Arithmetic of adjoint L-values.

Haruzo Hida*

Department of Mathematics, UCLA, June 16, 2014

Abstract: We describe $R=T$ theorems and its implication to the adjoint L-values.
*Pune (India) lecture No. 3 on June 14, 2014. The authors are partially supported by the NSF grants: DMS 0753991.

§1. Set up.

- Fix a field identification $\mathbb{C} \cong \mathbb{C}_{p}$ which induces $\overline{\mathbb{Q}} \xrightarrow{i_{p}} \overline{\mathbb{Q}}_{p} \subset \mathbb{C}_{p}$.
- A p-adic analytic family \mathcal{F} of modular forms is defined with respect to i_{p}.
- We write $|\alpha|_{p}$ for the p-adic absolute value (with $|p|_{p}=1 / p$) induced by i_{p}.
- Take a Dirichlet character $\psi:\left(\mathbb{Z} / N p^{r+1} \mathbb{Z}\right)^{\times} \rightarrow$ W^{\times}with ($p \nmid N, r \geq 0$), and consider the space of elliptic cusp forms $S_{k+1, \psi}:=S_{k+1}\left(\Gamma_{0}\left(N p^{r+1}\right), \psi\right)$ of weight $k+1$ with character ψ.
- Let the ring $\mathbb{Z}[\psi] \subset \mathbb{C}$ and $\mathbb{Z}_{p}[\psi] \subset \overline{\mathbb{Q}}_{p}$ be generated by the values ψ over \mathbb{Z} and \mathbb{Z}_{p}, respectively.
- We assume that the $\psi_{p}=\left.\psi\right|_{\left(\mathbb{Z} / p^{r+1} \mathbb{Z}\right) \times}$ has conductor p^{r+1} if non-trivial and $r=0$ if trivial.
- Since we will consider only $U(p)$-eigenforms with p-adic unit eigenvalues (under $|\cdot|_{p}$), this does not pose any restriction.
- We assume that N is cube-free not to worry about nilpotence in the Hecke algebra.
- We write N_{ψ} for $N p^{r+1}$ if confusion is unlikely.
§2. Finite level Hecke algebra.
The Hecke algebra over $\mathbb{Z}[\psi]$ is the subalgebra of the linear endomorphism algebra of $S_{k+1}\left(\Gamma_{0}\left(N_{\psi}\right), \psi\right)$ generated by Hecke operators $T(n)$:

$$
\begin{aligned}
h=h_{k, \psi}= & h_{k}\left(\Gamma_{0}\left(N_{\psi}\right), \psi ; \mathbb{Z}[\psi]\right) \\
& =\mathbb{Z}[\psi][T(n) \mid n=1,2, \cdots] \\
& \subset \operatorname{End}\left(S_{k+1}\left(\Gamma_{0}\left(N_{\psi}\right), \psi\right)\right),
\end{aligned}
$$

where $T(n)$ is the Hecke operator for an integer $n>0$. We put $h_{k, \psi / A}=h \otimes_{\mathbb{Z}[\psi]} A$ for any $\mathbb{Z}[\psi]$ algebra A. For a prime $l \mid N, T(l)$ is often written as $U(l)$.

Let $S_{k+1, \psi / A}$ be the space of A-integral cusp forms of weight $k+1$, of character ψ and of level N_{ψ}. If $A \subset \mathbb{C}$, we have

$$
S_{k+1, \psi / A}=\left\{f=\sum_{n=1}^{\infty} a(n, f) q^{n} \in S_{k+1, \psi} \mid a(n, f) \in A\right\}
$$

for $\sum_{n} a(n, f) q^{n}$ is the q-expansion at the ∞ cusp. For any ring A (not necessarily in \mathbb{C}), we have $S_{k+1, \psi / A}=S_{k+1, \psi / \mathbb{Z}[\psi]} \otimes_{\mathbb{Z}[\psi]} A$.

§3. Ordinary part.

