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Dynamical systems

See Piiroinen et al. [1-5].
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Real data
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Real data
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Overview

@ Linear Systems

» Solutions

» Equilibrium types
© Nonlinear systems

» Steady-state solution
» Transitions

@ Stability

» Equilibria, fixed points and periodic orbits
@ Bifurcations and transitions

© Examples
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Dynamical System Modelling and Analysis

™ N\

Real-world Mathematical Numerical
system model method

There is a natural order between real-world systems, modelling and
numerical analysis,...
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Dynamical System Modelling and Analysis

r "N W

Real-world Mathematical Numerical
system model method

L

There is a natural order between real-world systems, modelling and
numerical analysis, but that order is not always followed.
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Dynamical System Modelling and Analysis
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Real-world Mathematical Numerical
system model method
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There is a natural order between real-world systems, modelling and
numerical analysis, but that order is not always followed.
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Notation

Let us first introduce some useful notation [6-10]. We let

T T a
If £ € R™ then
x = (x1(t),z2(t),. .. ,:Un(t))T.

For functions we will mostly use the following forms:

F=ft), =gt =
or 8f
f= f(iL‘), Jr= %

A special function that will be useful is the Jacobian
J(z,t) = fz(x,t) € R™*™ (Jacobian).
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Differential and Difference equations

For time-continuous systems the types of ordinary differential equations we
consider are non-autonomous:

= f(x,t), x(ty) = w0, x,f €R" teR,

or autonomous:

T = f(x), z(ty) = xo xz, f € R™.

Similarly, for discrete systems or maps, we consider difference equations of
the form

g1 = F(xg), =, F € R", k=0,1,2,...

However, the main focus will be on ODEs.
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Differential and Difference equations

For ordinary differential equations equilibria x* are given by
=0 = f(2",t)=0 or f(z*)=0
and /imit cycles are given by

x(tg) = x(tg + T) for some T > 0..

Similarly, for discrete systems or maps, fixed points are given by

zp = F(xp) = 2" = F(a").
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Poincaré surface and map

Figure 1: Poincaré surface and map.
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Difference and Differential equations

The following two linear one-dimensional examples form the fundament for
the analysis of dynamical systems.

Ex.
i=ax, x(to)==z0 = x(t)=zeedt10)

The equilibrium point is given by 2* =0 (a # 0).

Ex.
Tkl = axg, xo known = xp= xoak

The fixed point is given by z* =0 (a # 1).
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Systems of differential equations

Following this a general linear 2-dim homogeneous system of ODEs can be
written as

% = azxi+ bxy
% = cx1+dxo

where a, b, c,d are real constants, which can be recast as

i = Az, A:<CCL 2)

with equilibrium point (2%, 23)T = (0,0)7.

Note: Linear systems of different forms can usually be rewritten in this
simple form.
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Formal solution method for the matrix ODE
For systems of dimension n of the form

dx

I Az, z(0) = xo,
where for simplicity we let g = 0, a general solution is written as the
linear combination of n linearly independent vectors, vy, ..., v,, so that

x(t) = c1vi(t) 4+ - - - + epva(t),

where ¢; and ¢y are constants that are determined from the initial
condition Xj.

As the linearly independent vectors we can use a combination of
eigenvalues and eigenvectors of A (if they exists). Therefore, the first
thing we do is to find the eigenvalues A1,..., A\, of A, i.e. solve

det(A — AI) =0,

where [ is an identity matrix with the same dimension as A.
Modern Finance and ... 18 / 111



Formal solution method for the matrix ODE

For 2-dimensional systems there are three possible combinations of the two
eigenvalues, which lead to different types of solutions.

1. A\i and )\g are distinct real numbers

it Aot
x(t) = e1v1 + cavy = cywie’t + cowae?’,

with wq and wo being the corresponding eigenvectors.

2. A1 and Ay are real and have the same value A

z(t) = (eawi+co(I+t(A—N))v)eM

with w; being one of the eigenvectors and v being a second linearly
independent vector.
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Formal solution method for the matrix ODE

3. A1 and Ag are distinct complex conjugate numbers

$(t) = cC1V1 + cava,

where
v1 = e (cos(Bt)z1 — sin(Bt)zz),
vy = e*(cos(Bt)zg + sin(Bt)z1).

