Arithmetic of adjoint L-values.

Haruzo Hida*

Department of Mathematics, UCLA, June 16, 2014

Abstract: We describe R = T theorems and its implication to the adjoint L-values.

*Pune (India) lecture No.3 on June 14, 2014. The authors are partially supported by the NSF grants: DMS 0753991.

\S **1. Set up.**

• Fix a field identification $\mathbb{C} \cong \mathbb{C}_p$ which induces $\overline{\mathbb{Q}} \stackrel{i_p}{\hookrightarrow} \overline{\mathbb{Q}}_p \subset \mathbb{C}_p$.

• A p-adic analytic family \mathcal{F} of modular forms is defined with respect to i_p .

• We write $|\alpha|_p$ for the *p*-adic absolute value (with $|p|_p = 1/p$) induced by i_p .

• Take a Dirichlet character $\psi : (\mathbb{Z}/Np^{r+1}\mathbb{Z})^{\times} \to W^{\times}$ with $(p \nmid N, r \geq 0)$, and consider the space of elliptic cusp forms $S_{k+1,\psi} := S_{k+1}(\Gamma_0(Np^{r+1}), \psi)$ of weight k + 1 with character ψ .

• Let the ring $\mathbb{Z}[\psi] \subset \mathbb{C}$ and $\mathbb{Z}_p[\psi] \subset \overline{\mathbb{Q}}_p$ be generated by the values ψ over \mathbb{Z} and \mathbb{Z}_p , respectively. • We assume that the $\psi_p = \psi|_{(\mathbb{Z}/p^r+1\mathbb{Z})^{\times}}$ has conductor p^{r+1} if non-trivial and r = 0 if trivial.

• Since we will consider only U(p)-eigenforms with p-adic unit eigenvalues (under $|\cdot|_p$), this does not pose any restriction.

- We assume that N is cube-free not to worry about nilpotence in the Hecke algebra.
- We write N_{ψ} for Np^{r+1} if confusion is unlikely.

\S 2. Finite level Hecke algebra.

The Hecke algebra over $\mathbb{Z}[\psi]$ is the subalgebra of the linear endomorphism algebra of $S_{k+1}(\Gamma_0(N_{\psi}), \psi)$ generated by Hecke operators T(n):

$$h = h_{k,\psi} = h_k(\Gamma_0(N_{\psi}), \psi; \mathbb{Z}[\psi])$$

= $\mathbb{Z}[\psi][T(n)|n = 1, 2, \cdots]$
 $\subset \operatorname{End}(S_{k+1}(\Gamma_0(N_{\psi}), \psi)),$

where T(n) is the Hecke operator for an integer n > 0. We put $h_{k,\psi/A} = h \otimes_{\mathbb{Z}[\psi]} A$ for any $\mathbb{Z}[\psi]$ -algebra A. For a prime l|N, T(l) is often written as U(l).

Let $S_{k+1,\psi/A}$ be the space of A-integral cusp forms of weight k + 1, of character ψ and of level N_{ψ} . If $A \subset \mathbb{C}$, we have

$$S_{k+1,\psi/A} = \{ f = \sum_{n=1}^{\infty} a(n,f)q^n \in S_{k+1,\psi} | a(n,f) \in A \}$$

for $\sum_{n} a(n, f)q^{n}$ is the *q*-expansion at the ∞ cusp. For any ring A (not necessarily in \mathbb{C}), we have $S_{k+1,\psi/A} = S_{k+1,\psi/\mathbb{Z}[\psi]} \otimes_{\mathbb{Z}[\psi]} A$.

\S **3.** Ordinary part.

• For *p*-profinite ring *A*, the ordinary part $\mathbf{h}_{k,\psi/A} \subset h_{k,\psi/A}$ is the maximal ring direct summand on which U(p) is invertible.

• Writing e for the idempotent of $\mathbf{h}_{k,\psi/A}$, and hence $e = \lim_{n\to\infty} U(p)^{n!}$ under the p-profinite topology of $h_{k,\psi/A}$.

• We write the image of the idempotent as $S_{k+1,\psi/A}^{ord}$ (as long as e is defined over A).