- For p-profinite ring A, the ordinary part $\mathbf{h}_{k, \psi / A} \subset$ $h_{k, \psi / A}$ is the maximal ring direct summand on which $U(p)$ is invertible.
- Writing e for the idempotent of $\mathbf{h}_{k, \psi / A}$, and hence $e=\lim _{n \rightarrow \infty} U(p)^{n!}$ under the p-profinite topology of $h_{k, \psi / A}$.
- We write the image of the idempotent as $S_{k+1, \psi / A}^{o r d}$ (as long as e is defined over A).
- Note here if $r=0$ (i.e., $\psi_{p}=1$), the projector e (actually defined over $\overline{\mathbb{Q}}$) induces a surjection $e: S_{k+1}\left(\Gamma_{0}(N), \psi ; A\right) \rightarrow S_{k+1}^{o r d}\left(\Gamma_{0}(N p), \psi ; A\right)$ if $k>1$.

§4. Duality.

Define a pairing ($\cdot, \cdot): h_{k, \psi / A} \times S_{k+1, \psi / A} \rightarrow A$ by $(h, f)=a(1, f \mid h)$. Write $M^{*}=\operatorname{Hom}_{A}(M, A)$ for an A-module. By the celebrated formula of Hecke:

$$
a(m, f \mid T(n))=\sum_{0<d \mid(m, n),\left(d, N_{\psi}\right)=1} \psi(d) d^{k} a\left(\frac{m n}{d^{2}}, f\right),
$$

it is an easy exercise to show that, as long as A is a $\mathbb{Z}[\psi]$-algebra,

$$
\begin{aligned}
& \left.S_{k+1, \psi / A}^{*} \cong h_{k, \psi / A}, S_{k+1, \psi / A}^{o r d, *}, A\right) \cong \mathbf{h}_{k, \psi / A} \\
& h_{k, \psi / A}^{*} \cong S_{k+1, \psi / A}, \mathbf{h}_{k, \psi / A}^{*} \cong S_{k+1, \psi / A}^{o r r}
\end{aligned}
$$

$\operatorname{Hom}_{A-\mathrm{alg}}\left(h_{k, \psi / A}, A\right)$

$$
\cong\left\{f \in S_{k+1, \psi / A}: f \mid T(n)=\lambda(n) f, a(1, f)=1\right\}
$$

The second isomorphism can be written as $\phi \mapsto$ $\sum_{n=1}^{\infty} \phi(T(n)) q^{n}$ for $\phi: h_{k, \psi / A} \rightarrow A$ and the last is just this one restricted to A-algebra homomorphisms.

§5. Big Hecke algebra.

Now we move Neben characters, puting $\psi_{k}:=$ $\psi \omega^{-k}$ for a character ψ modulo $N p$. Recall $\wedge=$ $W[[T]]$. Defining the Hecke algebra as $\wedge[T(n) \mid n=$ $1,2, \ldots] \subset \operatorname{End}_{\wedge}\left(\mathcal{S}_{\Lambda}\right)$ for the space \mathcal{S}_{\wedge} of ordinary Λ-adic forms interpolating cusp forms in $S_{k+1, \psi_{k} \epsilon / W}^{\text {ord }}$ for $k>1$ and $\epsilon: \mathbb{Z}_{p}^{\times} \rightarrow \mu_{p^{\infty}}(W)$, we have the big Hecke algebra \mathbf{h}. Here is its characterizing properties:
(C1) h is free of finite rank over \wedge equipped with $T(n) \in \mathbf{h}$ for all $1 \leq n \in \mathbb{Z}$ (so $U(l)$ for $l \mid N p$), (C2) if $k \geq 1$ and $\epsilon: \mathbb{Z}_{p}^{\times} \rightarrow \mu_{p^{\infty}}$ is a character,

$$
\mathbf{h} \otimes_{\wedge, t \mapsto \epsilon(\gamma) \gamma^{k}} W[\epsilon] \cong \mathbf{h}_{k, \epsilon \psi_{k}}(\gamma=1+p),
$$

sending $T(n)$ to $T(n)$ (and $U(l)$ to $U(l)$ for $l \mid N p$), where $W[\epsilon] \subset \mathbb{C}_{p}$ is the W-subalgebra generated by the values of ϵ.

