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Dynamical systems

See Piiroinen et al. [1-5].
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Real data
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Overview

1 Linear Systems
I Solutions
I Equilibrium types

2 Nonlinear systems
I Steady-state solution
I Transitions

3 Stability
I Equilibria, fixed points and periodic orbits

4 Bifurcations and transitions

5 Examples
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Dynamical System Modelling and Analysis

There is a natural order between real-world systems, modelling and
numerical analysis,...
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Dynamical System Modelling and Analysis

There is a natural order between real-world systems, modelling and
numerical analysis, but that order is not always followed.
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Notation
Let us first introduce some useful notation [6-10]. We let

x = x(t), ẋ =
dx

dt
, ẍ =

d2x

dt2
.

If x ∈ Rn then
x = (x1(t), x2(t), . . . , xn(t))T .

For functions we will mostly use the following forms:

f = f(x, t), fx =
∂f

∂x
, ft =

∂f

∂t

or

f = f(x), fx =
∂f

∂x
.

A special function that will be useful is the Jacobian

J(x, t) = fx(x, t) ∈ Rn×n (Jacobian).
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Differential and Difference equations

For time-continuous systems the types of ordinary differential equations we
consider are non-autonomous:

ẋ = f(x, t), x(t0) = x0, x, f ∈ Rn, t ∈ R,

or autonomous:

ẋ = f(x), x(t0) = x0 x, f ∈ Rn.

Similarly, for discrete systems or maps, we consider difference equations of
the form

xk+1 = F (xk), x, F ∈ Rn, k = 0, 1, 2, . . .

However, the main focus will be on ODEs.
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Differential and Difference equations

For ordinary differential equations equilibria x∗ are given by

ẋ = 0 ⇒ f(x∗, t) = 0 or f(x∗) = 0

and limit cycles are given by

x(t0) = x(t0 + T ) for some T > 0..

Similarly, for discrete systems or maps, fixed points are given by

xk = F (xk) ⇒ x∗ = F (x∗).
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Poincaré surface and map

Figure 1: Poincaré surface and map.
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Difference and Differential equations

The following two linear one-dimensional examples form the fundament for
the analysis of dynamical systems.

Ex.
ẋ = ax, x(t0) = x0 ⇒ x(t) = x0e

a(t−t0)

The equilibrium point is given by x∗ = 0 (a 6= 0).

Ex.
xk+1 = axk, x0 known ⇒ xk = x0a

k

The fixed point is given by x∗ = 0 (a 6= 1).

Bifurcations & Catastrophes ICTS, Bengaluru – 01/01/2016 Modern Finance and . . . 16 / 111



Systems of differential equations

Following this a general linear 2-dim homogeneous system of ODEs can be
written as

dx1

dt
= ax1 + bx2

dx2

dt
= cx1 + dx2

where a, b, c, d are real constants, which can be recast as

ẋ = Ax, A =

(
a b
c d

)
with equilibrium point (x∗1, x

∗
2)T = (0, 0)T .

Note: Linear systems of different forms can usually be rewritten in this
simple form.
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Formal solution method for the matrix ODE
For systems of dimension n of the form

dx

dt
= Ax, x(0) = x0,

where for simplicity we let t0 = 0, a general solution is written as the
linear combination of n linearly independent vectors, v1, . . . ,vn, so that

x(t) = c1v1(t) + · · ·+ cnvn(t),

where c1 and c2 are constants that are determined from the initial
condition X0.

As the linearly independent vectors we can use a combination of
eigenvalues and eigenvectors of A (if they exists). Therefore, the first
thing we do is to find the eigenvalues λ1, . . . , λn of A, i.e. solve

det(A− λI) = 0,

where I is an identity matrix with the same dimension as A.
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Formal solution method for the matrix ODE

For 2-dimensional systems there are three possible combinations of the two
eigenvalues, which lead to different types of solutions.

1. λ1 and λ2 are distinct real numbers

x(t) = c1v1 + c2v2 = c1w1e
λ1t + c2w2e

λ2t,

with w1 and w2 being the corresponding eigenvectors.

2. λ1 and λ2 are real and have the same value λ

x(t) = (c1w1 + c2 (I + t (A− λI))v) eλt

with w1 being one of the eigenvectors and v being a second linearly
independent vector.
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Formal solution method for the matrix ODE

3. λ1 and λ2 are distinct complex conjugate numbers

x(t) = c1v1 + c2v2,

where
v1 = eαt (cos(βt)z1 − sin(βt)z2) ,

v2 = eαt(cos(βt)z2 + sin(βt)z1).

Here the eigenvalue λ1 = α+ iβ and the eigenvector w1 = z1 + iz2.
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Types of Equilibria and fixed points in phase space

Nodes and Saddle nodes

Figure 2: (a) Attractor node (λ1, λ2 < 0), (b) Repellor node (λ1, λ2 > 0),
(c) Saddle node (λ2 < 0 < λ1)
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Types of Equilibria and fixed points in phase space

Degenerate Nodes

Figure 3: (a) Attractor node (λ < 0), (b) Repellor node (λ > 0)
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Types of Equilibria and fixed points in phase space

Spirals and Centres

Figure 4: (a) Repellor spiral (α > 0), (b) Attractor spiral (α < 0),
(c) Centre (α = 0).
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Parameter space of A
The 2-dimensional linear system

dx

dt
= Ax, x(0) = x0

The eigenvalues of the matrix A can be written in terms of two real
parameters

τ = tr(A) and δ = det(A)

through

λ1,2 =
τ ±
√

∆

2
where ∆ = τ2 − 4δ.

