the group acts properly discontinuously.

For this, recall that given a family {Aβ} of subsets of X, where β runs over some
infinite indexing set B, a point x ∈ X is a cluster (or accumulation) point of {Aβ} if
every neighbourhood of x intersects Aβ for infinitely many β ∈ B.

Given a manifold X and a group G of discrete diffeomorphisms of X, let L0(G) be the
closure of the set of points in X with infinite isotropy group. Let L1(G) be the closure
of the set of cluster points of orbits of points in X −L0(G), i.e., the cluster points of the
family {γ(x)}γ∈G, where x runs over X − L0(G).

Finally, let L2(G) be the closure of the set of cluster points of {γ(K)}γ∈G, where K
runs over all the compact subsets of X − {L0(G) ∪ L1(G)}. We have:

Definition 2.4 i. Let X be as above and let G be a group of homeomorphisms of X.
The Kulkarni limit set of G in X is the set

ΛKul(G) := L0(G) ∪ L1(G) ∪ L2(G).

ii. The Kulkarni region of discontinuity of G is

ΩKul(G) ⊂ X := X − ΛKul(G).

It is easy to see that the set ΛKul(G) is closed in X and it is G-invariant (it can be
empty). The set ΩKul(G) (which also can be empty) is open, G-invariant, and G acts
properly discontinuously on it.
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When G is a Möbius (or conformal) group, the classical definitions of the limit set and
the discontinuity set coincide with the above definitions.

For instance, in the example above, where G is generated by:

γ̃ =

 α1 0 0
0 α2 0
0 0 α3


with α1α2α3 = 1 and |α1| < |α2| < |α3, one has that the sets L0(G) and L1(G) are equal,
and they consist of the three points {e1, e2, e3}, while L2(G) consists of the lines←−→e1, e2 and
←−→e2, e3, passing through the saddle point. Hence ΛKul(G) consists of two projective lines.

ΛKul(G) =←−→e1, e2 ∪←−→e2, e3 .

Let us give few other examples:

Example 2.5 Now let G be the cyclic group generated by the projectivization of the map:

γ̃ =

 α 0 0
0 α 0
0 0 α−1

 , with |α| 6= 1 .

Then L0 = L1 = L2 is the union of the line ←−→e1, e2 and the point e3. Hence ΛKul(G) is now:

ΛKul(G) =←−→e1, e2 ∪ {e3} .

Example 2.6 Consider now the cyclic group generated by the projectivization of the map:

γ̃ =

 1 1 0
0 1 0
0 0 1

 .

Then 1 is the only eigenvalue. Now we have L0 = L1 = {e1} and L2 = ←−→e1, e2. Hence
ΛKul(G) now consists of a single line:

ΛKul(G) =←−→e1, e2 .

Example 2.7 Now consider the group generated by the matrix 2.5 together with a new
generator:

G̃ =

〈 α 0 0
0 α 0
0 0 α−1

 ,

 0 0 1
0 1 0
1 0 0

 , |α| 6= 1

〉
It is easy to see that the second matrix permutes the invariant lines←−→e1, e2,

←−→e2, e3 and←−→e3, e1.
Hence one gets thta ΛKul(G) is:

ΛKul(G) =←−→e1, e2 ∪←−→e2, e3 ∪←−→e3, e1 .

One can further check (see [12]) that in this example, the quotient ΩKul(G)/G is a compact
orbifold which implies that this group is quasi-cocompact.
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To finish this section, we recall that we know from [22] that if G is a discrete group
in PSL(n + 1,C), then its action on the Kulkarni set ΩKul(G) is properly discontinuous.
Hence, if ΩKul(G) 6= ∅, then G is complex Kleinian. Similarly, we know from [11] that the
action of G ⊂ PSL(n + 1,C) on the equicontinuity set Eq(G) is properly discontinuous.
Hence, if Eq(G) 6= ∅, then G is complex Kleinian. We state these claims as a theorem:

Theorem 2.8 Let G be a discrete subgroup of G ⊂ PSL(n + 1,C) which satisfies either
one (or both) of the following conditions (which are not always equivalent):

• Its Kulkarni region of discontinuity is non-empty, ΩKul(G) 6= ∅ ;

• Its equicontinuity region is non-empty, Eq(G) 6= ∅.

Then there is a non-empty open invariant set in CPn where G acts properly discontinu-
ously, and therefore G is complex Kleinian.

As noted above, this includes all discrete subgroups of complex hyperbolic isometries,
as well as all discrete groups of isometries of Cn with respect to the usual Hermitian
metric.

