Arithmetic of adjoint L-values.

Haruzo Hida*

Department of Mathematics, UCLA, June 17, 2014

Abstract: We now relate $|C_0(\lambda; W)|$ to the corresponding adjoint L-value.

*Pune (India) lecture No.4 on June 17, 2014. The authors are partially supported by the NSF grants: DMS 0753991.

$\S1$. Set up.

• Fix an an algebra homomorphism $\lambda : h_{k,\chi/\mathbb{Z}[\chi]} \to \overline{\mathbb{Q}}_p$ and write the associated Galois representation $\rho_{\lambda} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(W)$ and a new form $f = f_{\lambda} \in S_{k+1,\chi}$ of conductor C; so, N = C.

 \bullet Writing the Hecke polynomial at a prime ℓ as

$$1 - \lambda(T(\ell))X + \chi(\ell)\ell^k X^2 = (1 - \alpha_\ell X)(1 - \beta_\ell X),$$

we have the following Euler product convergent absolutely if Re(s) > 1:

$$L(s, Ad(\lambda)) = \prod_{\ell} \left\{ (1 - \frac{\alpha_{\ell}}{\beta_{\ell}} \ell^{-s}) (1 - \ell^{-s}) (1 - \frac{\beta_{\ell}}{\alpha_{\ell}} \ell^{-s}) \right\}^{-1}$$

• It has an analytic continuation to the whole complex s-plane (due to Shimura 1975 and Gelbart– Jacquet in 1978) and satisfies a functional equation of the form $1 \leftrightarrow 1 - s$ whose Γ -factor is

$$\Gamma(s, Ad(\lambda)) = \Gamma_{\mathbb{C}}(s+k)\Gamma_{\mathbb{R}}(s+1),$$

where $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s}\Gamma(s)$ and $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2}\Gamma(\frac{s}{2})$

1

\S **2.** Inner product formula.

Theorem 1 (Shimura). Let χ be a primitive character modulo C. Let $\lambda : h_k(\Gamma_0(C), \chi; \mathbb{Z}[\chi]) \rightarrow \mathbb{C}$ be a $\mathbb{Z}[\chi]$ -algebra homomorphism for $k \geq 1$. Then

 $\Gamma(s, Ad(\lambda))L(s, Ad(\lambda))$

has an analytic continuation to the whole complex *s*-plane and

$$\Gamma(1, Ad(\lambda))L(1, Ad(\lambda))$$

= $2^{k+1}C^{-1}\int_{\Gamma_0(C)\setminus\mathfrak{H}} |f|^2 y^{k-1} dx dy,$

where $f = \sum_{n=1}^{\infty} \lambda(T(n))q^n \in S_{k+1}(\Gamma_0(C), \chi)$ and $z = x + iy \in \mathfrak{H}$. If C = 1, we have the following functional equation:

 $\Gamma(s, Ad(\lambda))L(s, Ad(\lambda)) = \Gamma(1-s, Ad(\lambda))L(1-s, Ad(\lambda)).$

$\S3$. Relation to a Rankin product.

We consider $L(s - k, \rho_{\lambda} \otimes \tilde{\rho}_{\lambda})$ for the Galois representation ρ_{λ} associated to λ and its contragredient $\tilde{\rho}_{]}lm = {}^{t}\rho_{\lambda}$. Since $\rho_{\lambda} \otimes \tilde{\rho}_{\lambda} = 1 \oplus Ad(\rho_{\lambda})$, we have

$$L(s, \rho_{\lambda} \otimes \tilde{\rho}_{\lambda}) = L(s, Ad(\lambda))\zeta(s)$$
(1)

for the Riemann zeta function $\zeta(s)$. Then, the Rankin-convolution method tells us [LFE, Theorem 9.4.1] that

$$\begin{pmatrix} 2^{2-s} \prod_{p \mid C} (1 - \frac{1}{p^{s-k}}) \end{pmatrix} \Gamma_{\mathbb{C}}(s) L(s-k, \rho_{\lambda} \otimes \widetilde{\rho}_{\lambda}) \\ = \int_{\Gamma_{0}(C) \setminus \mathfrak{H}} |f|^{2} E_{0,C}'(s-k, 1) y^{-2} dx dy,$$

where $E'_0(s, 1)$ is an Eisenstein series of level C for the trivial character 1 defined in [LFE, page 297].

This expression gives a meromorphic continuation of $L(s, \rho_{\lambda} \otimes \tilde{\rho}_{\lambda})$ and $L(s, Ad(\lambda))$, as $\zeta(s)$ is shown meromophic from Riemann's time.

$\S4$. Proof of Inner product formula.