Here the eigenvalue A1 = a + i and the eigenvector wi = z; + izo.
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Types of Equilibria and fixed points in phase space

Nodes and Saddle nodes

(2) w, Qy(/w (b).l\K
Z S

Figure 2: (a) Attractor node (A1, A2 < 0), (b) Repellor node (A1, A2 > 0),
(c) Saddle node (A2 < 0 < Ap)
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Types of Equilibria and fixed points in phase space

Degenerate Nodes

(a) v ®) y o
./ % /
/

Figure 3: (a) Attractor node (A < 0), (b) Repellor node (A > 0)
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Types of Equilibria and fixed points in phase space

Spirals and Centres

s [ N
NN VN

Figure 4: (a) Repellor spiral (« > 0), (b) Attractor spiral (« < 0),
(c) Centre (o =0).
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Parameter space of A
The 2-dimensional linear system

CC% = Az, x(0) =xo
The eigenvalues of the matrix A can be written in terms of two real
parameters

T7=1tr(A) and ¢ =det(A)

through

Ao = where A =72 — 44.

TEVA
’ 2
We can view this parameter space as a 2-dimensional space with 7 as the
horizontal axis and § as the vertical axis. Corresponding to each coefficient
matrix A there is a point (7,6) in this space (the relationship is not
1-to-1).

The parameter space is partitioned into regions according to the value of
A, in each region the associated coefficient matrices have the same

properties.
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Regions defined by 7, 0 and A

I )
A<O A0
850 A< 630
7<0 6>0 >0

A>0 A>0
8<0 §<0
7<0 >0

A>0,8>0, >0

T

The properties of the equilibrium point at (0,0) can be deduced by noting

the region to which A belongs.
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Nature of equilibrium points
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Nonlinear Systems of ODEs

Guckenheimer, Holmes , Springer,

Linear

Nonlinearity

Nonlinear

Number of variables ———=

n=1 n=2 nz3 n>>1 Continuum
Growth, decay, or Oscillations Collective phenomena Waves and patterns
equilibrivm
Linear oscillator Civil engineering, Coupled harmonic oscillators Elasticity
Exponential growth structures
Mass and spring Solid-state physics Wave oquations
RC cireuit o
RLC cireuit Electrical engineering Molccular dynamics Electromagnetism (Maxwell)
Radioctive decay
2-body problem Equilibrium stadstical Quantum mechanics
(Kepler, Newton) i (Schrodinger, Heisenberg, Dirac)
Heat and diffusion
Acoustics
Viscous fluids
The frontier
mm e
Chaos | Spatio-temporal complexity
Fixed points Pendulom Strange attractors | Coupled nonlinear oscillators Nonlinear waves (shocks, solitons)
Bifurcations Anharmonic oscillators (Lorenz) | Lasers, nonlincar optics Plasmas
Overdamped systems, ~ Limit cycles 3-body problem (Poincars) | i tatstical
relaxational dynamics Biological oscillators Chemical kinetics | mechanics General relativity (Einstein)
Logistic equation (neurons, heart cells) Iterated maps (Feigenbaum) | Quantum field theory

for single specics

Predator-prey cycles Fractals |

Nonlincar elcetronics (Mandelbrot)

(van der Pol, Josephson)

Forced nonlinear oscillators
(Levinson, Smale)

- - =

| Practical uses of chaos

| Quantum chaos ?

Nonlinear solid-state physics
(scmiconductors)

Josephson amrays

Heart cell synchronization
Neural networks

Immune system

Ecosystems

Economics
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Reaction-diffusion,

biological and chemical waves
Fibiillation

Epilepsy

Turbulent fluids (Navier-Stokes)
Life
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What can we expect?
What steady-state behaviours can we expect in a nonlinear system?

ODEs:

Equilibria

Limit cycles
Quasi-periodic attractors
Chaotic/strange attractors

Maps:

o Fixed points

@ Periodic orbits

@ Quasi-periodic attractors
o Chaotic/strange attractors

In general, it is important to realise that in linear systems there can only
one equilibrium /fixed point, while in nonlinear systems there can be any
number of possible steady-state solutions.
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Nonlinearities - nonlinear vector field

Let us again consider
& = f(z,t).

