Arithmetic of adjoint L-values.

Haruzo Hida*

Department of Mathematics, UCLA, June 17, 2014

Abstract: We now relate $\left|C_{0}(\lambda ; W)\right|$ to the corresponding adjoint L-value.
*Pune (India) lecture No. 4 on June 17, 2014. The authors are partially supported by the NSF grants: DMS 0753991.

§1. Set up.

- Fix an an algebra homomorphism $\lambda: h_{k, \chi / \mathbb{Z}[\chi]} \rightarrow$ $\overline{\mathbb{Q}}_{p}$ and write the associated Galois representation $\rho_{\lambda}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}(W)$ and a new form $f=$ $f_{\lambda} \in S_{k+1, \chi}$ of conductor C; so, $N=C$.
- Writing the Hecke polynomial at a prime ℓ as

$$
1-\lambda(T(\ell)) X+\chi(\ell) \ell^{k} X^{2}=\left(1-\alpha_{\ell} X\right)\left(1-\beta_{\ell} X\right)
$$

we have the following Euler product convergent absolutely if $\operatorname{Re}(s)>1$:
$L(s, A d(\lambda))=\prod_{\ell}\left\{\left(1-\frac{\alpha_{\ell}}{\beta_{\ell}} \ell^{-s}\right)\left(1-\ell^{-s}\right)\left(1-\frac{\beta_{\ell}}{\alpha_{\ell}} \ell^{-s}\right)\right\}^{-1}$.

- It has an analytic continuation to the whole complex s-plane (due to Shimura 1975 and GelbartJacquet in 1978) and satisfies a functional equation of the form $1 \leftrightarrow 1-s$ whose Γ-factor is

$$
\Gamma(s, A d(\lambda))=\Gamma_{\mathbb{C}}(s+k) \Gamma_{\mathbb{R}}(s+1),
$$

where $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$ and $\Gamma_{\mathbb{R}}(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)$.

§2. Inner product formula.

Theorem 1 (Shimura). Let χ be a primitive character modulo C. Let $\lambda: h_{k}\left(\Gamma_{0}(C), \chi ; \mathbb{Z}[\chi]\right) \rightarrow$ \mathbb{C} be a $\mathbb{Z}[\chi]$-algebra homomorphism for $k \geq 1$. Then

$$
\ulcorner(s, \operatorname{Ad}(\lambda)) L(s, A d(\lambda))
$$

has an analytic continuation to the whole complex s-plane and
$\Gamma(1, \operatorname{Ad}(\lambda)) L(1, \operatorname{Ad}(\lambda))$

$$
=2^{k+1} C^{-1} \int_{\Gamma_{0}(C) \backslash \mathfrak{H}}|f|^{2} y^{k-1} d x d y
$$

where $f=\sum_{n=1}^{\infty} \lambda(T(n)) q^{n} \in S_{k+1}\left(\Gamma_{0}(C), \chi\right)$ and $z=x+i y \in \mathfrak{H}$. If $C=1$, we have the following functional equation:
$\Gamma(s, \operatorname{Ad}(\lambda)) L(s, A d(\lambda))=\Gamma(1-s, A d(\lambda)) L(1-s, A d(\lambda))$.
§3. Relation to a Rankin product.
We consider $L\left(s-k, \rho_{\lambda} \otimes \widetilde{\rho}_{\lambda}\right)$ for the Galois representation ρ_{λ} associated to λ and its contragredient $\widetilde{\rho}_{]} l m={ }^{t} \rho_{\lambda}$. Since $\rho_{\lambda} \otimes \widetilde{\rho}_{\lambda}=1 \oplus \operatorname{Ad}\left(\rho_{\lambda}\right)$, we have

$$
\begin{equation*}
L\left(s, \rho_{\lambda} \otimes \widetilde{\rho}_{\lambda}\right)=L(s, \operatorname{Ad}(\lambda)) \zeta(s) \tag{1}
\end{equation*}
$$

for the Riemann zeta function $\zeta(s)$. Then, the Rankin-convolution method tells us [LFE, Theorem 9.4.1] that

$$
\begin{aligned}
&\left(2^{2-s} \prod_{p \mid C}\left(1-\frac{1}{p^{s-k}}\right)\right) \Gamma_{\mathbb{C}}(s) L\left(s-k, \rho_{\lambda} \otimes \widetilde{\rho}_{\lambda}\right) \\
&=\int_{\Gamma_{0}(C) \backslash \mathfrak{H}}|f|^{2} E_{0, C}^{\prime}(s-k, 1) y^{-2} d x d y
\end{aligned}
$$

where $E_{0}^{\prime}(s, 1)$ is an Eisenstein series of level C for the trivial character $\mathbf{1}$ defined in [LFE, page 297].