• Note here if r = 0 (i.e., $\psi_p = 1$), the projector e (actually defined over $\overline{\mathbb{Q}}$) induces a surjection $e: S_{k+1}(\Gamma_0(N), \psi; A) \to S_{k+1}^{ord}(\Gamma_0(Np), \psi; A)$ if k > 1.

\S **4.** Duality.

Define a pairing (\cdot, \cdot) : $h_{k,\psi/A} \times S_{k+1,\psi/A} \to A$ by (h, f) = a(1, f|h). Write $M^* = \text{Hom}_A(M, A)$ for an A-module. By the celebrated formula of Hecke:

$$a(m, f|T(n)) = \sum_{0 < d \mid (m, n), (d, N_{\psi}) = 1} \psi(d) d^{k} a(\frac{mn}{d^{2}}, f),$$

it is an easy exercise to show that, as long as A is a $\mathbb{Z}[\psi]$ -algebra,

$$\begin{split} S_{k+1,\psi/A}^* &\cong h_{k,\psi/A}, \ S_{k+1,\psi/A}^{ord,*}, A) \cong \mathbf{h}_{k,\psi/A} \\ h_{k,\psi/A}^* &\cong S_{k+1,\psi/A}, \ \mathbf{h}_{k,\psi/A}^* \cong S_{k+1,\psi/A}^{ord} \\ &\mathsf{Hom}_{A-\mathrm{alg}}(h_{k,\psi/A}, A) \\ &\cong \{f \in S_{k+1,\psi/A} : f | T(n) = \lambda(n)f, \ a(1,f) = 1\}. \\ &\mathsf{The second isomorphism can be written as } \phi \mapsto \\ &\sum_{n=1}^{\infty} \phi(T(n))q^n \text{ for } \phi : h_{k,\psi/A} \to A \text{ and the last} \\ &\mathsf{is just this one restricted to } A-\mathrm{algebra homomorphisms.} \end{split}$$

\S **5. Big Hecke algebra.**

Now we move Neben characters, puting $\psi_k := \psi \omega^{-k}$ for a character ψ modulo Np. Recall $\Lambda = W[[T]]$. Defining the Hecke algebra as $\Lambda[T(n)|n = 1, 2, \ldots] \subset \operatorname{End}_{\Lambda}(S_{\Lambda})$ for the space S_{Λ} of ordinary Λ -adic forms interpolating cusp forms in $S_{k+1,\psi_k\epsilon/W}^{ord}$ for k > 1 and $\epsilon : \mathbb{Z}_p^{\times} \to \mu_p \infty(W)$, we have the big Hecke algebra h. Here is its characterizing properties:

(C1) h is free of finite rank over Λ equipped with $T(n) \in \mathbf{h}$ for all $1 \leq n \in \mathbb{Z}$ (so U(l) for l|Np), (C2) if $k \geq 1$ and $\epsilon : \mathbb{Z}_p^{\times} \to \mu_p^{\infty}$ is a character,

 $\mathbf{h} \otimes_{\mathbf{\Lambda}, t \mapsto \epsilon(\gamma) \gamma^k} W[\epsilon] \cong \mathbf{h}_{k, \epsilon \psi_k} \ (\gamma = 1 + p),$

sending T(n) to T(n) (and U(l) to U(l) for l|Np), where $W[\epsilon] \subset \mathbb{C}_p$ is the *W*-subalgebra generated by the values of ϵ .

$\S6$. Irreducible components and families.

Let $\text{Spec}(\mathbb{I})$ be a reduced irreducible component $\text{Spec}(\mathbb{I}) \subset \text{Spec}(h)$. Write a(n) for the image of T(n) in \mathbb{I} (so, a(p) is the image of U(p)).

If a point P of $\text{Spec}(\mathbb{I})(\overline{\mathbb{Q}}_p)$ kills $(t - \epsilon(\gamma)\gamma^k)$ with $1 \leq k \in \mathbb{Z}$ (i.e., $P((t - \epsilon(\gamma)\gamma^k)) = 0)$, we call it an *arithmetic* point and we write $\epsilon_P = \epsilon$, $\psi_P = \epsilon_P \psi \omega^{-k}$, $k(P) = k \geq 1$ and $p^{r(P)}$ for the order of ϵ_P .