We can view this parameter space as a 2-dimensional space with τ as the
horizontal axis and δ as the vertical axis. Corresponding to each coefficient
matrix A there is a point (τ, δ) in this space (the relationship is not
1-to-1).

The parameter space is partitioned into regions according to the value of
∆, in each region the associated coefficient matrices have the same
properties.
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Regions defined by τ , δ and ∆

The properties of the equilibrium point at (0, 0) can be deduced by noting
the region to which A belongs.
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Nature of equilibrium points
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Nonlinear Systems of ODEs
Guckenheimer, Holmes , Springer,
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What can we expect?
What steady-state behaviours can we expect in a nonlinear system?

ODEs:

Equilibria

Limit cycles

Quasi-periodic attractors

Chaotic/strange attractors

Maps:

Fixed points

Periodic orbits

Quasi-periodic attractors

Chaotic/strange attractors

In general, it is important to realise that in linear systems there can only
one equilibrium/fixed point, while in nonlinear systems there can be any
number of possible steady-state solutions.
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Nonlinearities - nonlinear vector field

Let us again consider
ẋ = f(x, t).

Nonlinear smooth vector fields f(x, t) can have any characteristics that
fulfills this property. Consider in 1D for instance:

Polynomial functions

f(x, t) = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · ·

Trigonometric and exponential functions

f(x, t) = c1 cos(ωt) + c2 sin(ωt) + c3e
t + c4k

x
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Nonlinearities - Nonsmooth/switching

Systems of the form
ẋ = f(x, t)

can also have jumps, switches and/or discontinuous vector fields.

In recent years Filippov systems of the form

f(x, t) =

{
f1(x, t), x ∈ S1

f2(x, t), x ∈ S2

has been widely studied [11-13] in many areas science and engineering, but
not that often in economics, but there are some cases for discrete systems,
see Gardini et al.
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Modelling - Friction models
To explain the concept let us think of a simple block-on-a-surface model:

The equations of motion are

mẍ+ dẋ+ cx = Ffric(vrel,m, g)

or if we let (x, ẋ) = (y1, y2) then

ẏ1 = y2, (1)

ẏ2 =
1

m
(−dy2 − cy1 + Ffric(vrel,m, g)) , (2)

where vrel = ẋ− v = y2 − v.
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Modelling - Friction models

For such systems one can consider a number of different models:
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Nonlinearities - Nonsmooth/switching

For these three examples we can extend the Filippov vector field to

f(x, t) =


f1(x, t), x ∈ S1

fs(x, t), x ∈ Σ
f2(x, t), x ∈ S2

When x ∈ Σ for some positive time period we say that we have a sliding
solution.
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Dynamics - Discontinuities
Ex. Consider some model from economics where the interest rate r is
considered as a parameter that changes discretely, then

ẋ =


f1(x, r1), inflation < i∗

f2(x, r2), i∗ < inflation < i∗

f3(x, r3), inflation < i∗

In this case the interest rate stays constant as the inflation lie between i∗
and i∗ and vector field f2 is used at all times.

Bifurcations & Catastrophes ICTS, Bengaluru – 01/01/2016 Modern Finance and . . . 34 / 111



Dynamics - Discontinuities

Ex. If instead the inflation takes another path we may have

and we have to swap from vector field f2 to f1 at some time.

ẋ =


f1(x, r1), inflation < i∗

f2(x, r2), i∗ < inflation < i∗

f3(x, r3), inflation < i∗

This is a transition I will refer to as being event driven.
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Dynamics - Discontinuities
Ex. However, if the interest is considered as a variable in the system we
can think of the same system as

ẋ = f(x, r)

ṙ = g(x, r)

r 7→ r +
(−) ∆r, when inflation reaches i∗ (i∗).

We still get the same behaviour

but now we can see the system as a system with discrete changes (or
impacts) [14].
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Modelling - Impact models

Ex. Let x be height above the impact surface and v the normal relative
velocity between the surface and the ball so that

ẋ = v

v̇ = −g
vrel 7→ −evrel, when x = xs,

where 0 ≤ e ≤ 1 and xs is the position of the impacting surface and
vrel = ẋs − v.
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Modelling - Impact models

The time it takes to make the rapid change sometimes matter and
sometimes it does not and should be modelled on a case-by-case basis.
The hard part is to find out when one or another situation applies, i.e. the
modelling.
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Nonlinearities - Delay
Ex. There are many other complications we can see in dynamical systems.
If we again look at the simple example form economics we can imagine the
following situation.

We see that a decision to change the interest rate is delayed a time τ after
i∗ (i∗) has been reached.