3 ON THE CLASSIFICATION OF PROJECTIVE

AUTOMORPHISMS

In a previous section we described the classification of the elements in PSL(2,C) ∼=
Iso+H3

R, and also for groups of isometries in higher dimensional real hyperbolic spaces; we
refer to M. Kapovich’s excellent notes for more on that subject. This classification has
been, and continuous to be, extended by various authors to the groups of isometries in
different settings, as for instance by W. Goldman [16], J. Parker, K. Gongopadhyay and
others (see [14], [13], [17], [19], [7]).

Here we briefly describe the classification of the elements in the projective group
PSL(n + 1,C). We start by recalling in more detail, the classical case, presenting it in
a way that paves the way for the generalizations that we describe in higher dimensions,
which are essentially taken from the work of J. P. Navarrete [25], for the case n = 2, and
by A. Cano and L. Loeza [8] in higher dimensions.

3.1 The classical case

Recall that PSL(2,R) can be regarded as being the group of isometries of the real hy-
perbolic plane H2

R and its elements are classified into three types: elliptic, parabolic
and loxodromic depending on the number and position of the fixed points: An element
γ ∈ PSL(2,R) is elliptic if it has two fixed point in the extended complex plane Ĉ and
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these two points are conjugate (so γ has one fixed point in the interior of the hyperbolic
plane); γ is parabolic if it has only one fixed point, and it is hyperbolic (or loxodromic)

if it has two fixed point contained in the extended real line R̂.
Recall that this classification can be given in terms of the trace of γ, and this extends

to the elements in PSL(2,C) as follows: Let γ ∈ PSL(2,C) be represented by a matrix:

γ̃ =

(
a b
c d

)
, a, b, c, d ∈ C ,

with determinant ad− bc = 1. Define the trace of γ by Tr(γ) = a + d. Then:

Characterization 1 The transformation γ is:

i. Elliptic if its trace is a real number and Tr(γ)2 < 4;

ii. Parabolic if Tr(γ)2 = 4;

iii. Loxodromic if Tr(γ)2 /∈ [0, 4]. If γ is loxodromic and Tr(γ) is real, then γ is said to
be hyperbolic.

We remark that there are several other equivalent ways of describing this classification,
as for instance:

i) By their normal forms and the eigenvalues;
ii) By their fixed points and their local dynamics at the fixed points;
iii) By their limit set.
Let us recall these classifications. For this notice that every matrix γ̃ in SL(2,C) is

congugate to a matrix of one of the following types:(
1 1
0 1

)
or

(
λ 0
0 λ−1

)
, λ ∈ C ,

depending on whether or not it is diagonalizable.
In the first case γ is parabolic, and in the second case it is either loxodromic or elliptic

depending on the number λ, which is called the multiplier of γ. The map is elliptic if and
only if its multiplier has norm 1, i.e. |λ| = 1; otherwise the map is loxodromic.

In short,

Characterization 2 The transformation γ is:

i. Parabolic if every lifting to SL(2,C) is non-diagonalizable, and in that case its eigen-
values have both norm 1.

ii. Elliptic if it has a lifting which is diagonalizable with eigenvalues of norm 1.

iii. Loxodromic if it has a lifting which is diagonalizable with at least one eigenvalue of
norm 6= 1.
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It follows that γ is parabolic if and only if it has exactly one fixed point in the projective
line CP1. In this case, up to conjugation, we can assume that the fixed points is∞ in the
extended complex plane Ĉ ∼= CP1, or the North pole in the Riemann sphere. Then the
map is just a translation.

All non-parabolic transformations have two fixed points, which up to conjugation can
be assumed to be the points 0,∞ in the extended complex plane Ĉ ∼= CP1, or else the
South and North poles in the Riemann sphere. If the eigenvalues have both norm 1, then
the map is a rotation, either by a rational angle, if γ has finite order, or by an irrational
angle.

If γ is loxodromic then one eigenvalue, say λ+, has norm greater than 1, and the
other, say λ+, has norm smaller than 1, because their product is 1. Then λ+ determines
an attractive fixed point x+ in CP1 and λ− determines a repelling fixed point x−. In fact,
for all x ∈ CP1 \ x− one has that the sequence of iterates {γn(x)} converges to x+, while
the sequence {γ−1n (x)} converges to x− for all x 6= x+.

In short:

Characterization 3 The transformation γ is:

i. Parabolic if it has only one fixed point in CP1;

ii. Elliptic if it has two fixed points in CP1 and around each fixed point γ is conjugate
to a rotation.

iii. Loxodromic if it has two fixed points in CP1, one of these being an attractor and the
other a repelling point.