This expression gives a meromorphic continuation of $L\left(s, \rho_{\lambda} \otimes \tilde{\rho}_{\lambda}\right)$ and $L(s, \operatorname{Ad}(\lambda))$, as $\zeta(s)$ is shown meromophic from Riemann's time.

§4. Proof of Inner product formula.

The Eisenstein series has a simple pole at $s=1$ with constant residue: $\pi \prod_{p \mid C}\left(1-\frac{1}{p}\right)$, which yields

$$
\begin{aligned}
& \left(\left(2^{1-k} \prod_{p \mid C}\left(1-\frac{1}{p}\right)\right)\right) \\
& \times \operatorname{Res}_{s=k+1} \Gamma_{\mathbb{C}}(s) L\left(s-k, \rho_{\lambda} \otimes \widetilde{\rho}_{\lambda}\right) \\
& \quad=\pi \prod_{p \mid C}\left(1-\frac{1}{p}\right) \int_{\Gamma_{0}(C) \backslash \mathfrak{H}}|f|^{2} y^{-2} d x d y
\end{aligned}
$$

This combined with (1) yields the residue formula and analytic continuation of $L(s, A d(\lambda))$ over the region of $\operatorname{Re}(s) \geq 1$.

Since $\Gamma_{\mathbb{C}}(s) E_{0, C}^{\prime}(s, 1)$ satisfies a functional equation of the form $s \mapsto 1-s$ (see [LFE, Theorem 9.3.1]), , we have the continuation of

$$
\Gamma_{\mathbb{C}}(s) \Gamma_{\mathbb{C}}(s-k) L\left(s-k, \rho_{\lambda} \otimes \tilde{\rho}_{\lambda}\right)
$$

and functional equation. In additin, we get holomorphy of $L\left(s, \operatorname{Ad}\left(\rho_{\lambda}\right)\right)$ around $s=1$.
§5. Eichler-Shimura isomorphism.
Consider the inclusion $I: S L_{2}(\mathbb{Z}) \hookrightarrow$ Aut $_{\mathbb{C}}\left(\mathbb{C}^{2}\right)=$ $G L_{2}(\mathbb{C})$. Let us take the nth symmetric tensor representation $I^{s y m \otimes n}$ whose module twisted by the action of χ, we write as $L(n, \chi ; \mathbb{C})$. Recall the Eichler-Shimura isomorphism,

$$
\begin{aligned}
\delta: S_{k+1}\left(\Gamma_{0}(C), \chi\right) & \oplus \bar{S}_{k+1}\left(\Gamma_{0}(C), \chi\right) \\
& \cong H_{c u s p}^{1}\left(\Gamma_{0}(C), L(n, \chi ; \mathbb{C})\right),
\end{aligned}
$$

where $k=n+1, \bar{S}_{k+1}\left(\Gamma_{0}(C), \chi\right)$ is the space of anti-holomorphic cusp forms of weight $k+1$ of "Neben" type character χ, and

$$
H_{\text {cusp }}^{1}\left(\Gamma_{0}(C), L(n, \chi ; \mathbb{C})\right) \subset H^{1}\left(\Gamma_{0}(C), L(n, \chi ; \mathbb{C})\right)
$$

is the image of compactly supported cohomology in the ordinary cohomology group.

Identify $L(n, \chi ; A)=A X^{n}+A X^{n-1} Y+\cdots+A Y^{j}$ (the space of homogeneous polynomials) and let $\alpha \in S L_{2}(\mathbb{Z})$ act by $(X, Y) \mapsto \chi(d)(X, Y)^{t} \alpha^{\iota}$ with $\alpha^{\iota} \alpha=\operatorname{det}(\alpha)$ for the lower right cornar entry d of α.
§6. Eichler-Shimura as de Rham map.