ẋ = f(x, r)

ṙ = g(x, r)

r 7→ r +
(−) ∆r, when inflation(t− τ) = i∗ (i∗).

This is an example of a delay differential equation (not discuss further).
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Stability for equilibria of 1-dimensional ODEs
The notion of stability we deal with is stability with respect to small
disturbances.

The stability of the solution

x = x(t) = x0e
at of

dx

dt
= ax,

where x(t) is some function of t satisfying the equation, is determined by
examining what happens when the solution is disturbed by an arbitrarily
small amount.
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Stability for equilibria of ODEs

There are two commonly used concepts of stability

Asymptotic stability (AS): disturbed solution → undisturbed solution as
t→∞,

Lyapunov stability (LS): A disturbed solution remains ”close” to the
undisturbed solution for all future times.
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Stability of equilibria for one-dimensional ODEs

Consider
dx

dt
= f(x),

where f(x) is usually a known non-linear function of x.

We find the equilibrium points xeq by solving

f(xeq) = 0

and their stability is found by considering

f ′(xeq) < 0: x = xeq is a stable equilibrium, and thus x = xeq is an
attractor that attracts ”nearby” non-equilibrium solutions.

f ′(xeq) > 0: x = xeq is an unstable equilibrium, and thus x = xeq is a
repellor that repels ”nearby” non-equilibrium solutions.

f ′(xeq) = 0: To determine the stability the first non-zero derivative of f
at xeq has to be found.
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Stability for general 1-dim non-linear ODEs
First we perturb the equilibrium solution slightly, such that

x(t) = xeq + ε(t), |ε(t)| � 1,

and substitute x(t) into the non-linear ODE. Thus for the left-hand side
we get

dx

dt
=

d

dt
(xeq + ε(t)) =

dε

dt

and for the right-hand side

f(x) = f (xeq + ε) = f (xeq)︸ ︷︷ ︸
=0

+f ′ (xeq) ε+
1

2
f ′′ (xeq) ε

2 + . . . ,

which gives us the following non-linear equation for ε(t):

dε

dt
= f ′ (xeq) ε+ . . .

Compare this to the the result for linear one-dimensional ODEs above,
Bifurcations & Catastrophes ICTS, Bengaluru – 01/01/2016 Modern Finance and . . . 43 / 111



Stability for general n-dim non-linear ODEs

Similarly for systems of ODEs (x, ε ∈ Rn) we first perturb the equilibrium
solution slightly, such that

x(t) = xeq + ε(t), |εi(t)| � 1,

and substitute x(t) into the non-linear ODE, which gives gives us the
following non-linear equation for ε(t):

dε

dt
=
∂f

∂x
(xeq) ε+ . . . = J(xeq)ε+ . . .

Now, the eigenvalues of the Jacobian J(xeq) determine the stability of and
local behaviour about the equilibrium.

Compare this to the 2-dimensional linear ODEs discussed above.
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Stability for general n-dim non-linear ODEs

Similarly for maps (x, ε ∈ Rn) we first perturb the equilibrium solution
slightly, such that

xk = xfp + εk, |ε0| � 1,

and substitute xk into the map, which gives gives us the following
non-linear equation for εk(t):

εk = (Fx(xfp))
kε0 + . . .

Now, the eigenvalues of Fx(xfp) determine the stability of and local
behaviour about the equilibrium. If |λi| < 1 for all i the fixed point is
stable, otherwise unstable.
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Stability for general n-dim non-linear ODEs

Similarly, the stability of limit cycles for systems of ODEs can be found by
solving the first variational equations

Φ̇(t) = J(x)Φ(t), Φ(t0) = Id.

Recall that limit cycles are given by

x(t0) = x(t0 + T ).

The stability is determined in the same fashion as for maps, i.e. by
analysing the eigenvalues of Φ(t0 + T ).

Typically boundary value problems of this type are solved numerically
using shooting methods or collocation methods [15-16].
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Basin/Domain of attraction

The basin of attraction is the set of all initial conditions whose orbits
converge to a sink or another attractor (e.g. chaotic attractor).

The basin of attraction of a source is usually a set of discrete points (at
most).
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Basin/Domain of attraction

Ex. Consider the ODE
ẋ = f(x) = 1− x2

with equilibrium points xeq = ±1. It is easy to see that

f ′(−1) = 2, f ′(1) = −2

and thus xeq = 1 is stable with basin of attraction (−1,∞). The basin of
attraction for xeq = −1 is exactly -1 and the basin of attraction for
x = −∞ is (−∞,−1).

Bifurcations & Catastrophes ICTS, Bengaluru – 01/01/2016 Modern Finance and . . . 48 / 111



Bifurcations in n-dim non-linear ODEs

Consider next one-dimensional ODEs of the type

ẋ = f(x, a)

a where a ∈ R is a real parameter. Suppose the ODE has an equilibrium
at (x, a) = (x∗, a), i.e.,

f(x0, a) = 0.