§6. Irreducible components and families.

Let $\operatorname{Spec}(\mathbb{I})$ be a reduced irreducible component $\operatorname{Spec}(\mathbb{I}) \subset \operatorname{Spec}(\mathbf{h})$. Write $a(n)$ for the image of $T(n)$ in \mathbb{I} (so, $a(p)$ is the image of $U(p)$).

If a point P of $\operatorname{Spec}(\mathbb{I})\left(\overline{\mathbb{Q}}_{p}\right)$ kills $\left(t-\epsilon(\gamma) \gamma^{k}\right)$ with $1 \leq k \in \mathbb{Z}$ (i.e., $P\left(\left(t-\epsilon(\gamma) \gamma^{k}\right)\right)=0$), we call it an arithmetic point and we write $\epsilon_{P}=\epsilon, \psi_{P}=$ $\epsilon_{P} \psi \omega^{-k}, k(P)=k \geq 1$ and $p^{r(P)}$ for the order of ϵ_{P}.

If P is arithmetic, by (C2), we have a Hecke eigenform $f_{P} \in S_{k+1}\left(\Gamma_{0}\left(N p^{r(P)+1}\right), \epsilon \psi_{k}\right)$ such that its eigenvalue for $T(n)$ is given by

$$
a_{P}(n):=P(a(n)) \in \overline{\mathbb{Q}}_{p}
$$

for all n. Thus \mathbb{I} gives rise to a family $\mathcal{F}=$ $\left\{f_{P} \mid\right.$ arithemtic $\left.P \in \operatorname{Spec}(\mathbb{I})\right\}$ of Hecke eigenforms, and an \mathbb{I}-adic forms $\mathcal{F}:=\sum_{n} a(n) q^{n}$.

§7. Modular Galois representation.

Each connected component $\operatorname{Spec}(\mathbb{T}) \subset \operatorname{Spec}(\mathbf{h})$ has a 2-dimensional absolutely irreducible continuous representation $\rho_{\mathbb{T}}$ of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ with coefficients in the quotient field of \mathbb{T}. The representation $\rho_{\mathbb{T}}$ restricted to the p-decomposition group D_{p} is reducible with unramified quotient character.

As is well known now, $\rho_{\mathbb{T}}$ is unramified outside $N p$ and satisfies

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{\mathbb{T}}\left(F_{r o b_{l}}\right)\right)=a(l) \quad(l \nmid N p), \\
& \rho_{\mathbb{T}}\left(\left[\gamma^{s}, \mathbb{Q}_{p}\right]\right) \sim\left(\begin{array}{cc}
t^{s} & * \\
0 & 1
\end{array}\right) \text { and } \rho_{\mathbb{T}}\left(\left[p, \mathbb{Q}_{p}\right]\right) \sim\left(\begin{array}{cc}
* & * \\
0 & a(p)
\end{array}\right) \text {, }
\end{aligned}
$$

where $\left[x, \mathbb{Q}_{p}\right]$ is the local Artin symbol.
For each $P \in \operatorname{Spec}(\mathbb{T})$, writing $\kappa(P)$ for the residue field of P, we also have a semi-simple Galois representation $\rho_{P}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2}(\kappa(P))$ unramified outside $N p$ such that $\operatorname{Tr}\left(\rho_{P}\left(F r o b_{l}\right)\right)=a(l)$ $\bmod P$ for all primes $l \nmid N p$.
§8. $\rho_{\mathbb{T}}$ as deformation of $\bar{\rho}$.

