Arithmetic of adjoint L-values.

Haruzo Hida*

Department of Mathematics, UCLA, June 14, 2014

Abstract: We relate the differential module to Selmer group and its characteristic ideal to the annihilator of the congruence module.

*Pune (India) lecture No.2 on June 14, 2014. The authors are partially supported by the NSF grants: DMS 0753991.

§1. Group algebra and complete intersection.

Decompose $C_F = \bigoplus_{i=1}^m C_i$ for cyclic group C_i . Then sending $X_i \mapsto \gamma_i - 1$ for a generators γ_i of C_i , we have

 $W[C_F] \cong W[[X_1, \dots, X_m]] / (x_1^{|C_1|} - 1, \dots, x_m^{|C_m|} - 1)$ for $x_i = 1 + X_i$.

Let A be a complete normal local domain (for example, a complete regular local rings like A = W or A = W[[T]] or $A = W[[T_1, ..., T_r]]$ (power series ring)). Any local A-algebra R free of finite rank over A has a presentation

$$R \cong A[[X_1, \ldots, X_n]]/(f_1, \ldots, f_m)$$

for $f_i \in A[[X_1, ..., X_n]]$ with $m \ge n$. If m = n, then R is called a local complete intersection over A.

\S **2.** Pseudo module theory.

For two A-modules M, N of finite type, a morphism $\phi : M \to N$ is called a pseudo isomorphism if for the annihilator ideals \mathfrak{a} and \mathfrak{b} of Ker(ϕ) and Coker(ϕ), respectively the closed subschemes Spec(A/\mathfrak{a}) and Spec(A/\mathfrak{b}) of Spec(A) have co-dimension at least 2.

For a torsion A-modules M of finite type, we have a pseudo isomorphism $M \to \bigoplus_i A/\mathfrak{f}_i$ for finitely many reflexive ideal $0 \neq \mathfrak{f}_i \in A$. An ideal \mathfrak{f} is *reflexive* if $\operatorname{Hom}_A(\operatorname{Hom}_A(\mathfrak{f}, A), A) \cong \mathfrak{f}$ canonically as A-modules (and equivalently $\mathfrak{f} = \bigcap_{\lambda \in A, (\lambda) \supset \mathfrak{f}} (\lambda)$; i.e., close to be principal).

The characteristic ideal char(M) of M is defined by char(M) := $\prod_i \mathfrak{f}_i \subset A$. If A is a unique factorization domain, any reflexive ideal is principal.

If A = W, a pseudo-isomorphism is an isomorphism, and if A = W[[T]], it is an isogeny.

\S **3.** Tate's theorem.

Theorem 1 (J. Tate). Assume that R is a local complete intersection over a complete normal noetherian local domain A with an algebra homomorphism $\lambda : R \to A$. If after tensoring the quotient field Q or A, $R \otimes_A Q = (\text{Im}(\lambda) \otimes_A Q) \oplus S$ as algebra direct sum for some Q-algebra S, then $C_j(\lambda; A)$ is a torsion A-module of finite type, and we have

 $\operatorname{Ann}(C_0(\lambda; A)) = \operatorname{char}(C_0(\lambda; A)) = \operatorname{char}(C_1(\lambda; A)).$

See [MFG, $\S5.3.4$] for a proof, which uses Koszul complexes.

If $A = \mathbb{Z}_p$, char(M) = (|M|), and hence, the above theorem is a proper generalization of our result for group algebras.

\S 4. Two dimensional deformations.

Fix a positive integer N prime to p. Let $\overline{\rho}$: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{F})$ be the Galois representation unramified outside Np. Let ψ be the Teichmüller lift of det $(\overline{\rho})$. For simplicity, assume that ψ and $\overline{\psi} := \det(\overline{\rho})$ has conductor divisible by N and $p \nmid \varphi(N) = |(\mathbb{Z}/N\mathbb{Z})^{\times}|$. We consider deformations (over W) satisfying the following three properties:

(D1) ρ is unramified outside Np,

(D2) $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ with δ unramified while ϵ ramified,

(D3) For each prime l|N, writing I_l for the inertia group $\rho|_{I_l} \cong \begin{pmatrix} \psi_l & * \\ 0 & 1 \end{pmatrix}$ regarding $\psi_l = \psi|_{\mathbb{Z}_l^{\times}}$ as the character of I_l by local class field theory,

In particular, we assume (D1–3) for $\overline{\rho}$. Writing $\overline{\rho}|_{\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \overline{\epsilon} & * \\ 0 & \overline{\delta} \end{pmatrix}$, we always assume that $\overline{\epsilon}$ is ramified while $\overline{\delta}$ is unramified.