Two questions immediately arise:

1 Is the equilibrium point stable or unstable?

2 How is the stability or instability affected as a is varied?

These questions can be answered answered from the stability analysis we
introduced earlier [6-10,17,18].
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Bifurcations in 1-dim non-linear ODEs

There are a number of ways in which the qualitative behaviour of the
dynamics about equilibrium points can be changed, namely, though

saddle-node or flip bifurcations,

transcritical bifurcations,

pitch-fork bifurcations.
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Bifurcations in 1-dim non-linear ODEs

Branches of equilibrium points for which f(x, a) = 0. The solid curvees
correspond to stable equilibria and the dashed curvee to unstable equilibria.

Figure 5: Saddle-node or fold bifurcation
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Bifurcations in 1-dim non-linear ODEs

Branches of equilibrium points for which f(x, a) = 0. The solid curvees
correspond to stable equilibria and the dashed curvee to unstable equilibria.

Figure 6: Transcritical bifurcation
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Bifurcations in 1-dim non-linear ODEs

Branches of equilibrium points for which f(x, a) = 0. The solid curvees
correspond to stable equilibria and the dashed curvee to unstable equilibria.

Figure 7: (a) Supercritical pitchfork bifurcation. (b) Subcritical pitchfork
bifurcation
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General theorems – bifurcations

Frequently in applications we will not know the the explicit form of the
non-linear function

A lot of attention has been given to determining the qualitative nature of
the equilibrium and non-equilibrium solutions when the non-linear function
in the equation satisfies certain specified conditions.

The following three theorems asserts the occurrence of bifurcations of the
type we met in the beginning of this lecture under certain specified
conditions.

They all involve an ODE
dx

dt
= f(x, a)

involving a (real) parameter a.
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Theorem: Saddle-node/fold bifurcation

If at x = xeq, a = a∗ an equilibrium occurs then

f(xeq, a
∗) = 0

and the following conditions are satisfied:

∂f

∂x
(xeq, a

∗) = 0,
∂2f

∂x2
(xeq, a

∗) 6= 0,
∂f

∂a
(xeq, a

∗) 6= 0

then

no equilibrium occur either for a < a∗ or for a > a∗ depending on the
signs of the non-zero derivatives above,

two equilibria occur, one attractor and one repellor, for the ”other”
values of a (a > a∗ or a < a∗).
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Theorem: Saddle-node/fold bifurcation

Figure 8: Saddle-node/fold bifurcation
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Theorem: Transcritical bifurcation
If at x = xeq, a = a∗ an equilibrium occurs then

f(xeq, a
∗) = 0

and the following conditions are satisfied:

∂f

∂x
(xeq, a

∗) = 0,
∂2f

∂x2
(xeq, a

∗) 6= 0,
∂f

∂a
(xeq, a

∗) = 0(
∂2f

∂x2

∂2f

∂a2
−
(
∂2f

∂x∂a

)2
)

(xeq, a
∗) < 0

then

an equilibrium at xeq exists for a range of values of a around a∗,
a second equilibrium occurs at x̂eq (for a range of values of a around
a∗), which coincides with xeq when a = a∗,
the stability properties of the equilibria xeq and x̂eq changes as a
passes through a∗,
the stability properties of the equilibria xeq and x̂eq are opposite to
one another.
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Theorem: Transcritical bifurcation

The signs of the non-zero derivatives listed above determine the detailed
stability properties of the two equilibria.

Figure 9: Transcritical bifurcation
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Theorem: Pitchfork bifurcation
If at x = xeq, a = a∗ an equilibrium occurs then

f(xeq, a
∗) = 0

and the following conditions are satisfied:

∂f

∂x
(xeq, a

∗) = 0,
∂2f

∂x2
(xeq, a

∗) = 0,
∂3f

∂x3
(xeq, a

∗) 6= 0,

∂f

∂a
(xeq, a

∗) = 0,
∂2f

∂x∂a
(xeq, a

∗) 6= 0 then

an equilibrium at xeq exists for a range of values of a around a∗,
the stability properties of the equilibria xeq changes as a passes
through a∗,
two branches of equilibrium points occur for either a < a∗ or a > a∗

(depending on the sign of the third derivative above, see further
below),
the equilibrium xeq and two extra branches have opposite stability
properties.
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Theorem: Pitchfork bifurcation
To decide on which side of a∗ the two extra branches occur we can use the
following conditions (compare this with the figures below).

∂3f

∂x3
(xeq, a

∗) < 0 – supercritical pitchfork bifurcation

∂3f

∂x3
(xeq, a

∗) > 0 – subcritical pitchfork bifurcation

Figure 10: (a) Supercritical. (b) Subcritical.
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Andronov-Hopf bifurcation

For systems of ODEs
ẋ = f(x, a),

where a ∈ R and x ∈ Rn with n ≥ 2 it is possible that limit cycles are born
in, so called, Andronov-Hopf bifurcations (or Hopf bifurcations), which

are 2-dimensional version of a pitchfork bifurcation,

usually involves a limit cycle ”appearing” suddenly,

appears in n-dim non-linear ODE systems with a parameter.
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Possible Hopf bifurcations
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Possible Hopf bifurcations
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Theorem: Hopf bifurcation
The following is an example of a Hopf-bifurcation theorem in 2-dim ODE
systems: Consider for i = 1, 2

dxi
dt

= fi(x, a), x = (x1, x2), a is a real parameter.