We observe that if γ is parabolic, say given by z 7→ z + 1, then γ leaves invariant the
point ∞ as well as all the lines in C parallel to the real axis. In CP1 these lines become
circles passing through ∞. if γ is elliptic, say a rotation around the origin in C, then it
leaves invariant all the circles centered at 0. And if γ is loxodromic, say with an attractive
point at 0, then for every open disc D in around the origin we have γ(D) ⊂ D, where D
is its closure. That is, Γ is a contraction in D. We have:

Characterization 4 The transformation γ is:

i. Parabolic if it leaves invariant a family of circles in CP1 which pass through a given
point p and determine a foliation of CP1 \ p;

ii. Elliptic if it leaves invariant a family of circles that define a foliation of CP1 minus
two points;

iii. Loxodromic if there exists an open set U ⊂ CP1 such that γ(U) ⊂ U).
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Finally we can give also a dynamical classification of these transformations. Notice
that if γ is an elliptic element of finite order, then its limit set Λ(〈γ〉) is empty. And if γ
is elliptic element with infinite order, then every point in CP1

C is an accumulation point
of some orbit, so the limit set is everything: Λ(〈γ〉) = CP1.

If γ is parabolic, then its limit set consists of its fixed point, and if γ is loxodromic,
then it consists of its two fixed points. Hence we have:

Characterization 5 The transformation γ is:

i. Parabolic if its limit set in CP1 consists of one point;

ii. Loxodromic if its limit set consists of two points;

iii. Elliptic if its limit set is either empty or the whole CP1.

3.2 Classification of the elements in PSL(3,C)

It is natural to expect that for the elements in PSL(3,C) one should have classifications
of its elements in the vein of those given by the characterizations 1 to 4 above for the
elements in PSL(2,C). This is indeed so, and that is the work started by Juan Pablo
Navarrete in [25] (see also [10, Chapter 5]), and refined in [8]. Of course that the starting
point is Goldman’s classification of the elements in PU(2, 1) ⊂ PSL(3,C). These are the
elements in PSL(3,C) that preserve the ball B4 in CP2 of points whose homogeneous
coordinates (z1 : z2 : z3) satisfy:

|z1|2 + |z2|2 < |z3|2 .

The boundary ∂B4 is a 3-sphere. Then, an element g ∈ PU(2, 1) is said to be elliptic
if it has a fixed point inside B4, parabolic if it has exactly one fixed point in ∂B4, and
loxodromic if it has two fixed points in ∂B4. I fact this same classification extends to
higher dimensions, for the elements in PU(n, 1). The only difference is that for n = 2
Goldman also gives a classification in terms of the trace.

This classification has been extended to real, complex and quaternionic hyperbolic
spaces of “low dimensions” by various authors, as for instance Parker, Gongopadhyay and
several others (see for instance [14], Cao-Go, Gongo, Gongo-Parsad , Gongo-Par-Par).

In fact the trichotomy of classifying the elements as elliptic, parabolic or loxodromic,
extends to the group of isometries of all Gromov-hyperbolic spaces of negative curvature,
though the classification is in a different vein (see for instance [7]). Notice however that
the projective space CPn is not Gromov-hyperbolic, neither it has a metric which is
invariant under the action of PSL(n+ 1,C). And yet, we will see that the partition into
elliptic, parabolic and loxodromic elements extends naturally to PSL(n+ 1,C), with one
significant difference between the cases n = 2 and n > 2: In the first case one also has the
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classification in terms of the trace, and we do not know yet how to extend this to higher
dimensions.

We consider first the case of PSL(3,C), following [25] and [8] (see also [10]). Let g be
an element in PSL(3,C) and consider all its iterates gn := g ◦ gn−1, for all n ∈ Z (with
g1 := g, g0 := Id and g−n := (g−1)n). In other words, we are considering the cyclic group
generated by g, that we denote by 〈g〉. The element g is represented by a matrix g̃ in
GL(3,C), unique up to multiplication by non-zero complex numbers.

Such a matrix g̃ has three eigenvalues, say λ1, λ2, λ3, which may or may not be equal,
and if they are distinct, they may or may not have equal norms: These facts make
big differences in their geometry and dynamics, as we will see in the sequel. These,
together with the corresponding Jordan canonical form of g̃, yield to the geometric and
dynamical characterisations of the elements in PSL(3,C) that we give in this section.
Similar considerations can be used also in higher dimensions, as we explain in the following
section. Yet, in the case of PSL(3,C) there is also an algebraic classification in terms of
the trace.

Coming back to our considerations in PSL(3,C), notice also that what really matters
are the ratios amongst the λi, since multiplication of a matrix by a scalar, multiplies all
its eigenvalues by that same scalar. Recall also that each eigenvalue determines a one
dimensional space of eigenvectors in C3, so its projectivisation fixes the corresponding
point in CP2. Distinct eigenvalues give rise to distinct fixed points in CP2. Also, every
two points in CP2 determine a unique projective line; if the two points are fixed by g,
then the corresponding line is g-invariant.