$\S5$. Universal couple exists.

We admit the following fact and study its consequences:

Theorem 2 (B. Mazur). We have an universal couple (R, ρ) of a W-algebra R and a Galois representation ρ : $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(R)$ such that ρ is universal among deformations satisfying (D1–3). The algebra R is a $W[[C_{\mathbb{Q}}(Np^{\infty})]]$ -algebra canonically by the universality of $W[[C_{\mathbb{Q}}(Np^{\infty})]]$ applied to det (ρ) . In particular, R is an algebra over $\Lambda = W[[T]] \subset W[[C_{\mathbb{Q}}(Np^{\infty})]]$. If we add one more property to (D1-3):

(det) det(ρ) = $\psi \epsilon \omega^{-k} \nu^{k}$ for the *p*-adic cyclotomic character ν and k = k(P)

for a character ϵ : Gal($\mathbb{Q}[\mu_p\infty]/\mathbb{Q}$) $\rightarrow \mu_p\infty(W)$, then the residual couple $(R/PR, \rho_P)$ with $\rho_P = \rho$ mod P for $P = (t - \epsilon([\gamma, \mathbb{Q}_p])\gamma^k) \subset \Lambda$ is universal among deformations satisfying (D1–3) and (det).

See [MFG, $\S3.2.4$] and [HMI, $\S3.2$] for a proof.

$\S6.$ Adjoint Galois representation.

Let ρ : Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) $\rightarrow GL_2(A)$ be a deformation satisfying (D1-3). Write $V(\rho) = A^2$ on which Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) acts via ρ . Since $\rho|_{\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \cong \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ for an unramified δ , we have a filtration

$$V_{\mathfrak{p}}(\epsilon_{\mathfrak{p}}) \hookrightarrow V(\rho) \twoheadrightarrow V_{\mathfrak{p}}(\delta_{\mathfrak{p}})$$

stable under $Gal(\overline{\mathbb{Q}}_p/F_{\mathfrak{p}})$ for a prime $\mathfrak{p}|p$ of F.

We now let $Gal(\overline{\mathbb{Q}}/F)$ act on $M_2(A) = End_A(V(\rho))$ by conjugation: $x \mapsto \rho(\sigma)x\rho(\sigma)^{-1}$. The trace zero subspace

$$\mathfrak{sl}(A) = \{ x \in M_2(A) | \mathsf{Tr}(x) = 0 \}$$

is stable under this action. This new Galois module of dimension 3 is called the adjoint representation of ρ and written as $Ad(\rho)$. Thus

$$V = V(Ad(\rho)) = \left\{ T \in \mathsf{End}_A(V(\rho)) \middle| \mathsf{Tr}(T) = 0 \right\}.$$

$\S7.$ Adjoint Selmer groups.

This space $V(Ad(\rho))$ has a three step filtration: $0 \subset V_{\mathfrak{p}}^+ \subset V_{\mathfrak{p}}^- \subset V$ given by

 $V_{\mathfrak{p}}^{+} = \left\{ T \in V_{\mathfrak{p}}^{-}(Ad(\rho)) \middle| T(V_{\mathfrak{p}}(\epsilon_{\mathfrak{p}}))) = 0 \right\} \sim \left\{ \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \right\},$ $V_{\mathfrak{p}}^{-} = \left\{ T \in V(Ad(\rho)) \middle| T(V_{\mathfrak{p}}(\epsilon_{\mathfrak{p}})) \subset V_{\mathfrak{p}}(\epsilon_{\mathfrak{p}}) \right\} \sim \left\{ \begin{pmatrix} * & * \\ 0 & -* \end{pmatrix} \right\}.$ Writing A^{\vee} for the Pontryagin dual module