If fi(x, a) are smooth functions of x1, x2 and a,

an equilibrium point occurs at xeq for all a, i.e. fi(xeq, a) = 0,

the Jacobian matrix

J(x1, x2) =
∂fi
∂xj

∣∣∣∣
x=xeq

has a pair of complex eigenvalues λ± = α(a)± iβ(a) with the
property that

α(ac) = 0 with
dα

da

∣∣∣∣
a=ac

6= 0,

i.e. at a = ac the two eigenvalues are imaginary,

then a Hopf bifurcation occurs at the critical value a = ac.
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Theorem: Hopf bifurcation

The local behaviour of the non-equilibrium solutions will depend on the
sign of the real part of the eigenvalue:

I. α(ac) = 0 and dα
da

∣∣
a=ac

> 0

1. a < ac, α(a) < 0: Trajectories spiral into the equilibrium point.

2. a > ac, α(a) > 0: Trajectories spiral away from the equilibrium point.

II. α(ac) = 0 and dα
da

∣∣
a=ac

< 0

1. a < ac, α(a) > 0: Trajectories spiral away from the equilibrium point.

2. a > ac, α(a) < 0: Trajectories spiral into the equilibrium point.

Whether the Hopf bifurcation is subcritical or supercritical depends on the
results of other analysis, such as, asymptotic analysis far from the
equilibrium point and a search for limit-cycle solutions for either a < ac or
a > ac.
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Normal forms
For the bifurcations we have seen it is possible to find the simplest form of
vector field for them to occur. Such form is known as normal forms of a
bifurcations. The normal forms are

1D

ẋ = a± x2 (saddle-node/fold)

ẋ = ax± x2 (transcritical)

ẋ = ax± x3 (pitch-fork)

2D

ẋ1 = ax1 − x2 ±
(
x2 + y2

)
(Hopf bifurcation)

ẋ2 = x1 + ax2 ±
(
x2 + y2

)
By normalising and changing variables it is may be possible to transform a
system about a bifurcation point to one of the normal forms above and
thus highlight a specific bifurcation.
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Other transitions

Period-doubling/fold bifurcations. A bifurcation where a periodic orbit
or limit cycle changes stability and a new periodic orbit or limit cycle with
twice the period or period time is born. See further the logistic map
discussed later.

Neimark-Sacker bifurcation. A bifurcation where a periodic orbit or
limit cycle changes stability and a quasi-periodic solution is born.

Discontinuity Induced Bifurcations (DIBs). A non-standard bifurcation
where the qualitative change occurs doe to some discontinuity [19-23].

Cusp bifurcations. A two-parameter bifurcation where two branches of
saddle-node bifurcations come together.

Other catastrophes and bifurcations. Swallow-tail, Butterfly, Canards,
etc.

Bifurcations & Catastrophes ICTS, Bengaluru – 01/01/2016 Modern Finance and . . . 67 / 111



Possible Neimark-Sacker bifurcations
Supercritical Neimark-Sacker:

Subcritical Neimark-Sacker:
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Discontinuity Induced Bifurcations - Grazing
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Discontinuity Induced Bifurcations - Grazing
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Discontinuity Induced Bifurcations - Grazing
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Discontinuity Induced Bifurcations - Sliding
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Discontinuity Induced Bifurcations - Sliding
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Discontinuity Induced Bifurcations - Sliding
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Discontinuity Induced Bifurcations - Sliding
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Discontinuity Induced Bifurcations - Sliding
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Hysteresis
Consider

ẋ = f(x, a), f(x, a) = a+ bx− x3

for some constant b.

For an equilibrium we want

ẋ = f(x∗, a) = 0.

The figure below shows a schematic of what this may look like for b > 0.

Bifurcations & Catastrophes ICTS, Bengaluru – 01/01/2016 Modern Finance and . . . 77 / 111



Hysteresis

Assuming that the upper and lower parts are stable and letting a = a(t) be
allowed to vary in time it is possible for this system to have a hysteresis.
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Cusp catastrophe
We can now allow ourselves to vary the parameter b as well [27, 28]. Thus
the equilibrium condition

ẋ = f(x∗, a, b) = 0

has to be fulfilled, where

f(x, a, b) = a+ bx− x3.
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Cusp catastrophe

Allowing both a and b vary with time it is possible to have both smooth
and catastrophic transitions.
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Cusp catastrophe

The projection of the branches of saddle-node bifurcations onto the a− b
plane gives the characteristic cusp curve.
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Safe and dangerous bifurcations

After going through some of all the possible transitions that can occur in
nonlinear dynamical systems we can characterise them as safe or
dangerous [26].