Nonlinear smooth vector fields f(z,¢) can have any characteristics that
fulfills this property. Consider in 1D for instance:

Polynomial functions

f(z,t) = ap+ a1z + agz® + - - + apz™ + - - -

Trigonometric and exponential functions

f(z,t) = c1 cos(wt) + casin(wt) + cze’ + cak®
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Nonlinearities - Nonsmooth /switching

Systems of the form

T = f(x? t)
can also have jumps, switches and/or discontinuous vector fields.
In recent years Filippov systems of the form

| filz,t),xe S
flz,t) = { fo(x,t),z € S;

has been widely studied [11-13] in many areas science and engineering, but

not that often in economics, but there are some cases for discrete systems,
see Gardini et al.
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Modelling - Friction models
To explain the concept let us think of a simple block-on-a-surface model:

X, X g
f—[l— m l
/A

——— Q)

1%

The equations of motion are
mx + dz + cx = Ffm'c(vrela m, g)
or if we let (z,%) = (y1,y2) then

yl = Y2, (1)
) 1
Yo = (=dy2 — cyr + Frric(vrer, m, g)) , (2)

where v, =& — v = yg — v.
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Modelling - Friction models

For such systems one can consider a number of different models:

A Ffric 4 F}i'ic 1 Ffric
__/
rel rel rel
—
F_
F fric Jrie A F Sric
~ vrel \ \ v"el
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Nonlinearities - Nonsmooth /switching

F A F

A7 fic fric Sfric

vrel vrel I Vrel

For these three examples we can extend the Filippov vector field to

v
v

filz,t), z €5
f({l?,t)— fs(ZL',t), .CCEE
fa(z,t), © €5,

When x € X for some positive time period we say that we have a sliding
solution.
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Dynamics - Discontinuities
Ex. Consider some model from economics where the interest rate r is
considered as a parameter that changes discretely, then

fi(z,r), inflation < ¢*

T = fa(xz,7m9), s < inflation < i*

fa(z,73), inflation < 1,

A Qo A
©
c b
i) 7
ks o
= 2
= =
> +
time time

In this case the interest rate stays constant as the inflation lie between i,
and 7* and vector field f5 is used at all times.
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Dynamics - Discontinuities

Ex. If instead the inflation takes another path we may have

>

A e
/\/

|

inflation
interest rate

B P
time time

and we have to swap from vector field f5 to f; at some time.

filxz,m), inflation < *
T = fo(x,re), . < inflation < i*
f3(x,73), inflation < 74

This is a transition | will refer to as being event driven.
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Dynamics - Discontinuities
Ex. However, if the interest is considered as a variable in the system we
can think of the same system as

T = f(xa T)
o= g(z,7r)
r +— 7 & Ar, when inflation reaches i* (i).

We still get the same behaviour

>

4 -
L~

l

inflation
interest rate

3>
time

time

but now we can see the system as a system with discrete changes (or
impacts) [14].
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Modelling - Impact models

Ex. Let x be height above the impact surface and v the normal relative
velocity between the surface and the ball so that

T = v
= -9
Upel > —€Upel, When xr = xg,

where 0 < e <1 and z; is the position of the impacting surface and
Urel = &g — V.

AN %/ /
. ) )

T
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Modelling - Impact models

The time it takes to make the rapid change sometimes matter and
sometimes it does not and should be modelled on a case-by-case basis.

The hard part is to find out when one or another situation applies, i.e. the
modelling.

V.,
rel ¢
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Nonlinearities - Delay
Ex. There are many other complications we can see in dynamical systems.
If we again look at the simple example form economics we can imagine the

following situation.

A 8 A delay
® e
c —
i) I~ k)
T o D
= ol . discontinuity
£ =
N =, |-
» >
time time

We see that a decision to change the interest rate is delayed a time 7 after
i* (i+) has been reached.

z = f(z,r)

Fo= g(x,r)

r +— r & Ar, when inflation(t — 7) = ¢* (i).

This is an example of a delay differential equation (not discuss further).
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Stability for equilibria of 1-dimensional ODEs

The notion of stability we deal with is stability with respect to small
disturbances.

The stability of the solution

d
r=z(t) = zge *

of = ar,

dt
where z(t) is some function of ¢ satisfying the equation, is determined by

examining what happens when the solution is disturbed by an arbitrarily
small amount.