If P is arithmetic, by (C2), we have a Hecke eigenform $f_P \in S_{k+1}(\Gamma_0(Np^{r(P)+1}), \epsilon \psi_k)$ such that its eigenvalue for T(n) is given by

$$a_P(n) := P(a(n)) \in \overline{\mathbb{Q}}_p$$

for all n. Thus \mathbb{I} gives rise to a family $\mathcal{F} = \{f_P | arithemtic P \in \operatorname{Spec}(\mathbb{I})\}\$ of Hecke eigenforms, and an \mathbb{I} -adic forms $\mathcal{F} := \sum_n a(n)q^n$.

$\S7$. Modular Galois representation.

Each connected component $\operatorname{Spec}(\mathbb{T}) \subset \operatorname{Spec}(h)$ has a 2-dimensional absolutely irreducible continuous representation $\rho_{\mathbb{T}}$ of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with coefficients in the quotient field of \mathbb{T} . The representation $\rho_{\mathbb{T}}$ restricted to the *p*-decomposition group D_p is reducible with unramified *quotient* character.

As is well known now, $\rho_{\mathbb{T}}$ is unramified outside Np and satisfies

 $\begin{aligned} &\mathsf{Tr}(\rho_{\mathbb{T}}(Frob_l)) = a(l) \quad (l \nmid Np), \\ &\rho_{\mathbb{T}}([\gamma^s, \mathbb{Q}_p]) \sim \begin{pmatrix} t^s & * \\ 0 & 1 \end{pmatrix} \text{ and } \rho_{\mathbb{T}}([p, \mathbb{Q}_p]) \sim \begin{pmatrix} * & * \\ 0 & a(p) \end{pmatrix}, \\ &\text{where } [x, \mathbb{Q}_p] \text{ is the local Artin symbol.} \end{aligned}$

For each $P \in \text{Spec}(\mathbb{T})$, writing $\kappa(P)$ for the residue field of P, we also have a semi-simple Galois representation $\rho_P : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\kappa(P))$ unramified outside Np such that $\text{Tr}(\rho_P(Frob_l)) = a(l)$ mod P for all primes $l \nmid Np$.

§8. $\rho_{\mathbb{T}}$ as deformation of $\overline{\rho}$.

Start with a connected component Spec(\mathbb{T}) of Spec(h) of level Np^{∞} with character ψ .

Recall the deformation properties (D1–3): (D1) ρ is unramified outside Np, (D2) $\rho|_{\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ with δ unramified while ϵ ramified, (D3) For each prime l|N, writing I_l for the inertia group $\rho|_{I_l} \cong \begin{pmatrix} \psi_l & * \\ 0 & 1 \end{pmatrix}$ regarding $\psi_l = \psi|_{\mathbb{Z}_l^{\times}}$ as the character of I_l by local class field theory.

We assume that $\overline{\rho}$ is **absolutely irreducible**. Under this condition, $\rho_{\mathbb{T}}$ has values in $GL_2(\mathbb{T})$ and its isomorphism class is unique (Caraylol, Serre). Thus ρ_P has values in $GL_2(\mathbb{T}/P)$. In particular, ρ_P is a deformation of $\overline{\rho}$ satisfying (D1–3) and (det).

\S **9.** Hecke algebras are universal.

For simplicity, assume that N = C for the primeto-p conductor C of \overline{p} . Here is the " $R = \mathbb{T}$ " theorem:

Theorem 1 (Wiles et al). If $\overline{\rho}$ is absolutely irreducible over $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}[\mu_p])$, $(\mathbb{T}, \rho_{\mathbb{T}})$ is a local complete intersection over Λ and is universal among deformations satisfying (D1–3).