The Eichler-Shimura map δ is specified in [LFE] as follows: We put
$\omega(f)= \begin{cases}f(z)(X-z Y)^{n} d z & \text { if } f \in S_{k}\left(\Gamma_{0}(C), \chi\right), \\ f(z)(X-\bar{z} Y)^{n} d \bar{z} & \text { if } f \in \bar{S}_{k}\left(\Gamma_{0}(C), \chi\right) .\end{cases}$
Then we associate to f the de Rham cohomology class of $[\omega(f)]$ which gives

$$
\begin{aligned}
S_{k+1}\left(\Gamma_{0}(C), \chi\right) & \oplus \bar{S}_{k+1}\left(\Gamma_{0}(C), \chi\right) \\
& \cong H_{c u s p, d R}^{1}\left(X_{0}(C), \mathcal{L}(n, \chi ; \mathbb{C})\right)
\end{aligned}
$$

where $\mathcal{L}(n, \chi ; \mathbb{C})$ is the C^{∞}-sheaf associated o $L(n, \chi ; \mathbb{C})$. Then we associate to f the cohomology class of the 1 -cocycle $\gamma \mapsto \int_{z}^{\gamma(z)} \omega(f)$ of $\Gamma_{0}(C)$ for a fixed point z on the upper half complex plane. The map δ does not depend on the choice of z.

§7. Poincaré duality.

Define [,]: $L(n, \chi ; A) \times L(n, \bar{\chi} ; A) \rightarrow A$ by

$$
\left[\sum_{j} a_{j} X^{n-j} Y^{j}, \sum_{j} b_{j} X^{n-j} Y^{j}\right]=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}^{-1} a_{j} b_{n-j} .
$$

By definition, $\left[(X-z Y)^{n},(X-\bar{z} Y)^{n}\right]=(z-\bar{z})^{n}$.
It is an easy exercise to check that $[\gamma P, \gamma Q]=$ $\operatorname{det} \gamma^{n}[P, Q]$ for $\gamma \in G L_{2}(A)$. Thus we have a Гhomomorphism $L(n, \chi ; A) \otimes_{A} L\left(n, \chi^{-1} ; A\right) \rightarrow A$, and we get the cup product pairing for $Y=$ $\Gamma_{0}(N) \backslash \mathfrak{H}$

$$
\begin{aligned}
& {[,]: H_{c}^{1}(Y, \mathcal{L}(n, \chi ; A)) \times H^{1}\left(Y, \mathcal{L}\left(n, \chi^{-1} ; A\right)\right) } \\
& H_{c}^{2}(Y, A) \cong A .
\end{aligned}
$$

This pairing induces the cuspidal pairing

$$
\begin{array}{r}
{[,]: H_{\text {cusp }}^{1}(Y, \mathcal{L}(n, \chi ; A)) \times H_{\text {cusp }}^{1}\left(Y, \mathcal{L}\left(n, \chi^{-1} ; A\right)\right)} \\
\longrightarrow A .
\end{array}
$$

This pairing is perfect on the ordinary part (or if $n!\in A^{\times}$).
§8. Hecke equivariance of the pairing.
The action of $\tau=\left(\begin{array}{cc}0 & -1 \\ C & 0\end{array}\right)$ defines a quasi-involution on the cohomology

$$
\begin{aligned}
& \tau: H_{c u s p}^{1}\left(\Gamma_{0}(C), L(n, \chi ; A)\right) \\
& \rightarrow H_{c u s p}^{1}\left(\Gamma_{0}(C), L\left(n, \chi^{-1} ; A\right)\right),
\end{aligned}
$$

which is given by $u \mapsto\left\{\gamma \mapsto \tau u\left(\tau \gamma \tau^{-1}\right)\right\}$ for each homogeneous 1-cocycle u. The cocycle $u \mid \tau$ has values in $L\left(n, \chi^{-1} ; A\right)$ because conjugation by τ interchanges the diagonal entries of γ. We have $\tau^{2}=(-C)^{n}$ and $[x \mid \tau, y]=[x, y \mid \tau]$. Then we modify the above pairing [,] by τ and define $\langle x, y\rangle=[x, y \mid \tau]$.

The operator $T(n)$ is symmetric with respect to this pairing:

$$
\begin{equation*}
\langle x \mid T(n), y\rangle=\langle x, y \mid T(n)\rangle . \tag{2}
\end{equation*}
$$

§9. Periods.