0.1 15
a<0 (a) (b) a>0
X <« % >0 10 X >0 >
0.05 0 X o
5
X, = 0 X, = 0
0 0
-5
-0.05 <
%<0 10 X <0 —>
0.1 15
0 10 20 30 40 50 0 10 20 30 40 50
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Stability for equilibria of ODEs

There are two commonly used concepts of stability
Asymptotic stability (AS): disturbed solution — undisturbed solution as
t — 00,

Lyapunov stability (LS): A disturbed solution remains "close” to the
undisturbed solution for all future times.
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Stability of equilibria for one-dimensional ODEs

Consider p
T
E - f(x)v

where f(x) is usually a known non-linear function of x.

We find the equilibrium points ., by solving

f(zeq) =0
and their stability is found by considering

Te . T = Ty is a stable equilibrium, an US T = Ty IS AN
"(2eq) <O q tabl lib d th q
attractor that attracts "nearby” non-equilibrium solutions.
Te . I = Z¢g is an unstable equilibrium, an US T = Ty IS a
"(Teq) >0 q tabl lib d th q
repellor that repels " nearby” non-equilibrium solutions.

J'(z¢q) = 0: To determine the stability the first non-zero derivative of f
at x4 has to be found.
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Stability for general 1-dim non-linear ODEs
First we perturb the equilibrium solution slightly, such that

x(t) = xeqg +(t), |e(t)] <1,

and substitute z(t) into the non-linear ODE. Thus for the left-hand side
we get

de  d de

== (e ) = —

at =TT =g
and for the right-hand side

f(.’E) = f (xeq + 5) = f (xeq) +f/ (CCeq) e+ %f” (iUeq) 82 + ... s
——
=0

which gives us the following non-linear equation for £(t):

de
E:f/(meq)g"‘---

Compare this to the the result for linear one-dimensional ODEs above,
Modern Finance and ... 43 /111



Stability for general n-dim non-linear ODEs

Similarly for systems of ODEs (x,e € R™) we first perturb the equilibrium
solution slightly, such that

z(t) = xeqg +(t), |ai(t)] <1,

and substitute z(t) into the non-linear ODE, which gives gives us the
following non-linear equation for £(t):

de  Of

%_%(xeq)a—l—...:J(xeq)E—i-..-

Now, the eigenvalues of the Jacobian J(z.q) determine the stability of and
local behaviour about the equilibrium.

Compare this to the 2-dimensional linear ODEs discussed above.
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Stability for general n-dim non-linear ODEs

Similarly for maps (z,e € R™) we first perturb the equilibrium solution
slightly, such that

T =xfptek, o] <1,

and substitute zj into the map, which gives gives us the following
non-linear equation for e (¢):

€k = (Fx(a:fp))kso + ...

Now, the eigenvalues of F,(x,) determine the stability of and local
behaviour about the equilibrium. If |\;| < 1 for all ¢ the fixed point is
stable, otherwise unstable.
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Stability for general n-dim non-linear ODEs

Similarly, the stability of limit cycles for systems of ODEs can be found by
solving the first variational equations

d(t) = J(z)®(t), D(to) = Id.
Recall that limit cycles are given by
l‘(to) = l‘(to + T).

The stability is determined in the same fashion as for maps, i.e. by
analysing the eigenvalues of ®(tg + 7).

Typically boundary value problems of this type are solved numerically
using shooting methods or collocation methods [15-16].
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Basin/Domain of attraction

The basin of attraction is the set of all initial conditions whose orbits
converge to a sink or another attractor (e.g. chaotic attractor).

The basin of attraction of a source is usually a set of discrete points (at
most).
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Basin/Domain of attraction

Ex. Consider the ODE
i=f(z) =1-2?

with equilibrium points z.; = £1. It is easy to see that
f-1=2 fQ1)=-2

and thus x4, = 1 is stable with basin of attraction (—1,00). The basin of
attraction for z., = —1 is exactly -1 and the basin of attraction for
r = —o0is (—oo, —1).
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Bifurcations in n-dim non-linear ODEs

Consider next one-dimensional ODEs of the type

T = f(z,a)

a where a € R is a real parameter. Suppose the ODE has an equilibrium
at (z,a) = (2, a), i.e.,
f(xg,a) = 0.