Let us use this information to have a closer look of the dynamics of g by considering
a lifting g̃ ∈ SL(3,C) and looking at its Jordan canonical form. One can check that this
must be of one of the following three types:

 λ1 0 0
0 λ2 0
0 0 λ3

 , where λ3 = (λ1λ2)
−1 .

 λ1 1 0
0 λ1 0
0 0 λ3

 , where λ3 = (λ1)
−2 .

 1 1 0
0 1 1
0 0 1

 .

Definition 3.1 Consider an element g ∈ PSL(3,C). Then:
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i. g is elliptic if has a lifting to SL(3,C) which is diagonalizable with unitary eigenval-
ues.

ii. g is parabolic if has a lifting to SL(3,C) which is non-diagonalizable with unitary
eigenvalues.

iii. g is loxodromic if has a lifting to SL(3,C) which has at least one eigenvalue which
is not unitary.

Let us see what happens in each case. In the first case, when the lifting is diagonaliz-
able, the images of e1, e2, e3 are fixed by the corresponding map in CP2; for simplicity we
denote the corresponding images by the same letters (to avoid having too many brackets
[ei]). One also has at least three invariant projective lines in CP2: L1 :=←−→e1, e2, L2 :←−→e2, e3
and L3 :=←−→e1, e3.

Up to re-numbering the eigenvalues, there are three essentially different possibilities
(though a closer look at them shows that there are actually certain subcases):

i) |λ1| < |λ2| < |λ3|.
ii) |λ1| = |λ2| < |λ3| (could be |λ1| < |λ2| = |λ3|, but this is similar).
iii) |λ1| = |λ2| = |λ3| = 1
In case the point e1 is repelling, e2 is a saddle and e3 is an attractor. Notice that the

restriction of g to each of the three lines Li is a loxodromic transformation in the group of
automorphisms of this line, that we can identify with PSL(2,C): it has two fixed points
in the line, one is repelling and the other is attracting.

Each point in L1 determines a unique projective line passing through that point and
e3, and the union of all these lines fills up the whole space CP2. In other words, the points
in L1 parameterise the pencil {Ly}e3of projective lines in CP2 passing through e3. Since
the line L1 is g-invariant, and e3 is a fixed point of g, it follows that each element in this
pencil is carried by g into another element of the pencil. Furthermore, we can say that
this is happening in a “loxodromic” way in the following sense: if we start with a point x
in one of these lines, then the g-orbit of x will travel from line to line, converging towards
e3 under the iterates of g, and getting closer and closer to the line L1 under the iterates
of g−1, thus converging to a fixed point in this line. This kind of transformations will
correspond to the so called subclass of strongly-loxodromic elements in [25, 10].

Notice that in this case, since e3 is an attracting fix point, we can choose a small
enough “round ball” U containing e3 such that g(U) ⊂ U . This is relevant because that
is a property which characterises loxodromic elements (see ??).

Now consider the case

|λ1| = |λ2| < |λ3| ,

with the matrix still being diagonal. We can assume |λ1| = 1. As before, the three points
ei are fixed points, the three lines are g-invariant and g carries elements in the pencil
{Ly}e3 into elements of this same pencil in a “loxodromic” way, as in the previous case,
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since the eigenvalue λ3 has larger norm. The difference with the previous case is that the
restriction of g to the invariant line L1 is now elliptic, not loxodromic. Hence the orbits
of points in L1, others than the two fixed points e1, e2, move rotating along circles. All
other points approach e3 when travelling forwards, doing “spirals”, and they approach
the line L1 when moving backwards. These transformations are therefore called screws,
and they are also loxodromic as elements in PSL(3,C).

When |λ1| = |λ2| = |λ3| = 1 the situation is quite different. Now the restriction of g
to each of the three lines L1, L2 and L3 is an elliptic transformation, and g carries the
elements of the pencil into elements of the pencil in an “elliptic way”, that we will make
precise. Notice one has in this case that

T (1)(r) = {[z1 : z2 : z3] ∈ P 2
C : |z2|2 + |z3|2 = r|z1|2}, r > 0 , (3.2)

is a family of 3-spheres, each of these being invariant under the action of g. These
transformations are elliptic.

Let us envisage now the second case considered above, that is matrices of the form: λ1 1 0
0 λ1 0
0 0 λ3

 ,

with λ3 = (λ1)
−2 . Notice that the top Jordan block determines a projective line L1 on

which the transformation is parabolic. As a Möbius transformation in L1 this map is:

z 7→ z +
1

λ1
.

So the map in L1 is parabolic. Now observe that the points e1 and e3 are the only fixed
points of g. As before, we have the invariant pencil {Ly}e1 . Notice there are two cases:
|λ1| = 1 or |λ1| 6= 1. In the first case, g carries each element in the pencil into another
element in the pencil in an “elliptic way”. One can show too that in this case there is
a family of 3-spheres in CP2 which are invariant by g and they all meet at the point e3.
These type of maps belong to the class of parabolic elements in PSL(3,C), and they
belong to the sub-class of ellipto-parabolic transformations.