The Eisenstein series has a simple pole at s = 1with constant residue: $\pi \prod_{p|C} (1 - \frac{1}{p})$, which yields

$$\begin{pmatrix} \left(\left(2^{1-k} \prod_{p \mid C} (1 - \frac{1}{p}) \right) \right) \\ \times \operatorname{Res}_{s=k+1} \Gamma_{\mathbb{C}}(s) L(s - k, \rho_{\lambda} \otimes \widetilde{\rho}_{\lambda}) \\ = \pi \prod_{p \mid C} (1 - \frac{1}{p}) \int_{\Gamma_{0}(C) \setminus \mathfrak{H}} |f|^{2} y^{-2} dx dy.$$

This combined with (1) yields the residue formula and analytic continuation of $L(s, Ad(\lambda))$ over the region of $Re(s) \ge 1$.

Since $\Gamma_{\mathbb{C}}(s)E'_{0,C}(s,1)$ satisfies a functional equation of the form $s \mapsto 1-s$ (see [LFE, Theorem 9.3.1])), we have the continuation of

$$\Gamma_{\mathbb{C}}(s)\Gamma_{\mathbb{C}}(s-k)L(s-k,\rho_{\lambda}\otimes\widetilde{\rho}_{\lambda})$$

and functional equation. In additin, we get holomorphy of $L(s, Ad(\rho_{\lambda}))$ around s = 1.

§5. Eichler-Shimura isomorphism.

Consider the inclusion $I : SL_2(\mathbb{Z}) \hookrightarrow \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}^2) = GL_2(\mathbb{C})$. Let us take the *n*th symmetric tensor representation $I^{sym\otimes n}$ whose module twisted by the action of χ , we write as $L(n,\chi;\mathbb{C})$. Recall the Eichler-Shimura isomorphism,

$$\delta: S_{k+1}(\Gamma_0(C), \chi) \oplus \overline{S}_{k+1}(\Gamma_0(C), \chi) \\ \cong H^1_{cusp}(\Gamma_0(C), L(n, \chi; \mathbb{C})),$$

where k = n + 1, $\overline{S}_{k+1}(\Gamma_0(C), \chi)$ is the space of anti-holomorphic cusp forms of weight k + 1 of "Neben" type character χ , and

 $H^1_{cusp}(\Gamma_0(C), L(n, \chi; \mathbb{C})) \subset H^1(\Gamma_0(C), L(n, \chi; \mathbb{C}))$ is the image of compactly supported cohomology in the ordinary cohomology group.

Identify $L(n, \chi; A) = AX^n + AX^{n-1}Y + \dots + AY^j$ (the space of homogeneous polynomials) and let $\alpha \in SL_2(\mathbb{Z})$ act by $(X, Y) \mapsto \chi(d)(X, Y)^t \alpha^{\iota}$ with $\alpha^{\iota} \alpha = \det(\alpha)$ for the lower right cornar entry dof α .

$\S6$. Eichler-Shimura as de Rham map.

The Eichler-Shimura map δ is specified in [LFE] as follows: We put

$$\omega(f) = \begin{cases} f(z)(X - zY)^n dz & \text{if } f \in S_k(\Gamma_0(C), \chi), \\ f(z)(X - \overline{z}Y)^n d\overline{z} & \text{if } f \in \overline{S}_k(\Gamma_0(C), \chi). \end{cases}$$

Then we associate to f the de Rham cohomology class of $[\omega(f)]$ which gives

$$S_{k+1}(\Gamma_0(C),\chi) \oplus \overline{S}_{k+1}(\Gamma_0(C),\chi)$$

$$\cong H^1_{cusp,dR}(X_0(C),\mathcal{L}(n,\chi;\mathbb{C})),$$

where $\mathcal{L}(n,\chi;\mathbb{C})$ is the C^{∞} -sheaf associated o $L(n,\chi;\mathbb{C})$. Then we associate to f the cohomology class of the 1-cocycle $\gamma \mapsto \int_{z}^{\gamma(z)} \omega(f)$ of $\Gamma_{0}(C)$ for a fixed point z on the upper half complex plane. The map δ does not depend on the choice of z.

§7. Poincaré duality.