Start with a connected component $\operatorname{Spec}(\mathbb{T})$ of $\operatorname{Spec}(\mathbf{h})$ of level $N p^{\infty}$ with character ψ.

Recall the deformation properties (D1-3):
(D1) ρ is unramified outside $N p$,
(D2) $\left.\rho\right|_{\mathrm{Gal}^{\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)}} \cong\left(\begin{array}{cc}\epsilon & * \\ 0 & \delta\end{array}\right)$ with δ unramified while ϵ ramified,
(D3) For each prime $l \mid N$, writing I_{l} for the inertia group $\left.\rho\right|_{I_{l}} \cong\left(\begin{array}{cc}\psi_{l} & * \\ 0 & 1\end{array}\right)$ regarding $\psi_{l}=\left.\psi\right|_{\mathbb{Z}_{l}^{\times}}$as the character of I_{l} by local class field theory.

We assume that $\bar{\rho}$ is absolutely irreducible. Under this condition, $\rho_{\mathbb{T}}$ has values in $G L_{2}(\mathbb{T})$ and its isomorphism class is unique (Caraylol, Serre). Thus ρ_{P} has values in $G L_{2}(\mathbb{T} / P)$. In particular, ρ_{P} is a deformation of $\bar{\rho}$ satisfying (D1-3) and (det).
§9. Hecke algebras are universal.
For simplicity, assume that $N=C$ for the prime-to- p conductor C of $\bar{\rho}$. Here is the " $R=\mathbb{T}$ " theorem:

Theorem 1 (Wiles et al). If $\bar{\rho}$ is absolutely irreducible over $\operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left[\mu_{p}\right]\right),\left(\mathbb{T}, \rho_{\mathbb{T}}\right)$ is a local complete intersection over \wedge and is universal among deformations satisfying (D1-3).

Let $\widetilde{\mathbb{I}}$ be the integral closure of \mathbb{I} in its quotient field. Replace \mathbb{T} by $\mathbb{T}_{\mathbb{I}}:=\mathbb{T} \otimes_{\Lambda} \widetilde{\mathbb{I}}$ and π by the composite $\boldsymbol{\lambda}: \mathbb{T}_{\mathbb{I}} \xrightarrow{\pi \otimes 1} \mathbb{I} \otimes \Lambda \widetilde{\mathbb{I}} \xrightarrow{a \otimes b \mapsto a b} \widetilde{\mathbb{I}}$. The local complete intersection property of \mathbb{T} implies the following facts for $\boldsymbol{\lambda}: \mathbb{T}_{\mathbb{I}} \rightarrow \widetilde{\mathbb{I}}$:
Corollary 1. We have (1) $C_{0}(\lambda ; \widetilde{\mathbb{I}})=\widetilde{\mathbb{I}} /\left(L_{p}\right)$ for $L_{p} \in \widetilde{\mathbb{I}}$.
(2) $\operatorname{char}\left(C_{0}(\boldsymbol{\lambda} ; \widetilde{\mathbb{I}})\right)=\operatorname{char}\left(C_{1}(\boldsymbol{\lambda} ; \widetilde{\mathbb{I}})\right)$.

Since $\tilde{\mathbb{I}}$ is free of finite rank over \wedge, we get Gorensteinness: $\mathbb{T}_{\mathbb{I}}^{*}:=\operatorname{Hom}_{\widetilde{\mathbb{I}}}\left(\mathbb{T}_{\mathbb{I}}, \tilde{\mathbb{I}}\right) \cong \mathbb{T}_{\mathbb{I}}$ as $\mathbb{T}_{\mathbb{I}}$-modules from $\operatorname{Hom}_{\wedge}(\mathbb{T}, \wedge)$.

$\S 10$. Proof of Corollary.

The assertion (2) is the consequence of Tate's theorem.