 $\operatorname{Hom}_W(A, K/W) \cong \operatorname{Hom}(A, \mathbb{Q}_p/\mathbb{Z}_p)$

for the quotient field K of W. Then for any A-modules M, we put $M^* = M \otimes_A A^{\vee}$. In particular, $V(Ad(\rho))^*$ and $V_{\mathfrak{p}}(?)^*$ are divisible Galois modules. We define

$$\operatorname{Sel}_{F}(Ad(\rho)) = \operatorname{Ker}(H^{1}(F, V(Ad(\rho))^{*}))$$

$$\rightarrow \prod_{\mathfrak{p}|p} H^{1}(I_{\mathfrak{p}}, \frac{V(Ad(\rho)^{*})}{V_{\mathfrak{p}}^{+}(Ad(\rho))^{*}}) \times \prod_{\mathfrak{k}|p} H^{1}(I_{\mathfrak{l}}, V(Ad(\rho)^{*})),$$

where $\mathfrak{p}|p$ and $\mathfrak{l} \nmid p$ are primes of F and $I_{\mathfrak{l}}$ is the inertia subgroup at \mathfrak{l} of $Gal(\overline{\mathbb{Q}}/F)$.

\S 8. Mazur's theorems.

Theorem 3 (B. Mazur). Let (R, ρ) be the universal couple among deformations satisfying (D1–3) and (det). If ρ : Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(W)$ is a deformation, then we have a canonical isomorphism

 $\operatorname{Sel}_{\mathbb{Q}}(Ad(\rho))^{\vee} \cong \Omega_{R/W} \otimes_R W \cong C_1(\lambda; W)$

as W-modules for $\lambda : R \to W$ with $\rho \cong \lambda \circ \rho$.

Considering the universal ring for deformations satisfying only (D1-3), we get

Theorem 4 (B. Mazur). Let (R, ρ) be the universal couple among deformations satisfying (D1– 3). Let Spec(I) be an irreducible component of Spec(R). Writing ρ : Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow GL_2(\mathbb{I})$ for the deformation corresponding to the projection $R \rightarrow \mathbb{I}$, we have a canonical isomorphism

 $\operatorname{Sel}_{\mathbb{Q}}(Ad(\rho))^{\vee} \cong \Omega_{R/\Lambda} \otimes_{R} \mathbb{I} \cong C_{1}(\lambda; \mathbb{I})$ as \mathbb{I} -modules for $\lambda : R \to \mathbb{I}$ with $\rho \cong \lambda \circ \rho$.

\S 9. Proof assuming (D1–3) and (det).

We repeat the "farfetched" proof in the GL(2)case. Let $\Phi(A)$ be the set of deformations of $\overline{\rho}$ satisfying (D1-3) and (det) with values in $GL_2(A)$.

Let X be a profinite R-module. Then R[X] is an object in CL_W . We consider the W-algebra homomorphism $\xi : R \to R[X]$ with $\xi \mod X = \mathrm{id}$. We have $\xi(r) = r \oplus d_{\xi}(r)$ and we get $d_{\xi}(rr') = rd_{\xi}(r') + r'd_{\xi}(r)$ and $d_{\xi}(W) = 0$. Thus $d_{\xi} \in Der_W(R, X)$. For any derivation $d : R \to X$ over $W, r \mapsto r \oplus d(r)$ is obviously an W-algebra homomorphism, and we get

$$\begin{cases} \pi \in \Phi(R[X]) \middle| \pi \mod X = \rho \rbrace \middle| \approx_X \\ \cong \left\{ \pi \in \Phi(R[X]) \middle| \pi \mod X \cong \rho \rbrace \middle| \cong \\ \cong \left\{ \xi \in \operatorname{Hom}_{W-\operatorname{alg}}(R, R[X]) \middle| \xi \mod X = \operatorname{id} \right\} \\ \cong Der_W(R, X) \cong \operatorname{Hom}_R(\Omega_{R/W}, X), \end{cases}$$

where " \approx_X " is conjugation under $(1 \oplus M_n(X)) \cap GL_2(R[X])$.

$\S10$. Making cocycle out of a deformation.