Define $[,]: L(n, \chi; A) \times L(n, \overline{\chi}; A) \to A$ by $\left[\sum_{j} a_{j} X^{n-j} Y^{j}, \sum_{j} b_{j} X^{n-j} Y^{j}\right] = \sum_{j=0}^{n} (-1)^{j} {n \choose j}^{-1} a_{j} b_{n-j}.$ By definition, $[(X - zY)^{n}, (X - \overline{z}Y)^{n}] = (z - \overline{z})^{n}.$ It is an easy exercise to check that $[\gamma P, \gamma Q] = \det \gamma^{n} [P, Q]$ for $\gamma \in GL_{2}(A)$. Thus we have a Γ homomorphism $L(n, \chi; A) \otimes_{A} L(n, \chi^{-1}; A) \to A,$ and we get the cup product pairing for $Y = \Gamma_{0}(N) \setminus \mathfrak{H}$

$$[,]: H^1_c(Y, \mathcal{L}(n, \chi; A)) \times H^1(Y, \mathcal{L}(n, \chi^{-1}; A)) \longrightarrow H^2_c(Y, A) \cong A.$$

This pairing induces the cuspidal pairing

$$[,]: H^{1}_{cusp}(Y, \mathcal{L}(n, \chi; A)) \times H^{1}_{cusp}(Y, \mathcal{L}(n, \chi^{-1}; A)) \longrightarrow A.$$

This pairing is perfect on the ordinary part (or if $n! \in A^{\times}$).

\S 8. Hecke equivariance of the pairing.

The action of $\tau = \begin{pmatrix} 0 & -1 \\ C & 0 \end{pmatrix}$ defines a quasi-involution on the cohomology

$$\tau : H^{1}_{cusp}(\Gamma_{0}(C), L(n, \chi; A)) \to H^{1}_{cusp}(\Gamma_{0}(C), L(n, \chi^{-1}; A)),$$

which is given by $u \mapsto \{\gamma \mapsto \tau u(\tau \gamma \tau^{-1})\}$ for each homogeneous 1-cocycle u. The cocycle $u|\tau$ has values in $L(n, \chi^{-1}; A)$ because conjugation by τ interchanges the diagonal entries of γ . We have $\tau^2 = (-C)^n$ and $[x|\tau, y] = [x, y|\tau]$. Then we modify the above pairing [,] by τ and define $\langle x, y \rangle = [x, y|\tau]$.

The operator T(n) is symmetric with respect to this pairing:

$$\langle x|T(n),y\rangle = \langle x,y|T(n)\rangle.$$
 (2)

\S **9.** Periods.

We now regard $\lambda : h_{k,\chi/\mathbb{Z}[\chi]} \to \mathbb{C}$ as actually having values in $W \cap \overline{\mathbb{Q}}$ (via the fixed embedding: $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$). Put $A = W \cap \mathbb{Q}(\lambda)$, and A is a valuation ring of $\mathbb{Q}(\lambda)$ of residual characteristic p. The Frobenius c at ∞ acts on the cohomology, and the corresponding \pm -eigenspaces are indicated by adding $[\pm]$.

For the image L_{\pm} of $H^1_{cusp}(\Gamma_0(C), L(n, \chi; A))[\pm]$ in $H^1_{cusp}(\Gamma_0(C), L(n, \chi; \mathbb{Q}(\lambda)))[\pm]$,

 $H^1_{cusp}(\Gamma_0(C), L(n, \chi; \mathbb{Q}(\lambda)))[\lambda, \pm] \cap L_{\pm} = A\xi_{\pm}$ for a generator ξ_{\pm} . Hereafter, we write L for L[+].

For the normalized eigenform $f \in S_{\kappa}(\Gamma_0(C), \chi)$ with $T(n)f = \lambda(T(n))f$, we define $\Omega(\pm, \lambda; A) \in \mathbb{C}^{\times}$ by

$$\delta(f) \pm c(\delta(f)) = \Omega(\pm,\lambda;A)\xi_{\pm}.$$

§10. Rationality.

Theorem 2. Let χ be a character of conductor C. Let $\lambda : h_k(\Gamma_0(C), \chi; \mathbb{Z}[\chi]) \to \overline{\mathbb{Q}} \ (k \ge 1)$ be a $\mathbb{Z}[\chi]$ -algebra homomorphism. Then for a valuation ring A of $\mathbb{Q}(\lambda)$, we have, up to sign,

$$\frac{i^k W(\lambda) C^{(k+1)/2} \Gamma(1, Ad(\lambda)) L(1, Ad(\lambda))}{\Omega(+, \lambda; A) \Omega(-, \lambda; A)} = \langle \xi_+, \xi_- \rangle \in \mathbb{Q}(\lambda).$$

If the residual characteristic of A is prime to $n!(\Leftrightarrow p > n)$ or f is ordinary, then $\langle \xi_+, \xi_- \rangle \in A$.