The fact (1) can be shown as follows. Write $\mathfrak{b}=\operatorname{Ker}(\boldsymbol{\lambda})$; i.e., we have an exact sequence

$$
0 \rightarrow \mathfrak{b} \rightarrow \mathbb{T}_{\mathbb{I}} \rightarrow \widetilde{\mathbb{I}} \rightarrow 0
$$

For dimension 2 regular ring, reflexive modules are free. Thus \mathfrak{b} is the $\tilde{\mathbb{I}}$-direct summand of \mathbb{T}. By taking $\widetilde{\mathbb{I}}$-dual, we have another exact sequence $0 \rightarrow \mathbb{I}^{*} \rightarrow \mathbb{T}_{\mathbb{I}}^{*} \rightarrow \mathfrak{b}^{*} \rightarrow 0$. For $Q=\operatorname{Frac}(\wedge)$, $\operatorname{Frac}\left(\mathbb{T}_{\mathbb{I}}\right)=\mathbb{T}_{\mathbb{I}} \otimes_{\wedge} Q=\operatorname{Frac}(\mathbb{I}) \oplus X$ for $X:=\mathfrak{b}^{*} \otimes_{\Lambda} Q$ which is the complementary ring summand of $\operatorname{Frac}(\widetilde{\mathbb{I}})$. Thus $\operatorname{Im}\left(\widetilde{\mathbb{T}}^{*} \hookrightarrow \mathbb{T}_{\mathbb{I}}^{*}=\mathbb{T}_{\mathbb{I}}\right) \subset \mathbb{T}_{\mathbb{I}}$ is the ideal $\mathfrak{a}=(\operatorname{Frac}(\mathbb{I}) \oplus 0) \cap \mathbb{T}$. Since $C_{0}(\boldsymbol{\lambda} ; \mathbb{I})=\widetilde{\mathbb{I}} / \mathfrak{a}$ and $\mathfrak{a} \cong \widetilde{\mathbb{I}}^{*} \cong \widetilde{\mathbb{I}}$ is principal.

By Mazur's theorem, note

$$
C_{1}(\lambda ; \widetilde{\mathbb{I}})=\Omega_{\mathbb{T}_{\mathbb{I}} / \widetilde{\mathbb{I}}} \otimes_{\mathbb{T}_{\mathbb{I}}} \tilde{\mathbb{I}}=\Omega_{\mathbb{T} / \wedge} \otimes_{\mathbb{T}} \widetilde{\mathbb{I}}=C_{1}(\pi, \widetilde{\mathbb{I}}) \cong \operatorname{Sel}\left(\rho_{\mathbb{\mathbb { I }}}\right)^{\vee}
$$

$\S 11$. Fixed determinant deformation.

For an arithmetic point P of $\operatorname{Spec}(\Lambda)$, recall $\psi_{P}=$ $\epsilon_{P} \psi \omega^{-k(P)}$.

Theorem 2 (Wiles et al). If $\bar{\rho}$ is absolutely irreducible over $\operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left[\mu_{p}\right]\right),\left(\mathbb{T} / P \mathbb{T},\left(\rho_{\mathbb{T}} \bmod P\right)\right)$ is a local complete intersection over W and is universal among deformations ρ satisfying (D13) and
(det) $\operatorname{det}(\rho)=\psi_{P} \nu^{k}$ for the p-adic cyclotomic character ν and $k=k(P)$.

Actually Wiles-Taylor proved the first cases of Theorem 2 which actually implies Theorem 1 (see [MFG, Theorem 5.29] for this implication). In the same way as Corollary 1, we can prove

Corollary 2. Let $\lambda=(\boldsymbol{\lambda} \bmod \mathfrak{P})$ for an arithmetic $\mathfrak{P} \in \operatorname{Spec}(\widetilde{\mathbb{I}})\left(\overline{\mathbb{Q}}_{p}\right)$. We have $C_{0}(\lambda ; \widetilde{\mathbb{I}} / \mathfrak{P})=$ $\widetilde{\mathbb{I}} /\left(L_{p}(\mathfrak{P})\right)$ for $L_{p} \in \widetilde{\mathbb{I}}$ in Corollary 1 , where $L_{p}(\mathfrak{P})=$ $\mathfrak{P}\left(L_{p}\right)$.
§12. One variable adjoint main conjecture. Assume $p \nmid \varphi(C)$.