Let π be the deformation in the left-hand side. Write $\pi(\sigma) = \rho(\sigma) \oplus u'_{\pi}(\sigma)$. Comparing

$$(\rho(\sigma) \oplus u'_{\pi}(\sigma))(\rho(\tau) \oplus u'_{\pi}(\tau)) \\ = \rho(\sigma\tau) \oplus (\rho(\sigma)u'_{\pi}(\tau) + u'_{\pi}(\sigma)\rho(\tau)),$$

we have

$$u'_{\pi}(\sigma\tau) = \rho(\sigma)u'_{\pi}(\tau) + u'_{\pi}(\sigma)\rho(\tau).$$

Define $u_{\pi}(\sigma) = u'_{\pi}(\sigma)\rho(\sigma)^{-1}$. Then, $x(\sigma) = \pi(\sigma)\rho(\sigma)^{-1}$ has values in $SL_2(R[X])$, and $x = 1 \oplus u \mapsto u = x - 1$ is an isomorphism from the multiplicative group of the kernel of the reduction map $SL_2(R[X]) \twoheadrightarrow SL_2(R)$ given by

$$\{x \in SL_2(R[X]) | x \equiv 1 \mod X\}$$

onto the additive group

 $Ad(X) = \{x \in M_2(X) | \operatorname{Tr}(x) = 0\} = V(Ad(\rho)) \otimes_R X.$ Thus we may regard that u has values in $Ad(X) = V(Ad(\rho)) \otimes_R X.$

$\S 11$. Selmer condition.

We also have

$$u_{\pi}(\sigma\tau) = u'_{\pi}(\sigma\tau)\rho(\sigma\tau)^{-1}$$

= $\rho(\sigma)u'_{\pi}(\tau)\rho(\sigma\tau)^{-1} + u'_{\pi}(\sigma)\rho(\tau)\rho(\sigma\tau)^{-1}$
= $Ad(\rho)(\sigma)u_{\pi}(\tau) + u_{\pi}(\sigma).$

Hence u_{π} is a 1-cocycle unramified outside Np. It is easy to see the injectivity of $\pi \mapsto [u_{\pi}]$:

 $\left\{ \pi \in \Phi(R[X]) \middle| \pi \operatorname{mod} X \approx \rho \right\} / \approx_X \hookrightarrow H^1(\mathbb{Q}, Ad(X)).$ For $V_p^{\pm}(Ad(X)) = V_p^{\pm}(Ad(\rho)) \otimes_R X$, from $\operatorname{Tr}(u_{\pi}) = 0$ and unramifiedness of δ , we get

$$u_{\pi}(I_p) \subset V_p^+(Ad(X)) \Leftrightarrow u'_{\pi}(I_p) \subset V_p^+(Ad(X)) \Leftrightarrow \delta_{\pi}(I_p) = 1.$$

If l|N, we have $\rho|_{I_l} = \epsilon_l \oplus 1$ and $\pi|_{I_l} = \epsilon_l \oplus 1$. Thus $\pi|_{I_l}$ factors through the image of I_l in the maximal abelian quotient of $\operatorname{Gal}(\overline{\mathbb{Q}}_l/\mathbb{Q}_l)$ which is isomorphic to \mathbb{Z}_l^{\times} . Thus $u_{\pi}|_{I_l}$ factors through \mathbb{Z}_l^{\times} . Since $p \nmid \varphi(N)$, $p \nmid l - 1$, which implies $u_{\pi}|_{I_l}$ is trivial; thus u_{π} unramified everywhere outside p.

$\S12$. Passing to the limit, conclusion.

Since $W = \lim_{N \to \infty} W/\mathfrak{m}_W^n$ for the finite rings W/\mathfrak{m}_W^n , we have $W^{\vee} = \lim_{N \to \infty} (W/\mathfrak{m}_W^n)^{\vee}$, which is a discrete R-modules, which shows $R[W^{\vee}] = \bigcup_n R[(W/\mathfrak{m}_W^n)^{\vee}]$.

We put the profinite topology on the individual $R[(W/\mathfrak{m}_W^n)^{\vee}]$. On $R[W^{\vee}]$, we give a injectivelimit topology. Thus a map $\phi : X \to R[W^{\vee}]$ is continuous if $\phi^{-1}(R[(W/\mathfrak{m}_W^n)^{\vee}]) \to R[(W/\mathfrak{m}_W^n)^{\vee}]$ is continuous for all n with respect to the induced topology from X on the source and the profinite topology on the target.

From this, any deformation (continuous with respect to having values in $GL_2(R[W^{\vee}])$ gives rise to a continuous 1-cocycle with values in the discrete G-module $V(Ad(\pi))^{\vee}$. In this way, we get

 $(\Omega_{R/W} \otimes_R W)^{\vee} \cong \operatorname{Hom}_R(\Omega_{R/W}, W^{\vee}) \cong \operatorname{Sel}_{\mathbb{Q}}(Ad(\rho)).$