The terms safe or dangerous are to be taken as technical. Whether a
bifurcation is actually safe or dangerous has to be assessed in the specific
context where it occurs.
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Safe bifurcations

Safe:

Supercritical Hopf

Supercritical Neimark-Sacker

Supercritical period-doubling bifurcations

Some DIBs

Typical Behaviour:

Continuous growth of new attractor

No fast jumps to new attractors

Determinacy under perturbations

No hysteresis
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Dangerous bifurcations

Dangerous:

Saddle-node/fold of equilibria and periodic orbits

Subcritical Hopf

Subcritical Neimark-Sacker

Subcritical period-doubling bifurcations

Some DIBs

Typical Behaviour:

Sudden disappearance of attractor

Sudden jump to new attractor

Indeterminacy under perturbations

Basin of attraction tend to zero

Critical slowing down
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Networks with dynamics

ẋ = f(x)
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Networks with dynamics

ẋi = fi(xi), i = 1, . . . , N
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Networks with dynamics

ẋi = fi(xi) + hi(xj), i, j = 1, . . . , N
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Networks with dynamics

ẋki = fki (xki ) + hki (x
k
j ), k = 1, . . . ,M
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Networks with dynamics

˙̄xk = gk(x̄s), k, s = 1, . . . ,M

x̄k = µ(xk1, . . . , x
k
n)
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Networks with dynamics

. . . and so on . . .

Modelling of dynamics of and on large-scale network are still areas where
much research is ongoing. For instance it is not clear in many cases how
local bifurcations and large-scale phase transitions are linked together.
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Example: Logistic map

Consider the logistic map

xi+1 = f(xi), f(x) = ax(1− x), a > 0,

for which the fixed points are

x = ax(1− x) ⇒ x = ax− ax2 ⇒

ax

(
a− 1

a
− x
)

= 0 ⇒ x = 0, x =
a− 1

a
.

a < 1: If a < 1 the second fixed point is less than 0, which is unphysical
(in some sense), i.e. for 0 ≤ x ≤ 1 only one fixed point exists at x = 0.

The stability of the fixed points can be found from

f ′(x) = a(1− 2x).
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Example: Logistic map

x = 0:
f ′(0) = a < 1

and thus x = 0 is a sink for 0 < a < 1.

a > 1: There are two fixed points, x = 0 and x = a−1
a and their stabilities

are
f ′(0) = a > 1 ⇒ unstable fixed point

and

f ′
(
a− 1

a

)
= a

(
1− 2

a− 1

a

)
= a− 2(a− 1) = 2− a.

The second fixed point is stable when

−1 < 2− a < 1 ⇒ 1 < a < 3

and unstable when a > 3.
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Example: Logistic map
The period-2 points can be located by solving

x = f2(x) = f(f(x)) = f(ax− ax2) = a
(
ax− ax2

) (
1− ax+ ax2

)
= a2x (1− x)

(
1− ax+ ax2

)
, ⇒

0 = x
(
1 + a2(x− 1)

(
1− ax+ ax2

))
The factor x is explicit and we also know that

(
x− a−1

a

)
must also be a

factor. Thus

a3 x

(
x− a− 1

a

)
︸ ︷︷ ︸

fixed points

(
x2 − a+ 1

a
x+

a+ 1

a2

)
︸ ︷︷ ︸

period-2 points

= 0

and the period-2 points are

x± =
a+ 1

2a

(
1±

√
a− 3

a+ 1

)
=

1

2a

(
a+ 1±

√
(a− 3)(a+ 1)

)
.

The existence of the period-two points requires a > 3.
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Example: Logistic map

Figure 11: Bifurcation diagrams for the logistic map for 0 ≤ a ≤ 4.
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Example: Logistic map

Figure 12: Real and schematic bifurcation diagrams for the logistic map for
0 ≤ a ≤ 4.
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Example: Logistic map

Figure 13: Iterations of the logistic map at a = 3.6 and a = 3.9.
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Example: Logistic map with additive noise

In [25] the logistic map with small additive noise was considered so that

xi+1 = rxi(1− xi) + σξi, r > 0,

where σ is the noise intensity and ξi is a the stochastic variable with mean
0 and variance 1.
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Example: Logistic map with additive noise

PHYSICAL REVIE% A VOLUME 33, NUMBER 4 APRIL 1986

Effect of additive and multiplicative noise on the first bifurcations
of the logistic model

S. J. Linz and M. Liicke
Institut fii r Theoretische I'hysik, Uniuersi tiit des Saarlandes, D-6600 Saarbrueken, West Germany

(Received 22 October 1985)

The statistical dynamics of the response of the logistic map, x„+&
——rx„{1 —x„),towards additively

and multiplicatively coupled fluctuating forces is studied analytically and numerically in quantita-
tive detail in the range of control parameter r where the unforced system shows the first transcriti-
cal and the first pitchfork bifurcation.

I. INTRODUCTION x„+, rx„(1——x„) (2.1)

Nonlinear dissipative systems that undergo a transition
under quasistatic variation of the driving stress can show
peculiar response behavior when also time-dependent
forces are applied. Hydrodynamic and laser instabilities,
bifurcations in "simple" nonlinear (model) systems, and
discrete maps that are perturbed by time-dependent forces
coupling additively or multiplicatively to a state variable
of the system in question are examples.