Two questions immediately arise:

@ Is the equilibrium point stable or unstable?

© How is the stability or instability affected as a is varied?

These questions can be answered answered from the stability analysis we
introduced earlier [6-10,17,18].
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Bifurcations in 1-dim non-linear ODEs

There are a number of ways in which the qualitative behaviour of the
dynamics about equilibrium points can be changed, namely, though

@ saddle-node or flip bifurcations,
@ transcritical bifurcations,

@ pitch-fork bifurcations.
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Bifurcations in 1-dim non-linear ODEs

Branches of equilibrium points for which f(z,a) = 0. The solid curvees
correspond to stable equilibria and the dashed curvee to unstable equilibria.

~~
..
~~

a" a

Figure 5:  Saddle-node or fold bifurcation
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Bifurcations in 1-dim non-linear ODEs

Branches of equilibrium points for which f(z,a) = 0. The solid curvees
correspond to stable equilibria and the dashed curvee to unstable equilibria.

Figure 6: Transcritical bifurcation
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Bifurcations in 1-dim non-linear ODEs

Branches of equilibrium points for which f(x,a) = 0. The solid curvees
correspond to stable equilibria and the dashed curvee to unstable equilibria.

I dinmai
| + A
TN DL L

Figure 7: (a) Supercritical pitchfork bifurcation. (b) Subcritical pitchfork
bifurcation

Bifurcations & Catastrophes ICTS, Bengaluru — 01/01/2016 Modern Finance and ... 53 /111



General theorems — bifurcations

Frequently in applications we will not know the the explicit form of the
non-linear function

A lot of attention has been given to determining the qualitative nature of
the equilibrium and non-equilibrium solutions when the non-linear function
in the equation satisfies certain specified conditions.

The following three theorems asserts the occurrence of bifurcations of the
type we met in the beginning of this lecture under certain specified
conditions.

They all involve an ODE
dr
dt

involving a (real) parameter a.

f(z,a)
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Theorem: Saddle-node/fold bifurcation

If at = g, @ = a™ an equilibrium occurs then
*
f(xeq’a ) =0

and the following conditions are satisfied:

of “ _ O*f . of *
%(xeqaa ) - 07 @(meqaa ) 7& 07 %(Q:eq,a ) 7é 0

then

@ no equilibrium occur either for a < a* or for a > a* depending on the
signs of the non-zero derivatives above,

@ two equilibria occur, one attractor and one repellor, for the "other”
values of a (a > a* or a < a*).
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Theorem: Saddle-node/fold bifurcation

a a

Figure 8: Saddle-node/fold bifurcation
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Theorem: Transcritical bifurcation
If at © = x¢q,a = a* an equilibrium occurs then

f($eqv a*) =0
and the following conditions are satisfied:
of x 0% f . of x
%(Cﬂeq,a ):Ov @(ﬁeqaa ) #07 %(xeqaa ) =0

o2 f 0% f [ 9*f \° \
(axzaaQ (o200 ) (Feqy07) < 0

@ an equilibrium at x., exists for a range of values of a around a*,

@ a second equilibrium occurs at Z.4 (for a range of values of a around
a*), which coincides with z., when a = a*,

o the stability properties of the equilibria x4 and &, changes as a
passes through a*,

o the stability properties of the equilibria z.4 and ., are opposite to
one another.
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Theorem: Transcritical bifurcation

The signs of the non-zero derivatives listed above determine the detailed
stability properties of the two equilibria.

Figure 9: Transcritical bifurcation
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Theorem: Pitchfork bifurcation
If at © = x¢q,a = a* an equilibrium occurs then

f(@eq,a™) =0
and the following conditions are satisfied:
of R 0% f * 0 f .
%(xeqya ) = 07 @(xeq)a ) = O’ %(l’e(pa ) 7& 07
af 0% f
a_ \teqg ) = ’ a9 \Weq * h
aa(:nqa) 0 axﬁa($qa)7é0 then

@ an equilibrium at x., exists for a range of values of a around a*,

@ the stability properties of the equilibria x., changes as a passes
through a*,

@ two branches of equilibrium points occur for either a < a* or a > a*
(depending on the sign of the third derivative above, see further
below),

o the equilibrium ., and two extra branches have opposite stability

properties.
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Theorem: Pitchfork bifurcation

To decide on which side of a* the two extra branches occur we can use the
following conditions (compare this with the figures below).