We now regard $\lambda: h_{k, \chi / \mathbb{Z}[\chi]} \rightarrow \mathbb{C}$ as actually naving values in $W \cap \overline{\mathbb{Q}}$ (via the fixed embedding: $\left.\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}\right)$. Put $A=W \cap \mathbb{Q}(\lambda)$, and A is a valuatimon ring of $\mathbb{Q}(\lambda)$ of residual characteristic p. The Frobenius c at ∞ acts on the cohomology, and the corresponding \pm-eigenspaces are indicated by adding [\pm].

For the image $L_{ \pm}$of $H_{\text {cusp }}^{1}\left(\Gamma_{0}(C), L(n, \chi ; A)\right)[\pm]$ in $H_{\text {cusp }}^{1}\left(\Gamma_{0}(C), L(n, \chi ; \mathbb{Q}(\lambda))\right)[\pm]$,

$$
H_{c u s p}^{1}\left(\Gamma_{0}(C), L(n, \chi ; \mathbb{Q}(\lambda))\right)[\lambda, \pm] \cap L_{ \pm}=A \xi_{ \pm}
$$

for a generator $\xi_{ \pm}$. Hereafter, we write L for $L[+]$.

For the normalized eigenform $f \in S_{\kappa}\left(\Gamma_{0}(C), \chi\right)$ with $T(n) f=\lambda(T(n)) f$, we define $\Omega(\pm, \lambda ; A) \in$ \mathbb{C}^{\times}by

$$
\delta(f) \pm c(\delta(f))=\Omega(\pm, \lambda ; A) \xi_{ \pm}
$$

§10. Rationality.

Theorem 2. Let χ be a character of conductor C. Let $\lambda: h_{k}\left(\Gamma_{0}(C), \chi ; \mathbb{Z}[\chi]\right) \rightarrow \overline{\mathbb{Q}}(k \geq 1)$ be a $\mathbb{Z}[\chi]$-algebra homomorphism. Then for a valuation ring A of $\mathbb{Q}(\lambda)$, we have, up to sign,
$\underline{i^{k} W(\lambda) C^{(k+1) / 2} \Gamma(1, \operatorname{Ad}(\lambda)) L(1, \operatorname{Ad}(\lambda))}$
$\Omega(+, \lambda ; A) \Omega(-, \lambda ; A)$

$$
=\left\langle\xi_{+}, \xi_{-}\right\rangle \in \mathbb{Q}(\lambda) .
$$

If the residual characteristic of A is prime to $n!(\Leftrightarrow$ $p>n$) or f is ordinary, then $\left\langle\xi_{+}, \xi_{-}\right\rangle \in A$.

We note

$$
\begin{aligned}
& \left\langle\Omega(+, \lambda ; A) \xi_{+}, \Omega(-, \lambda ; A) \xi_{-}\right\rangle \\
& \quad=\Omega(+, \lambda ; A) \Omega(-, \lambda ; A)\left\langle\xi_{+}, \xi_{-}\right\rangle
\end{aligned}
$$

and $\delta(f) \mid \tau=W(\lambda)(-1)^{n} C^{(n / 2)} \delta\left(f_{c}\right)$, where $f_{c}=$ $\sum_{m=1}^{\infty} \overline{\lambda(T(m))} q^{m}$ and $f \mid \tau=W(\lambda) f_{c}$ for and $W(\lambda) \in$ \mathbb{C} with $|W(\lambda)|=1$.
§11. Proof. By definition, we have

$$
\begin{aligned}
2 \Omega(+, \lambda ; A) \Omega & (-, \lambda ; A)\left\langle\xi_{+}, \xi_{-}\right\rangle \\
& =[\delta(f)+c \delta(f),(\delta(f)-c \delta(f)) \mid \tau]
\end{aligned}
$$

which is equal to, up to sign,

$$
\begin{aligned}
& 4 i \int_{Y_{0}(C)}[\delta(f) \mid \tau, c \delta(f)] d x \wedge d y \\
& \quad=2^{k+1} i^{k} W(\lambda) C^{((k-1) / 2} \int_{Y_{0}(C)}\left|f_{c}\right|^{2} y^{k-1} d x d y \\
& \quad=2^{k+1} i^{k} W(\lambda) C^{(k-1) / 2} \int_{Y_{0}(C)}|f|^{2} y^{k-1} d x d y \\
& \quad=i^{k} W(\lambda) C^{(k+1) / 2} \Gamma(1, \operatorname{Ad}(\lambda)) L(1, \operatorname{Ad}(\lambda)),
\end{aligned}
$$