Studies' of the effect of "time"-dependent forcing on
systems with discrete dynamics seem to have been concen-
trated on uncorrelated forces coupled to the logistic map
(see, however, Refs. 8—11 for other forced discrete sys-
tems and Ref. 12 for time periodic forcing of the logistic
map). This research is mostly aimed at understanding
within qualitative and sometimes semiquantitative terms
the influence of noise on the period-doubling-bifurcation
sequence' in the control parameter range beyond the first
simple bifurcations.

The effects of additive or multiplicative random forcing
on the very first bifurcations of the logistic map, on the
other hand, have not yet been investigated properly. Since
an incorrect statement' about the equivalence of additive
and multiplicative noise might have misled people into
believing that the response at small control parameters to
noise is well understood and uninteresting, we undertook
the investigation reported here.

We shall present detailed quantitative, analytical, and
numerical results on the statistical dynamics of the logis-
tic maps response to additively or multiplicatively cou-
pled time-dependent forces that fluctuate according to
various prescribed statistical properties.

In Sec. II we give the basic formulas for a statistical
description. Section III contains analytical and numerical
results on the behavior of the map under additive and
multiplicative forcing in the control parameter range r & 3
of the first transcritical bifurcation. In Sec. IV we investi-
gate analytically and numerically the first noisy pitchfork
bifurcation. In Sec. V we summarize our main results.

and unit covariance

(2.2b)

in a range of the control parameter r where the first bifur-
cations of the unperturbed system are located as shown in
Fig. 1. The forces couple to the variable x either multipli-
catively,

xn+1 rnxn—(1 xn) ~

via a fluctuating control parameter

r„=r(1+b,g„),
or additively,

x„+) rx„(1—x——„)+b g„.

(2.3a)

(2.3b)

(2.4)

Here b measures the noise intensity or, alternatively, the
coupling strength between g and x.

A. Averages

The statistical properties of the noise are prescribed by
the path probability density H[g] for a particular se-

~ ~ ~ 0 ~ I I ~ ~ I IIII ~ ~ I I ~ I ~ I ~ ~ I & I I ~ ~ I ~ ~
1

towards statistically stationary stochastic forces g„with
vanishing mean

(2.2a)

II. THE SYSTEM

%e shall investigate the statistical dynamics of the
response of the logistic map

FIG. 1. Bifurcation diagram of the logistic map (2.1).
Hatched area shows the basin of attraction of the fixed point at
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0.4

tudes and uncorrelated forces (3.31) yields

0.2

4&x2&

0.0 I

I
10 &x&

ikrF ii —x )) +2lt

Factorizing the numerator and approximating

r (x„(1—x„))=(x„+i)=(1—1/r)

(3.32)

'
0.0 O. S 1.0 1.5 2.0

FIG. 4. Order parameter and mean orbit (thick solid lines) vs

r for additive dichotomous noise of amphtude 6=0.05. Thin
solid lines show the bifurcation for b, =0. For 0.69&r &1.45
the orbits escaped in our numerical simulations to —ee. (x)
and [(x2) ]i~i are identical within a pencil's width for r & 1.45.

rameter [(x (b, ))]'~ as a function of r for dichotomous
noise of amplitude b, =0.05. For r values within the gap
of the solid curves the orbits escaped to —eo. Except for
this gap which increases with growing 5 the order param-
eter shows the typical characteristics of a rounded, imper-
fect bifurcation of a system that without the perturbation
displays a perfect one (thin solid lines in Fig. 4}. That the
fixed point at —eo becomes so strongly attracting near
r= 1 is in a sense only an annoying complication of an
otherwise simple bifurcation behavior. The agreement of
the solid curves with the small-b, result (3.29) for white
noise, y = te, is perfect.

r —l
~additive~ ~multiplicstive ~

r
(3.30)

We checked the validity of (3.30) for r & 3 as well as for
r &3. We found that numerically determined stationary
distributions W(x ) resulting from additive and multipli-
cative forces [g] with the same statistics agreed much
better with the scaling (3.30) than with the one derived by
Crutchfield et a1. ' with rather ad hoc approximations.

As an interesting aside we mention that (3.30) can also
be derived from the requirement that the moment generat-
ing functions ( exp(ikx„+i)) and ( exp(ikx „+i))are the
same, i.e.,

( exp[ikr(1+bed„)x„(1—x„}])
=( exp[ik[rx „(1—x „)+bg,j] ) . (3.31)

Here the tilde refers to additive forcing. For small ampli-

3. Equivalence ofadditive and ntultiplicative noise

So far we have seen that the response of the map to-
wards additive and multiplicative noise is totally different
for small values of r, say, up to the stability threshold
re(h) (3.3) of x' =0 under parametric forcing. If, howev-
er, r &r (be, ) is sufficiently far above 1 so that the fixed
point at —ao does not attract the additively perturbed or-
bits, then, for small b„multiplicative and additive noise
causes similar response behavior: A comparison of (3.9b)
with (3.28a) shows that the orbits x„(lent)=x'+du&„' '

up
to first order in b, are the same if one uses the same noise
sequence [g] and scales the noise intensity b. for the two
forcing types according to

IV. THE EFFECT OF NOISE ON THE FIRST
PERIOD-DOUBLING BIFURCATION

In this section we discuss the effect of small-amplitude
noise on the first period-doubling pitchfork bifurcation of
the unperturbed map at r=3. %e shall concentrate on
the additively forced map (2.4). The multiplicatively
forced system (2.3) shows for small b, in the vicinity of
r =3 similar behavior that can be related quantitatively to
the statistical dynamics of the response under additive
forcing by scaling the noise according to (3.30).