O3f

@(ﬁeqv a*) <0 - supercritical pitchfork bifurcation

o°f
Ox3

(Zeq,a™) >0 — subcritical pitchfork bifurcation

Figure 10:

Bifurcations & Catastrophes ICTS, Bengaluru — 01/01/2016

(a) Supercritical. (b) Subcritical.
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Andronov-Hopf bifurcation

For systems of ODEs
T = f(x7 a)v

where a € R and z € R™ with n > 2 it is possible that limit cycles are born
in, so called, Andronov-Hopf bifurcations (or Hopf bifurcations), which

@ are 2-dimensional version of a pitchfork bifurcation,
@ usually involves a limit cycle "appearing” suddenly,

@ appears in n-dim non-linear ODE systems with a parameter.
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Possible Hopf bifurcations

1y
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Possible Hopf bifurcations

111 - Subcritical Y

Paths spiral out to <o

== Paths spiral outto o ---7

[2]
- 3
1.2 - Supercritical Y
Faths spiral into limit cycle
X
. Paths spiral out Paths spiral into
to limit cycle the equilibrium a
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Theorem: Hopf bifurcation

The following is an example of a Hopf-bifurcation theorem in 2-dim ODE
systems: Consider for i = 1,2

daci .
T fi(z,a), x = (x1,x2), a is a real parameter.

If o fi(x,a) are smooth functions of x1, z2 and a,

@ an equilibrium point occurs at z, for all a, i.e. fi(xeq,a) =0,
@ the Jacobian matrix

ofi
J(a;l,a;g) = ai
J

T=Teq
has a pair of complex eigenvalues A+ = a(a) £ i5(a) with the
property that

alac) =0 with

= %o,

a=ac
i.e. at a = a. the two eigenvalues are imaginary,

then a Hopf bifurcation occurs at the critical value a = a..
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Theorem: Hopf bifurcation

The local behaviour of the non-equilibrium solutions will depend on the
sign of the real part of the eigenvalue:

I. a(a.) =0 and j—‘;‘ a—a.

>0

1. a < ac, a(a) < 0: Trajectories spiral into the equilibrium point.

2. a > ac,a(a) > 0: Trajectories spiral away from the equilibrium point.

Il. a(ac) = 0 and 92 <0

a=ac

1. a < ac,a(a) > 0: Trajectories spiral away from the equilibrium point.

2. a > aq,a(a) < 0: Trajectories spiral into the equilibrium point.

Whether the Hopf bifurcation is subcritical or supercritical depends on the
results of other analysis, such as, asymptotic analysis far from the
equilibrium point and a search for limit-cycle solutions for either a < a, or
a > Ge.
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Normal forms

For the bifurcations we have seen it is possible to find the simplest form of
vector field for them to occur. Such form is known as normal forms of a
bifurcations. The normal forms are

1D
i = az+a? (saddle-node/fold)
= az+ 2’ (transcritical)
= ar+2? (pitch-fork)
2D
L1 = ar]— To=* (x2 + yz) (Hopf bifurcation)
To = X1+ axs =t (ac2 + y2)

By normalising and changing variables it is may be possible to transform a
system about a bifurcation point to one of the normal forms above and
thus highlight a specific bifurcation.
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Other transitions

Period-doubling/fold bifurcations. A bifurcation where a periodic orbit
or limit cycle changes stability and a new periodic orbit or limit cycle with
twice the period or period time is born. See further the logistic map
discussed later.

Neimark-Sacker bifurcation. A bifurcation where a periodic orbit or
limit cycle changes stability and a quasi-periodic solution is born.

Discontinuity Induced Bifurcations (DIBs). A non-standard bifurcation
where the qualitative change occurs doe to some discontinuity [19-23].

Cusp bifurcations. A two-parameter bifurcation where two branches of
saddle-node bifurcations come together.