By Mazur's theorem, $C_{1}(\lambda ; \widetilde{\mathbb{I}}) \cong \operatorname{Sel}_{\mathbb{Q}}\left(A d\left(\rho_{\mathbb{I}}\right)\right)^{\vee}$, and $\operatorname{char}\left(\operatorname{Sel}_{\mathbb{Q}}\left(A d\left(\rho_{\widetilde{\mathbb{I}}}\right)^{\vee}\right)=\operatorname{char}\left(C_{0}(\boldsymbol{\lambda} ; \widetilde{\mathbb{I}})\right)=\left(L_{p}\right)\right.$ and $\operatorname{char}\left(\operatorname{Sel}_{\mathbb{Q}}\left(\operatorname{Ad}\left(\rho_{\mathfrak{P}}\right)^{\vee}\right)=\operatorname{char}\left(C_{0}(\lambda ; \widetilde{\mathbb{I}} / \mathfrak{P})\right)=\right.$ ($L_{p}(\mathfrak{P})$).

We will relate $L_{p}(\mathfrak{P})$ with $L\left(1, \operatorname{Ad}\left(\rho_{\mathfrak{P}}\right)\right)$ in the forthcoming last lecture, and we get the one variable adjoint main conjecture:

Corollary 3. There exists a p-adic L-function $L_{p} \in$ $\tilde{\mathbb{I}}$ such that we have char $\left(\operatorname{Sel}_{\mathbb{Q}}\left(\operatorname{Ad}\left(\rho_{\mathbb{I}}\right)^{\vee}\right)=\left(L_{p}\right)\right.$ and char $\left(\operatorname{Sel}_{\mathbb{Q}}\left(A d\left(\rho_{\mathfrak{P}}\right)^{\vee}\right)=\left(L_{p}(\mathfrak{P})\right)\right.$ for all arithmetic points $\mathfrak{P} \in \operatorname{Spec}(\widetilde{\mathbb{I}})\left(\overline{\mathbb{Q}}_{p}\right)$.

§13. Two variable adjoint main conjecture.

 In [H90], I made L_{p} to a two variable p-adic Lfunction $L \in \widetilde{\mathbb{I}}[[T]]$ interpolating $L\left(1+m, A d\left(\rho_{\mathbb{I}}\right)\right)$ (i.e., $\mathfrak{P}(L)\left(\gamma^{m}-1\right) \doteq L\left(1+m, \operatorname{Ad}\left(\rho_{\mathfrak{P}}\right) \otimes \omega^{-m}\right)$ essentially).Eric Urban [U06] proved the divisibility

$$
L \mid \operatorname{char}\left(\operatorname{Sel}_{\mathbb{Q}}\left(\rho_{\tilde{\mathbb{I}}} \otimes \kappa\right)^{\vee}\right)
$$

for the universal character $\kappa: \operatorname{Gal}\left(\mathbb{Q}_{\infty} / \mathbb{Q}\right) \rightarrow W[[T]]^{\times}$ deforming the identity character unramified outside $p \infty$ in many cases (applying Eisenstein techniques to $G S p(4)$ of Ribet-Greenberg-Wiles).

The function has an exceptional zero at $T=0$; that is, we expect that $\left.(L / T)\right|_{T=0} \doteq T L_{p}$? up to an \mathcal{L}-invariant. The \mathcal{L}-invariant is up to a non-zero constant in \mathbb{Z}_{p} given by $t \frac{d a(p)}{d t}$ [H 11]. The \mathcal{L}-invariant formula of Greenberg-TilouineRosso tells us the equality if the family contains a cusp form giving rise to an elliptic curve with multiplicative reduction at p.