We note

$$\begin{split} \langle \Omega(+,\lambda;A)\xi_+, \Omega(-,\lambda;A)\xi_- \rangle \\ &= \Omega(+,\lambda;A)\Omega(-,\lambda;A)\langle\xi_+,\xi_- \rangle \\ \text{and } \delta(f)|\tau = W(\lambda)(-1)^n C^{(n/2)}\delta(f_c), \text{ where } f_c = \\ \sum_{m=1}^{\infty} \overline{\lambda(T(m))}q^m \text{ and } f|\tau = W(\lambda)f_c \text{ for and } W(\lambda) \in \\ \mathbb{C} \text{ with } |W(\lambda)| = 1. \end{split}$$

\S **11. Proof.** By definition, we have

$$2\Omega(+,\lambda;A)\Omega(-,\lambda;A)\langle\xi_+,\xi_-\rangle = [\delta(f) + c\delta(f), (\delta(f) - c\delta(f))|\tau],$$

which is equal to, up to sign,

$$\begin{aligned} 4i \int_{Y_0(C)} [\delta(f)|\tau, c\delta(f)] dx \wedge dy \\ &= 2^{k+1} i^k W(\lambda) C^{((k-1)/2} \int_{Y_0(C)} |f_c|^2 y^{k-1} dx dy \\ &= 2^{k+1} i^k W(\lambda) C^{(k-1)/2} \int_{Y_0(C)} |f|^2 y^{k-1} dx dy \\ &= i^k W(\lambda) C^{(k+1)/2} \Gamma(1, Ad(\lambda)) L(1, Ad(\lambda)), \end{aligned}$$
where $Y_0(C) = \Gamma_0(C) \setminus \mathfrak{H}$.

Let $\mathbb{T} = \mathbb{T}_k$ be the local ring of $h_{k,\chi/W}$ through which λ factor through. Let $1_{\mathbb{T}}$ be the idempotent of \mathbb{T} . Since the conductor of χ coincides with C, $h_{k,\chi/W}$ is reduced. Thus for the quotient field K of W, the unique local ring \mathbb{I}_K of $h_{k,\chi/K}$ through which λ factors is isomorphic to K. Let 1_{λ} be the idempotent of \mathbb{I}_K in $h_{k,\chi/K}$.

\S **12.** The adjoint L-value as an index.

Corollary 1. Let the assumption be as in Theorem 2. Let A be a valuation ring of residual characteristic p > 3. Suppose that \langle , \rangle induces a perfect duality on $L := 1_{\mathbb{T}} H^1_{cusp}(\Gamma_0(C), L(n, \chi; W))$ (for example if f is ordinary). Then

$$\left\|\frac{i^{k+1}W(\lambda)C^{k/2}\Gamma(1,Ad(\lambda))L(1,Ad(\lambda))}{\Omega(+,\lambda;A)\Omega(-,\lambda;A)}\right\|_{p}^{-r(W)} = |L^{\lambda}/L_{\lambda}|,$$

where $r(W) = \operatorname{rank}_{\mathbb{Z}_p} W$, $L^{\lambda} = \mathbf{1}_{\lambda} L$, and L_{λ} is given by the intersection

 $L \cap H^{1}_{cusp}(\Gamma_{0}(C), L(n, \chi; K))[\lambda, +].$

\S **13.** Proof of the corollary.

By our choice, ξ_+ is the generator of L_{λ} .

Similarly we define $M^{\lambda} = \mathbf{1}_{\lambda}M$ for

 $M := \mathbf{1}_{\mathbb{T}} H^{\mathbf{1}}_{cusp}(\Gamma_{0}(C), L(n, \chi; W))[-],$

and $M_{\lambda} = M^{\lambda} \cap M$ in $H^{1}_{cusp}(\Gamma_{0}(C), L(n, \chi; K))[-]$. Then ξ_{-} is a generator of M_{λ} .

Since the pairing is perfect, $L_{\lambda} \cong \operatorname{Hom}_{W}(M^{\lambda}, W)$ and $L^{\lambda} \cong \operatorname{Hom}_{W}(M_{\lambda}, W)$ under \langle , \rangle . Then it is an easy exercise to see that

$$|\langle \xi_+, \xi_- \rangle|_p^{-1} = |L^{\lambda}/L_{\lambda}|.$$

$\S14$. Conclusion.

Decompose $\mathbb{T} \otimes_W K = K \oplus X$ as an algebra direct sum so that the projection to K is induced by λ .

If $L \cong \mathbb{T}$ as \mathbb{T} -modules, by definition, we have

 $\operatorname{Im}(\lambda) \cong L^{\lambda}$ and $L_{\lambda} \cong (K \oplus 0) \cap \mathbb{T}$.

Thus $L^{\lambda}/L_{\lambda} \cong C_0(\lambda; W)$, which implies the nonabelian class number formula.

The freeness of L over \mathbb{T} is a by-product of the Taylor-Wiles argument (proving Taylor-Wiles theorem: $R = \mathbb{T}$ theorem) applied to cohomology groups

$$H^{1}_{cusp}(\Gamma_{0}(C\prod_{q\in Q}q), L(n,\chi;K))[+]$$

for a suitably chosen sets of finitely many promes Q outside Cp.