Other catastrophes and bifurcations. Swallow-tail, Butterfly, Canards,
etc.
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Possible Neimark-Sacker bifurcations
Supercritical Neimark-Sacker:

periodic orbit _

>
P
Subcritical Neimark-Sacker:

S)enodlcnty

£

periodic orbit 9 Ll

_____ \ T , |

Sy |

R L

>
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Discontinuity Induced Bifurcations - Grazing
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Discontinuity Induced Bifurcations - Grazing
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Discontinuity Induced Bifurcations - Grazing

Bifurcations & Catastrophes ICTS, Bengaluru — 01/01/2016 Modern Finance and ... 71 /111



Discontinuity Induced Bifurcations - Sliding

NSNS
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Discontinuity Induced Bifurcations - Sliding
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Discontinuity Induced Bifurcations - Sliding

NN N
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Discontinuity Induced Bifurcations - Sliding
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Discontinuity Induced Bifurcations - Sliding
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A
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Hysteresis
Consider

&= f(z,a), f(z,0)=a+br—a°
for some constant b.

For an equilibrium we want
= f(z*,a) =0.

The figure below shows a schematic of what this may look like for b > 0.

fold/SN
—>

a

Bifurcations & Catastrophes
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Hysteresis

Assuming that the upper and lower parts are stable and letting a = a(t) be
allowed to vary in time it is possible for this system to have a hysteresis.

Bifurcations & Catastrophes ICTS, Bengaluru — 01/01/2016 Modern Finance and ... 78 / 111



Cusp catastrophe

We can now allow ourselves to vary the parameter b as well [27, 28]. Thus
the equilibrium condition

&= f(z*,a,b) =0
has to be fulfilled, where

f(z,a,b) = a+bx — 2>

X

Bifurcations & Catastrophes
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Cusp catastrophe

Allowing both a and b vary with time it is possible to have both smooth
and catastrophic transitions.
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Cusp catastrophe

a

The projection of the branches of saddle-node bifurcations onto the a — b
plane gives the characteristic cusp curve.
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Safe and dangerous bifurcations

After going through some of all the possible transitions that can occur in

nonlinear dynamical systems we can characterise them as safe or
dangerous [26].

The terms safe or dangerous are to be taken as technical. Whether a

bifurcation is actually safe or dangerous has to be assessed in the specific
context where it occurs.
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Safe bifurcations

Safe:

@ Supercritical Hopf

@ Supercritical Neimark-Sacker

@ Supercritical period-doubling bifurcations
@ Some DIBs

Typical Behaviour:

@ Continuous growth of new attractor
o No fast jumps to new attractors
@ Determinacy under perturbations

@ No hysteresis
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Dangerous bifurcations

Dangerous:

@ Saddle-node/fold of equilibria and periodic orbits
@ Subcritical Hopf

@ Subcritical Neimark-Sacker

@ Subcritical period-doubling bifurcations

@ Some DIBs

Typical Behaviour:

@ Sudden disappearance of attractor
@ Sudden jump to new attractor

@ Indeterminacy under perturbations
@ Basin of attraction tend to zero

@ Critical slowing down
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Networks with dynamics

Bifurcations & Catastrophes ICTS, Bengaluru — 01/01/2016 Modern Finance and ... 85 /111



Networks with dynamics

xl:fl(:cl), ’izl,...,N
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Networks with dynamics

AR
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Networks with dynamics
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Networks with dynamics
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Networks with dynamics
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Modelling of dynamics of and on large-scale network are still areas where
much research is ongoing. For instance it is not clear in many cases how
local bifurcations and large-scale phase transitions are linked together.
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Example: Logistic map
Consider the logistic map

ziy1 = f(z;), f(z)=azx(l—2x), a>0,
for which the fixed points are

r=ax(l—2) = z=ar—ar® =

-1 -1
a:c(a —x>:0 = :L':O,:c:a .
a

a

a < 1:If a < 1 the second fixed point is less than 0, which is unphysical
(in some sense), i.e. for 0 < z < 1 only one fixed point exists at = 0.

The stability of the fixed points can be found from

f(z) = a(l —22).
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Example: Logistic map
x=0:

f(0)=a<1
and thus x = 0 is a sink for 0 < a < 1.

a > 1: There are two fixed points, x =0 and x = aT_l and their stabilities
are
f(0)=a>1 = unstable fixed point

A e e

The second fixed point is stable when

and

-1<2-a<l = 1<a<3

and unstable when a > 3.
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Example: Logistic map
The period-2 points can be located by solving

z = fXz)=f(f(2)) = flaz — az®) = a (az — az?) (1 — ax + az?)
= a*z(1-2) (1 - az+az?), =
0 = z(1+ad*(@x—1)(1—az+az?))