If we now take |λ1| 6= 1, then the dynamics in L1 is as before, but away from this
invariant line the dynamics is dominated by the eigenvalue λ3. If we assume |λ1| > 1,
then all points in CP2 \L1 escape towards e3 when moving forwards, and they accumulate
in the line L1 when moving backwards. If |λ1| < 1 the dynamics just reverses and the
backwards orbits accumulate at e3. These maps are loxodromic elements, of the type
called loxo-parabolic.

Finally consider the case:  1 1 0
0 1 1
0 0 1
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Now one has that all eigenvalues are equal to 1. There is only one fixed point, e1, and an
invariant line, L1 := ←−→e1, e2, in which the transformation is parabolic. Moreover, one has
in this case the following family of g-invariant 3-spheres, which are all tangent to the line
L1 at the point e1

Tr = {[z1 : z2 : z3] | |z2|2 + r|z3|2 − (z1z3 + z1z3)−
1

2
(z2z3 + z2z3) = 0}, r ∈ R.

These maps are all parabolic, of the type called unipotent.

Now we give several characterizations of each of the three types of transformations
one has in PSL(3,C), generalizing those described above for the elements in PSL(3,C).
For this we consider the complex polynomial,

F (x, y) = x2y2 − 4(x3 + y3) + 18xy − 27 ,

which extends the complex polynomial used by Goldman in [16] to classify the elements
in PU(2, 1) by the trace.

Let g be an element in PSL(3,C), ĝ a lifting to SL(3,C), and denote by τ(g) the trace
of ĝ, which is invariant under conjugation.

The following theorems are essentially contained in [25], with some refinements coming
from [8]. We begin with an algebraic characterization in terms of the trace. We denote
by C3 the cubic roots of unity.

Theorem 3.3 The transformation g is:

i) Elliptic if and only if τ(g) = τ(g−1) and F (τ(g), τ(g)) < 0, or else ĝ is diagonaliz-
able, τ(g) /∈ 3C3, τ(g) = τ(g−1) and F (τ(g), τ(g)) = 0.

iii) Parabolic if and only if τ(g) = τ(g−1) and either τ(g) ∈ 3C3 and ĝ is not the identity
element, or else ĝ is not diagonalizable and F (τ(g), τ(g)) = 0, τ(g) /∈ 3C3.

ii) Loxodromic if and only if τ(g) 6= τ(g−1) or τ(g) = τ(g−1) and F (τ(g), τ(g)) > 0.

For instance, the following matrices have the same trace, but the first of these is
parabolic (of the type called ellipto-parabolic): eiθ 1 0

0 eiθ 0
0 0 e−2iθ


while the following element is elliptic: eiθ 0 0

0 eiθ 0
0 0 e−2iθ
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The next three theorems give, respectively, four different characterizations of each
type of transformations: elliptic, parabolic and loxodromic. The first three of these char-
acterizations in each of these theorems comes from [25], while the fourth characterization
comes from [8].

Theorem 3.4 The transformation g ∈ PSL(3,C) is elliptic if and only if one of the
following conditions is satisfied:

i. There is family of g-invariant spheres in CP2, conjugate to those given in equation
(3.2), which determine a foliation of C2\{0}, where we are thinking of CP2 as being
the compactification of C2 obtained by attaching to it the line at ∞.

ii. The set of accumulation points of the 〈g〉-orbits of points in CP2 is either empty or
the whole space CP2.

iii. The equicontinuity set of 〈g〉 is all of CP2.

iv. For each pair of fixed points x, y ∈ CP2, the restriction of g to the invariant line
←→x, y ∼= CP1 is an elliptic element in PSL(2,C).

Theorem 3.5 The transformation g ∈ PSL(3,C) is parabolic if and only if one of the
following conditions is satisfied:

i. There is a g-invariant projective line L ⊂ CP2 and a family of g-invariant 3-spheres
in CP2, tangent to L at a point p which is fixed by g, such that the set

⋃
F is a closed

round ball. (Here, a round ball means the image by an element in PSL(3,C) of the
ball consisting of points in CP2 whose homogeneous coordinates satisfy |z1|2+|z2|2 <
|z3|2.)

ii. The set of accumulation points of the 〈g〉-orbits of points in CP2 is a single point
or a single projective line, and in either case the Kulkarni limit set ΛKul(〈g〉) is a
projective line.

iii. The equicontinuity set Eq(〈g〉) is the complement of a projective line, and in this
case Eq(〈g〉) coincides with the Kulkarni region of discontinuity ΩKul(〈g〉).

iv. There is only one invariant line and the restriction of g to this line is a parabolic
element in PSL(2,C).