Let $\widetilde{\mathbb{I}}$ be the integral closure of \mathbb{I} in its quotient field. Replace \mathbb{T} by $\mathbb{T}_{\mathbb{I}} := \mathbb{T} \otimes_{\Lambda} \widetilde{\mathbb{I}}$ and π by the composite $\lambda : \mathbb{T}_{\mathbb{I}} \xrightarrow{\pi \otimes 1} \mathbb{I} \otimes_{\Lambda} \widetilde{\mathbb{I}} \xrightarrow{a \otimes b \mapsto ab} \widetilde{\mathbb{I}}$. The local complete intersection property of \mathbb{T} implies the following facts for $\lambda : \mathbb{T}_{\mathbb{I}} \to \widetilde{\mathbb{I}}$:

Corollary 1. We have (1) $C_0(\lambda; \tilde{\mathbb{I}}) = \tilde{\mathbb{I}}/(L_p)$ for $L_p \in \tilde{\mathbb{I}}$. (2) $\operatorname{char}(C_0(\lambda; \tilde{\mathbb{I}})) = \operatorname{char}(C_1(\lambda; \tilde{\mathbb{I}}))$.

Since $\widetilde{\mathbb{I}}$ is free of finite rank over Λ , we get Gorensteinness: $\mathbb{T}^*_{\mathbb{I}} := \operatorname{Hom}_{\widetilde{\mathbb{I}}}(\mathbb{T}_{\mathbb{I}}, \widetilde{\mathbb{I}}) \cong \mathbb{T}_{\mathbb{I}}$ as $\mathbb{T}_{\mathbb{I}}$ -modules from $\operatorname{Hom}_{\Lambda}(\mathbb{T}, \Lambda)$.

§10. Proof of Corollary.

The assertion (2) is the consequence of Tate's theorem.

The fact (1) can be shown as follows. Write $b = \text{Ker}(\lambda)$; i.e., we have an exact sequence

 $0 \to \mathfrak{b} \to \mathbb{T}_{\mathbb{I}} \to \widetilde{\mathbb{I}} \to 0.$

For dimension 2 regular ring, reflexive modules are free. Thus b is the $\tilde{\mathbb{I}}$ -direct summand of \mathbb{T} . By taking $\tilde{\mathbb{I}}$ -dual, we have another exact sequence $0 \to \tilde{\mathbb{I}}^* \to \mathbb{T}^*_{\mathbb{I}} \to \mathfrak{b}^* \to 0$. For $Q = \operatorname{Frac}(\Lambda)$, $\operatorname{Frac}(\mathbb{T}_{\mathbb{I}}) = \mathbb{T}_{\mathbb{I}} \otimes_{\Lambda} Q = \operatorname{Frac}(\mathbb{I}) \oplus X$ for $X := \mathfrak{b}^* \otimes_{\Lambda} Q$ which is the complementary ring summand of $\operatorname{Frac}(\tilde{\mathbb{I}})$. Thus $\operatorname{Im}(\tilde{\mathbb{I}}^* \hookrightarrow \mathbb{T}^*_{\mathbb{I}} = \mathbb{T}_{\mathbb{I}}) \subset \mathbb{T}_{\mathbb{I}}$ is the ideal $\mathfrak{a} = (\operatorname{Frac}(\mathbb{I}) \oplus 0) \cap \mathbb{T}$. Since $C_0(\lambda; \mathbb{I}) = \tilde{\mathbb{I}}/\mathfrak{a}$ and $\mathfrak{a} \cong \tilde{\mathbb{I}}^* \cong \tilde{\mathbb{I}}$ is principal.

By Mazur's theorem, note

 $C_{1}(\boldsymbol{\lambda}; \widetilde{\mathbb{I}}) = \Omega_{\mathbb{T}_{\mathbb{I}}/\widetilde{\mathbb{I}}} \otimes_{\mathbb{T}_{\mathbb{I}}} \widetilde{\mathbb{I}} = \Omega_{\mathbb{T}/\Lambda} \otimes_{\mathbb{T}} \widetilde{\mathbb{I}} = C_{1}(\pi, \widetilde{\mathbb{I}}) \cong \mathrm{Sel}(\rho_{\widetilde{\mathbb{I}}})^{\vee}.$

\S **11.** Fixed determinant deformation.

For an arithmetic point P of Spec(Λ), recall $\psi_P = \epsilon_P \psi \omega^{-k(P)}$.

Theorem 2 (Wiles et al). If $\overline{\rho}$ is absolutely irreducible over $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}[\mu_p])$, $(\mathbb{T}/P\mathbb{T}, (\rho_{\mathbb{T}} \mod P))$ is a local complete intersection over W and is universal among deformations ρ satisfying (D1– 3) and

(det) det(ρ) = $\psi_P \nu^k$ for the *p*-adic cyclotomic character ν and k = k(P).