The factor z is explicit and we also know that (z — “>1) must also be a

factor. Thus
-1 1 1
a3x<x—a )<x2—a+ :1:—+-a—2 >:O
a a a

TV
fixed points period-2 points

and the period-2 points are

xi:ag;l <1i Z;?) :%<a+1i\/(a—3)(a+1)).

The existence of the period-two points requires a > 3.
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Example: Logistic map

Figure 11: Bifurcation diagrams for the logistic map for 0 < a < 4.
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Example: Logistic map

x
0.75
05
x

0.25

0

0 1 2 3 4 / ‘
a

a a, a, a a, a

Figure 12: Real and schematic bifurcation diagrams for the logistic map for
0<a<d4.
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Example: Logistic map

o] 500 1000 1500 2000 0 500 1000 1500 2000
i i

Figure 13: Iterations of the logistic map at a = 3.6 and a = 3.9.

Bifurcations & Catastrophes Modern Finance and ... 96 / 111



Example: Logistic map with additive noise

In [25] the logistic map with small additive noise was considered so that
Tiy1 =1zl —x;) +0&, >0,

where ¢ is the noise intensity and &; is a the stochastic variable with mean
0 and variance 1.
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Example: Logistic map with additive noise

. 04+
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Vods x*
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Figure 14: (Left) Bifurcation diagrams for logistic map without noise including
the basin of attraction for —oo. (Right) Bifurcation diagrams showing the
stationary means for the logistic map without noise (thin lines) and with noise
(think lines) as well as the order parameter. Here the noise intensity o = 0.05.
The figures are from [25].
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Example: Predator-Pray dynamics with migration

Here we will analyse a model describing predator-prey dynamics with migration [24] and
use the following methodology.

@ A continuous-time approach leads to the study of differential equations.

@ The overall population is split into a set of subpopulations each residing on a
particular habitat.

@ A differential equation that represents the dynamics of one of these subpopulations
can be written in the form

total rate of change = birth rate — death rate + net immigration rate.
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Migration types

Migrations are macro-level trends in population movement and can usually be classified
as:

@ Continuous — dispersal of individuals leads to an ongoing evolution of the overall
range of the population (N large).

@ Irregular — large numbers of individuals sporadically undergo mass movement, in
response to overcrowding or food shortages (NN large).

@ Regular/seasonal — individuals exhibit a regular pattern of movement with respect
to time and location (N = 2).

where N > 0 is the number of distinct habitats considered.

Seasonal migrations are usually triggered by abiotic factors such as day-length or
temperature.
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Model timeline
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Generalist predation

predator consumption

prey abundance

@ A generalist predator is one that does not rely upon any one energy source to

ensure its survival.
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Generalist model

The biomass of sub-populations inhabiting a breeding range and non-breeding range is
given by A; and As, respectively. The breeding of A; results in a newborn population
with biomass N. The variation in the size of the population is modelled using the hybrid
dynamical-system

dA1 6A12
2 ke Ao — Ky Ay —c1Ar — P,
dt avkufa(r) A2 = ko fa(m) Ay = erdh = g i s
dAs
- = Quky f2(T) A1 — ky fa(T) A2 — c2Ag,
dN N eN?
Rk - A [1- 22 ) —enN— P,
dt Aulr)r 1( K> N T T heA® + heN2
dr
== = 1
dt ’

with switches

Al — A1+N atT:t17
N — 0 at 7 =t1,
T —= 0 at 7 = 365,

where t; is the time at which the breeding season comes to an end.
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Zero/low predation
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Variation in predator abundance
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Mean steady-state population sizes as functions of the predator population size P. All
limit cycles are of period one year and the values plotted are averaged over the annual
cycle. Stable solutions are denoted by solid curves and unstable by dashed curves.
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Steady-state configurations

0.01

0.005
SN

winter death rate

Multiple Attractors

A two-parameter bifurcation diagram with the predator population size and wintering
mortality rate as bifurcation parameters.
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Inter-annual variations
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Inter-annual variations
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