Theorem 3.6 The transformation g ∈ PSL(3,C) is loxodromic if and only if one of the
following conditions is satisfied:

i. There is an open set U ⊂ CP2 such that g(U) ⊂ U .
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ii. The set of accumulation points of the 〈g〉-orbits of points in CP2 is a union of either
two projective lines or a projective line and a point, and these two spaces form the
Kulkarni limit set ΛKul(〈g〉).

iii. The equicontinuity set Eq(〈g〉) is the complement of two projective subspaces, and
in this case Eq(〈g〉) coincides with the Kulkarni region of discontinuity ΩKul(〈g〉).

iv. There exist two distinct fixed points x, y ∈ CP2 such that the restriction of g to the
invariant line ←→x, y ∼= CP1 is a loxodromic element in PSL(2,C).

We remark that every elliptic and every parabolic element in PSL(3,C) is conjugate to,
respectively, an elliptic or a parabolic element in PU(2, 1). Also, every loxodromic element
in PU(2, 1) is loxodromic in PSL(3,C), but not conversely: the loxodromic elements
in PSL(3,C) which are of the types called “screws” or “homotheties”, and also some
“strongly-loxodromic” elements, are not conjugate to elements in PU(2, 1) (see [25, 10]).

As we explain below, in higher dimensions, every elliptic element in PSL(n + 1,C) is
conjugate to an elliptic element in PU(n, 1), but this is not so regarding the parabolic
and loxodromic elements.

3.3 Classification of the elements in PSL(n+ 1,C)

We now discuss the classification in [8] of the elements in PSL(n + 1,C). We start with
the definition.

Definition 3.7 Consider an element g ∈ PSL(n+ 1,C). Then:

i. g is elliptic if it has a lifting to SL(n + 1,C) which is diagonalizable with unitary
eigenvalues.

ii. g is parabolic if it has a lifting to SL(n + 1,C) which is non-diagonalizable with
unitary eigenvalues.

iii. g is loxodromic if it has a lifting to SL(n + 1,C) which has at least one eigenvalue
which is not unitary.

The above classification theorems for the elements in PSL(3,C) extend with almost
no changes to higher dimensions in the cases of elliptic and loxodromic elements. One
has:

Theorem 3.8 The transformation g ∈ PSL(n+ 1,C) is elliptic if and only if one of the
following equivalent conditions is satisfied:

i. Up to conjugation, it leaves invariant each leaf of a foliation of Cn\{0} by concentric
(2n− 1)-spheres, where Cn is being regarded as Cn ∼= CPn \ CPn−1.
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ii. The set of accumulation points of the 〈g〉-orbits of points in CPn is either empty or
the whole space CPn.

iii. The equicontinuity set of 〈g〉 is all of CPn.

iv. Each lifting to SL(n+1,C) is diagonalizable and for each pair x, y ∈ CPn of distinct
fixed points, the restriction of g to the invariant line←→x, y ∼= CP1 is an elliptic element
in PSL(2,C).

Theorem 3.9 The transformation g ∈ PSL(n+ 1,C) is loxodromic if and only if one of
the following conditions is satisfied:

i. There is an open set U ⊂ CPn such that g(U) ⊂ U .

ii. The set of accumulation points of the 〈g〉-orbits of points in CPn is a union of two
disjoint projective subspaces of dimensions < n.

iii. The equicontinuity set Eq(〈g〉) is the complement of two projective subspaces of
dimensions < n.

iv. The Kulkarni limit set Λ(〈r〉) is the complement of a union of two projective sub-
spaces of dimensions < n.

v. There exist two distinct fixed points x, y ∈ CPn such that the restriction of g to the
invariant line ←→x, y ∼= CP1 is a loxodromic element in PSL(2,C).

To state the equivalent classification theorem for parabolic elements we need to intro-
duce some notation. Recall that in the PSL(3,C)-case, the 3-spheres used to characterize
the parabolic elements are all equivalent to the sphere in CP2 defined by the quadratic
form

Q(z1, z2, z3) = |z1|2 + |z2|2 − |z3|2 = 0 ,

which corresponds to a bilinear form of signature (2, 1). The null vectors in C3 for this
quadratic form are a complex cone over a 3-sphere S3, whose projectivization is the
boundary ∂H2

C in CP2 of a ball that serves as model for the complex hyperbolic space H2
C.