Actually Wiles–Taylor proved the first cases of Theorem 2 which actually implies Theorem 1 (see [MFG, Theorem 5.29] for this implication). In the same way as Corollary 1, we can prove

Corollary 2. Let $\lambda = (\lambda \mod \mathfrak{P})$ for an arithmetic $\mathfrak{P} \in \operatorname{Spec}(\widetilde{\mathbb{I}})(\overline{\mathbb{Q}}_p)$. We have $C_0(\lambda; \widetilde{\mathbb{I}}/\mathfrak{P}) = \widetilde{\mathbb{I}}/(L_p(\mathfrak{P}))$ for $L_p \in \widetilde{\mathbb{I}}$ in Corollary 1, where $L_p(\mathfrak{P}) = \mathfrak{P}(L_p)$.

§12. One variable adjoint main conjecture. Assume $p \nmid \varphi(C)$.

By Mazur's theorem, $C_1(\lambda; \tilde{\mathbb{I}}) \cong \operatorname{Sel}_{\mathbb{Q}}(Ad(\rho_{\tilde{\mathbb{I}}}))^{\vee}$, and $\operatorname{char}(\operatorname{Sel}_{\mathbb{Q}}(Ad(\rho_{\tilde{\mathbb{I}}})^{\vee}) = \operatorname{char}(C_0(\lambda; \tilde{\mathbb{I}})) = (L_p)$ and $\operatorname{char}(\operatorname{Sel}_{\mathbb{Q}}(Ad(\rho_{\mathfrak{P}})^{\vee}) = \operatorname{char}(C_0(\lambda; \tilde{\mathbb{I}}/\mathfrak{P})) = (L_p(\mathfrak{P}))$.

We will relate $L_p(\mathfrak{P})$ with $L(1, Ad(\rho_{\mathfrak{P}}))$ in the forthcoming last lecture, and we get the one variable adjoint main conjecture:

Corollary 3. There exists a *p*-adic L-function $L_p \in \widetilde{\mathbb{I}}$ such that we have $\operatorname{char}(\operatorname{Sel}_{\mathbb{Q}}(Ad(\rho_{\widetilde{\mathbb{I}}})^{\vee}) = (L_p)$ and $\operatorname{char}(\operatorname{Sel}_{\mathbb{Q}}(Ad(\rho_{\mathfrak{P}})^{\vee}) = (L_p(\mathfrak{P}))$ for all arithmetic points $\mathfrak{P} \in \operatorname{Spec}(\widetilde{\mathbb{I}})(\overline{\mathbb{Q}}_p)$. §13. Two variable adjoint main conjecture. In [H90], I made L_p to a two variable *p*-adic L-function $L \in \widetilde{\mathbb{I}}[[T]]$ interpolating $L(1+m, Ad(\rho_{\mathbb{I}}))$ (i.e., $\mathfrak{P}(L)(\gamma^m - 1) \doteq L(1+m, Ad(\rho_{\mathfrak{P}}) \otimes \omega^{-m})$ essentially).

Eric Urban [U06] proved the divisibility

 $L|\operatorname{char}(\operatorname{Sel}_{\mathbb{Q}}(\rho_{\widetilde{\mathbb{I}}}\otimes\kappa)^{\vee})|$

for the universal character κ : Gal $(\mathbb{Q}_{\infty}/\mathbb{Q}) \to W[[T]]^{\times}$ deforming the identity character unramified outside $p\infty$ in many cases (applying Eisenstein techniques to GSp(4) of Ribet-Greenberg-Wiles).

The function has an exceptional zero at T = 0; that is, we expect that $(L/T)|_{T=0} \doteq TL_p$? up to an \mathcal{L} -invariant. The \mathcal{L} -invariant is up to a non-zero constant in \mathbb{Z}_p given by $t\frac{da(p)}{dt}$ [H11]. The \mathcal{L} -invariant formula of Greenberg–Tilouine– Rosso tells us the equality if the family contains a cusp form giving rise to an elliptic curve with multiplicative reduction at p.