where $Y_{0}(C)=\Gamma_{0}(C) \backslash \mathfrak{H}$.
Let $\mathbb{T}=\mathbb{T}_{k}$ be the local ring of $h_{k, \chi / W}$ through which λ factor through. Let $1_{\mathbb{T}}$ be the idempotent of \mathbb{T}. Since the conductor of χ coincides with $C, h_{k, \chi / W}$ is reduced. Thus for the quotient field K of W, the unique local ring \mathbb{I}_{K} of $h_{k, \chi / K}$ through which λ factors is isomorphic to K. Let 1_{λ} be the idempotent of \mathbb{I}_{K} in $h_{k, \chi / K}$.

§12. The adjoint L-value as an index.

Corollary 1. Let the assumption be as in Theorem 2. Let A be a valuation ring of residual characteristic $p>3$. Suppose that \langle,$\rangle induces a per-$ fect duality on $L:=1_{\mathbb{T}} H_{\text {cusp }}^{1}\left(\Gamma_{0}(C), L(n, \chi ; W)\right)$ (for example if f is ordinary). Then

$$
\begin{aligned}
&\left|\frac{i^{k+1} W(\lambda) C^{k / 2} \Gamma(1, A d(\lambda)) L(1, A d(\lambda))}{\Omega(+, \lambda ; A) \Omega(-, \lambda ; A)}\right|_{p}^{-r(W)} \\
&=\left|L^{\lambda} / L_{\lambda}\right|
\end{aligned}
$$

where $r(W)=\operatorname{rank}_{\mathbb{Z}_{p}} W, L^{\lambda}=1_{\lambda} L$, and L_{λ} is given by the intersection

$$
L \cap H_{\text {cusp }}^{1}\left(\Gamma_{0}(C), L(n, \chi ; K)\right)[\lambda,+] .
$$

§13. Proof of the corollary.

By our choice, ξ_{+}is the generator of L_{λ}.
Similarly we define $M^{\lambda}=1_{\lambda} M$ for

$$
M:=1_{\mathbb{T}} H_{c u s p}^{1}\left(\Gamma_{0}(C), L(n, \chi ; W)\right)[-],
$$

and $M_{\lambda}=M^{\lambda} \cap M$ in $H_{\text {cusp }}^{1}\left(\Gamma_{0}(C), L(n, \chi ; K)\right)[-]$. Then ξ_{-}is a generator of M_{λ}.

Since the pairing is perfect, $L_{\lambda} \cong \operatorname{Hom}_{W}\left(M^{\lambda}, W\right)$ and $L^{\lambda} \cong \operatorname{Hom}_{W}\left(M_{\lambda}, W\right)$ under \langle,$\rangle . Then it is$ an easy exercise to see that

$$
\left|\left\langle\xi_{+}, \xi_{-}\right\rangle\right|_{p}^{-1}=\left|L^{\lambda} / L_{\lambda}\right| .
$$

§14. Conclusion.

Decompose $\mathbb{T} \otimes_{W} K=K \oplus X$ as an algebra direct sum so that the projection to K is induced by λ.

If $L \cong \mathbb{T}$ as \mathbb{T}-modules, by definition, we have

$$
\operatorname{Im}(\lambda) \cong L^{\lambda} \quad \text { and } \quad L_{\lambda} \cong(K \oplus 0) \cap \mathbb{T}
$$

Thus $L^{\lambda} / L_{\lambda} \cong C_{0}(\lambda ; W)$, which implies the nonabelian class number formula.

The freeness of L over \mathbb{T} is a by-product of the Taylor-Wiles argument (proving Taylor-Wiles theorem: $R=\mathbb{T}$ theorem) applied to cohomology groups

$$
H_{c u s p}^{1}\left(\Gamma_{0}\left(C \prod_{q \in Q} q\right), L(n, \chi ; K)\right)[+]
$$

for a suitably chosen sets of finitely many promes Q outside $C p$.