We know from the previous discussion that a parabolic element in PSL(3,C) is by
definition an element that has a fixed point p, a unique invariant line ` containing p, and
it leaves invariant a family of spheres {Sr}, each being a copy of ∂H2

C by an element in
PSL(3,C), which are all tangent to ` at p. The union of all these spheres is the image of
H2

C by an element in PSL(3,C), where H2
C is the 4-ball in CP2 of points that correspond

to negative vectors for the quadratic form Q.
Furthermore, we know also that every parabolic element in PSL(3,C) is conjugate to a

parabolic element in PU(2, 1) and these are, by definition, the projective transformations
that leave invariant the ball:

{(z1 : z2 : z3) ∈ CP2
∣∣ |z1|2 + |z2|2 < |z3|2 } ,
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and have a unique fixed point in the boundary of this ball.

Recall that in (3.7) we defined an element in PSL(n+ 1,C) to be parabolic if it has a
non-diagonalizable lifting to SL(n+ 1,C) whose eigenvalues are all unitary. Even so, it is
natural to ask the following question:

Question 3.10 What ought to be a parabolic element in PSL(n+ 1,C)?

Of course that parabolic elements in PU(n, 1) must be parabolic in PSL(n + 1,C);
the question is: are there any other parabolics in this latter group? This is answered in
[8]. For this we must consider bilinear forms of signature (k, l) for all possible positive
integers k, l such that k + l = n + 1. The corresponding groups are the projectivized
Lorentz groups PU(k, l) ⊂ PSL(k + l). That is, we denote by Ck,l the complex vector
space Ck+l equipped with the Hermitian form:

≺ u, v �k,l:= u1v̄1 + · · ·+ ukv̄k − uk+1v̄k+1 − · · · − uk+lv̄k+l .

Let Sk,l be the projectivization of the set of null vectors for this Hermitian form, i.e.,
these are the points in CPn whose homogeneous coordinates (u1 : · · · : un+1l) satisfy:

|u1|2 + · · ·+ |uk|2 = |uk+1|2 + · · ·+ |un+1|2 .

We call Sk,l a (k, l)-projective sphere. In fact we call a (k, l)-sphere the images of Sk,l
under the elements in PSL(n+ 1).

Notice that (n, 1)-spheres are usual (2n − 1)-spheres while a (k, l)-sphere in general
is the projectivization of a product of spheres S2k−1 × S2l−1, diffeomorphic to a quotient
(S2k−1 × S2l−1)/S1.

Similarly, by a (k, l)-ball Bk,l we mean the image under an element in PSL(n + l,C)

of the projectivization of the set Hk,l
C of negative vectors for the corresponding quadratic

form, i.e., the points whose homogeneous coordinates satisfy:

|u1|2 + · · ·+ |uk|2 < |uk+1|2 + · · ·+ |un+1|2 .

Notice that the boundary of (k, l)-ball is a (k, l)-sphere.
Now we can define:

Definition 3.11 Let g be an element in some group PU(k, l) with 1 ≤ l ≤ k. Then:

i. g is (k, l)−elliptic if it has at least one fixed point in the (k, l)-ball Hk,l
C .

ii. g is (k, l)−loxodromic if its fixed points in Hk,l

C are all in the (k, l)-sphere ∂Hk,l
C and

there exist at least two such points x, y such that the action of g on the invariant
line ←→x, y is loxodromic.
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iii. g is (k, l)−parabolic if its fixed points in Hk,l

C are all in ∂Hk,l
C and for each pair of

two such points x, y, the action of g on the invariant line ←→x, y is elliptic.

It is proved in [8] that these three types of transformations determine a partition of
PU(k, l), and this coincides with the classical definition in the case of PU(2, 1). Moreover
we have:

Theorem 3.12 The elliptic, loxodromic and parabolic elements in PU(k, l) are elliptic,
loxodromic and parabolic in PSL(n + 1,C), respectively. Furthermore, a transformation
g ∈ PSL(n+ 1,C) is parabolic if and only if one of the following conditions is satisfied:

i. The set of accumulation points of the 〈g〉-orbits of points in CPn is a single projective
space of dimension < n.

ii. There exist positive integers k, l with k+l = n+1 such that g is parabolic in PU(k, l).

iii. The equicontinuity set Eq(〈g〉) and the Kulkarni region of discontinuity ΩKul(〈g〉)
are the complement of a single projective subspace of CPn.

One also has:

Proposition 3.13 If g is parabolic, then there exist a family {Sα} of g-invariant (k, l)-
spheres and a g-invariant proper projective subspace Z ( CPn, such that:

• The fixed points of g are all contained in the Hermitian orthogonal complement of
Z (for the corresponding quadratic form), i.e., Fix(g) ⊂ Z⊥.

• The intersection of every two distinct elements in the family {Sα} is contained in
Z⊥; and

• The union of all {Sα \ Z⊥} fills out the whole space CPn \ Z⊥.