A. Noisy pitchfork bifurcation

In the absence of forcing, 5=0, the fixed point
x'=1 —1/r of the system (2.1) loses its stability at r =3
by generating a period-2 limit cycle and thereby breaks
time translational invariance. From the bifurcating limit
cycle (n~oo) of

d„=x„+i —x„~(—1)"d' (4.1)

one identifies the value of the order parameter above the
threshold r =3 as

d'=+ —v'(r —3)(r+1) .
r

(4.2)

Its magnitude is the separation of the pitchfork branches,
which grows initially with the square root of the control
parameter's distance above threshold. The phase of the
order parameter depends on the initial condition xo.. at
fixed time n (~ oo ) either d„=+

~

d'
~

or d„=—
~

d'
~

.
In the presence of small noise the branches of the pitch-

fork bifurcation are broadened. ' In Fig. 5(a) we show as
a function of r all positions x„between time n = 1000 and
1150 for uncorrelated noise (b, =0.01) with the box-
shaped stationary distribution (3.5b) of amplitudes.

Note that the pitchfork topology is still visible in Fig.
5(a). In fact, small noise perturbs the dynamics of d„
only slightly if r is suNciently above threshold so that the
overlap between the broadened pitchfork branches is
small —)d„~ is still roughly of size ~d*

~

—and, more
importantly, the sequence of signs d„/

~
d„~ is still (most-

ly) alternating as for b.=0. This is the situation where the

leads then to (3.30).
Since most results presented in Sec. IIIC are strongly

dominated by x„'",one merely has to use (3.30) to find ap-
proximately the corresponding small-5 statistical proper-
ties of x„in the presence of additive noise. For example,
the discussion on the different shapes of the stationary
distribution W(x) for r &r, (b, ) in Sec. IIIC5 applies
equally well to additive noise. Thus also for additive
noise coupled to the system at r =2 the stationary distri-
bution W(x ) has the same form as P(g).

Figure 14: (Left) Bifurcation diagrams for logistic map without noise including
the basin of attraction for −∞. (Right) Bifurcation diagrams showing the
stationary means for the logistic map without noise (thin lines) and with noise
(think lines) as well as the order parameter. Here the noise intensity σ = 0.05.
The figures are from [25].
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Example: Predator-Pray dynamics with migration

Here we will analyse a model describing predator-prey dynamics with migration [24] and
use the following methodology.

A continuous-time approach leads to the study of differential equations.

The overall population is split into a set of subpopulations each residing on a
particular habitat.

A differential equation that represents the dynamics of one of these subpopulations
can be written in the form

total rate of change = birth rate− death rate+ net immigration rate.
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Migration types

Migrations are macro-level trends in population movement and can usually be classified
as:

Continuous – dispersal of individuals leads to an ongoing evolution of the overall
range of the population (N large).

Irregular – large numbers of individuals sporadically undergo mass movement, in
response to overcrowding or food shortages (N large).

Regular/seasonal – individuals exhibit a regular pattern of movement with respect
to time and location (N = 2).

where N > 0 is the number of distinct habitats considered.

Seasonal migrations are usually triggered by abiotic factors such as day-length or

temperature.
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Model timeline
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Generalist predation

prey abundance

pr
ed

at
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on

su
m
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n

III

A generalist predator is one that does not rely upon any one energy source to

ensure its survival.
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Generalist model

The biomass of sub-populations inhabiting a breeding range and non-breeding range is
given by A1 and A2, respectively. The breeding of A1 results in a newborn population
with biomass N . The variation in the size of the population is modelled using the hybrid
dynamical-system

dA1

dt
= αvkvf4(τ)A2 − kvf2(τ)A1 − c1A1 −

eA1
2

1 + heA1
2 + heN2

P,

dA2

dt
= αvkvf2(τ)A1 − kvf4(τ)A2 − c2A2,

dN

dt
= f1(τ)rA1

(

1−
N

K

)

− cNN −
eN2

1 + heA1
2 + heN2

P,

dτ

dt
= 1,

with switches

A1 7→ A1 +N at τ = t1,

N 7→ 0 at τ = t1,

τ 7→ 0 at τ = 365,

where t1 is the time at which the breeding season comes to an end.
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Zero/low predation
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Variation in predator abundance
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Mean steady-state population sizes as functions of the predator population size P . All
limit cycles are of period one year and the values plotted are averaged over the annual
cycle. Stable solutions are denoted by solid curves and unstable by dashed curves.
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Steady-state configurations
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A two-parameter bifurcation diagram with the predator population size and wintering
mortality rate as bifurcation parameters.
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Inter-annual variations
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Inter-annual variations
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