Remark 3.14 It is worth saying that an element g ∈ PSL(n+ 1,C) is elliptic if and only
if there exists some pair (k, l) with 1 ≤ k ≤ n and k + l = n + 1, such that g has a fixed
point inside the (k, l)-ball, and this implies that for each pair (k, l) with 1 ≤ k ≤ n and
k + l = n+ 1 one has that g has a fixed point inside the (k, l)-ball.

4 THE KULKARNI LIMIT SET IN DIMENSION 2

Recall that for discrete subgroups of PSL(2,C) we know that the limit set is a closed
invariant set in CP1 which consists of 1 point, two points or else it has infinite cardinality.
There is also an interesting theorem stating that given any closed subset C ⊂ CP1, there
exists a Kleinian subgroup Γ ⊂ PSL(2,C) whose limit set contains C. Philosophically
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this means that the limit set can be as rich and complicated as we wish. The idea to show
this theorem is to start by considering a finite number of points in C; for each of these
points we consider a small circle centered at the point, so that all these circles are pairwise
disjoint, and then we look at the group generated by the inversions in these circles. This
is Schottky group in Γ ⊂ PSL(2,C) and its limit set contains the chosen points. Now
we take more points in C and repeat the process, and so on. In the limit we arrive to a
discrete subgroup of PSL(2,C) whose limit set contains C.

In this section we shall make similar considerations for the Kulkarni limit set ΛKul of
discrete subgroups of PSL(3,C).

Recall that in the previous section we gave examples of groups in PSL(3,C) where the
limit set ΛKul consists of:

• One line;

• one line and one point;

• two lines;

• three lines;

Before we move forward, let us give a construction that originates in [26] and was later
refined and extended in [24, 12]: The suspension construction. We start with a discrete

group Γ ⊂ PSL(2,C) and look at its inverse image Γ̃ ⊂ SL(2,C). Now take the natural
inclusion of SL(2,C) in SL(3,C), which is given by:

(
a b
c d

)
7→

 a b 0
c d 0
0 0 1

 .

This gives a subgroup Γ̃ ⊂ PSL(3,C) with a fixed point at e3 and an invariant line
←−→e1, e2 ∼= CP1. It is then an exercise to show that the Kulkarni limit set of Γ̃ is the union of
all the complex lines passing through e3 and a point in the limit set Λ(Γ) ⊂ ←−→e1, e2. Hence,

if the limit set Λ(Γ) is not all of ←−→e1, e2, then Γ̃ has non-empty region of discontinuity in
CP2 and therefore it is complex Kleinian.

Notice that from the classical theory of Kleinian groups we know that if Γ is not a
finite group, then Λ(Γ) consists of one point, two points, or infinitely many points. Hence
the Kulkarni limit set of this type of groups consists of one line, two lines or infinitely
many lines, which are all concurrent, since they pass through the point e3.

One has the following theorem proved by W. Barrera, A. Cano and J. P. Navarrete:

Theorem 4.1 Let Γ be an infinite discrete subgroup of PSL(3,C) and let ΛKul ⊂ P2
C be

its Kulkarni limit set. Then:
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i. The set ΛKul always contains at least one projective line.

ii. The number of lines in ΛKul is either 1, 2, 3 or infinite.

iii. The number of lines in ΛKul lying in general position is either 1, 2, 3, 4 or infinite.

The first statement in this theorem follows easily from the aforementioned classification
results in [25] of the cyclic groups in PSL(3,C). Yet, it is worth saying that in [11] is
proved that this statement holds also in higher dimensions: The limit set of every complex
Kleinian group in PSL(n + 1,C) contains at least one projective line. The second and
third statements in this theorem are proved in [5].

Notice that we already gave examples of limits set with one, two and three lines in
their limit set. The complete classification of the groups in PSL(3,C) with at most three
lines in their limit set is given in [9]. In [4] the authors give a complete classification of
the complex Kleinian groups in PSL(3,C) with exactly four lines in general position in
their limit set.

Notice too that the suspension groups described above give examples of groups with
infinitely many lines in their limit set, but only two of them are in general position, since
they all are concurrent. Yet, these suspension groups show that the structure of the limit
set can be at least as rich as that of the classical Kleinian subgroups of PSL(2,C).

In [6] the authors give examples of groups in PSL(3,C) with infinitely many lines in
general position in their limit set. In fact the following theorem from [6] shows that the
limit set ΛKul can actually be as rich and complicated as we want:

Theorem 4.2 Let L be an arbitrary collection of lines in CP2, such that the topological
closure of their union is not the whole space, i.e.,

⋃
L 6= CP2. Then there exists a complex

Kleinian group G such that
⋃
L ⊂ ΛKul(G) 6= CP2. Moreover, G can be chosen so that it

does not have neither fixed points nor invariant lines, neither it is complex hyperbolic.
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