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Abstract: We define congruence modules and

differential modules of commutative rings. If

the starting rings are local complete intersection,

the annihilator of the congruence module is the

characteristic ideal of differential modules. If ap-

plied to Hecke algebras and universal deformation

rings, the differential modules are adjoint Selmer

groups for modular Galois representation, while

the size of congruence modules is given by ad-

joint L-values.
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§1. Set up.

• W : the base ring which is a DVR over Zp with

finite residue field F for a prime p > 2 (though

algebraic extension of Fp can be allowed as F).

• For a local W -algebra A sharing same residue

field F with W (i.e., A/mA = F), we write CLA
the category of complete local A-algebras R with

R/mR = F for its maximal ideal mR. Morphisms

of CLA are local A-algebra homomorphisms. If A
is noetherian, the full subcategory CNLA of CLA
is made up of noetherian local rings.

• Fix R ∈ CNLA. For a continuous R-module M
with continuous R–action, define the module of

continuous A–derivations by

DerA(R, M) =
{
δ : R→M ∈ HomA(R, M)

∣∣∣

δ: continuous, δ(ab) = aδ(b) + bδ(a) (a, b ∈ R)
}
.

Here the A-linearity of a derivation δ is equivalent

to δ(A) = 0. The association M 7→ DerA(R, M)

is a covariant functor from the category MOD/R
of continuous R-modules to modules MOD.
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§2. Differentials.

The differential R-module ΩR/A is defined as fol-

lows: The multiplication a ⊗ b 7→ ab induces a

A–algebra homomorphism m : R⊗̂AR→ R taking

a⊗b to ab. We put I = Ker(m), which is an ideal

of R⊗̂AR. Then we define ΩR/A = I/I2. It is an

easy exercise to check that the map d : R→ ΩR/A
given by d(a) = a⊗ 1− 1⊗ a mod I2 is a contin-

uous A–derivation.

• We have a morphism of functors:

HomR(ΩR/A,?)→ DerA(R, ?) : φ 7→ φ ◦ d.

Proposition 1.The above morphism of two func-

tors M 7→ HomR(ΩR/A, M) and M 7→ DerA(R, M)

is an isomorphism, where M runs over the cate-

gory of continuous R–modules. In other words,

for each A-derivation δ : R → M , there exists a

unique R-linear homomorphism φ : ΩR/A → M
such that δ = φ ◦ d.

Give yourself a proof of this.



§3. Functoriality.

Corollary 1.

Let π : R � C be a surjective morphism in CLW ,

and write J = Ker(π). Then we have the follow-

ing natural exact sequence:

J/J2 β∗
−→ ΩR/A⊗̂RC −→ ΩC/A→ 0.

Moreover if A = C, then J/J2 ∼= ΩR/A⊗̂RC.

We often write C1(π;C) := ΩR/A⊗̂RC (which is

called the differential module of π).

Ay assumption, we have algebra morphism A →

R � C = R/J. By the Yoneda’s lemma, we only

need to prove that

0→ DerA(C, M)
α
−→ DerA(R, M)

β
−→ HomC(J/J2, M)

is exact for all continuous C–modules M . The

first α is the pull back map. Thus the injectivity

of α is obvious.



§4. Proof.

The map β is defined as follows: For a given A-

derivation D : R→M , we regard D as a A-linear

map of J into M . Since J kills the C-module M ,

D(jj′) = jD(j′) + j′D(j) = 0 for j, j′ ∈ J. Thus

D induces C-linear map: J/J2 → M . Then for

b ∈ A and x ∈ J, D(bx) = bD(x)+xD(b) = bD(x).

Thus D is C-linear, and β(D) = D|J .

Now prove the exactness at the mid-term of the

second exact sequence. The fact β ◦ α = 0 is

obvious. If β(D) = 0, then D kills J and hence

is a derivation well defined on C = R/J. This

shows that D is in the image of α.



§5. The case A = C.

Now suppose that A = C. To show injectivity

of β∗, we create a surjective C-linear map: γ :

ΩR/A ⊗ C � J/J2 such that γ ◦ β∗ = id.

Let π : R→ C be the projection and ι : A = C ↪→
R be the structure homomorphism giving the A-

algebra structure on R. We first look at the map

δ : R → J/J2 given by δ(a) = a − P (a) mod J2

for P = ι ◦ π. Then

aδ(b) + bδ(a)− δ(ab)

= a(b− P (b)) + b(a− P (a))− ab− P (ab)

= (a− P (a))(b− P (b)) ≡ 0 mod J2.

Thus δ is a A-derivation. By the universality

of ΩR/A, we have an R-linear map φ : ΩR/A →
J/J2 such that φ ◦ d = δ. By definition, δ(J)

generates J/J2 over R, and hence φ is surjec-

tive. Since J kills J/J2, the surjection φ factors

through ΩR/A ⊗R C and induces γ. Note that

β(d⊗1C) = d⊗1C|J for the identity 1C of C; so,

γ ◦ β∗ = id as desired.



§6. An algebra structure on R⊕M and deriva-

tion.

For any continuous R-module M , we write R[M]

for the R-algebra with square zero ideal M . Thus

R[M] = R⊕M with the multiplication given by

(r ⊕ x)(r′ ⊕ x′) = rr′ ⊕ (rx′+ r′x).

It is easy to see that R[M] ∈ CNLW , if M is of

finite type, and R[M] ∈ CLW if M is a p-profinite

R-module. By definition,

DerA(R, M)
∼=

{
φ ∈ HomA−alg(R, R[M])

∣∣∣φ mod M = id
}

,

where the map is given by δ 7→ (a 7→ (a⊕ δ(a)).

Note that i : R→ R⊗̂AR given by i(a) = a⊗ 1 is

a section of m : R⊗̂AR → R. We see easily that

R⊗̂AR/I2 ∼= R[ΩR/A] by x 7→ m(x)⊕(x−i(m(x))).

Note that d(a) = 1⊗ a− i(a) for a ∈ R.



§7. Congruence modules.

We assume that A is a domain and R is a reduced

finite flat A-algebra. Let φ : R � A be an onto A-

algebra homomorphism. Then the total quotient

ring Frac(R) can be decomposed uniquely

Frac(R) = Frac(Im(φ))×X

as an algebra direct product. Write 1φ for the

idempotent of Frac(Im(φ)) in Frac(R). Let a =

Ker(R → X) = (1φR ∩ R), S = Im(R → X) and

b = Ker(φ). Here the intersection 1φR ∩ R is

taken in Frac(R) = Frac(Im(φ)) ×X. First note

that a = R ∩ (A× 0) and b = (0×X) ∩R. Put

C0(φ;A) = (R/a)⊗R,φ Im(φ)
∼= Im(φ)/(φ(a)) ∼= A/a ∼= R/(a⊕ b) ∼= S/b,

which is called the congruence module of φ but

is actually a ring.



§8. Congruence proposition.

Write K = Frac(A). Fix an algebraic closure

K of K. Since the spectrum Spec(C0(φ;A)) of

the congruence ring C0(φ;A) is the scheme theo-

retic intersection of Spec(Im(φ)) and Spec(R/a)

in Spec(R):

Spec(C0(λ;A)) = Spec(Im(φ)) ∩ Spec(R/a),

we conclude that

Proposition 2. Let the notation be as above.

Then a prime p is in the support of C0(φ;A) if

and only if there exists an A-algebra homomor-

phism φ′ : R → K factoring through R/a such

that φ(a) ≡ φ′(a) mod p for all a ∈ R.

Since φ is onto, we see C1(φ;A) = b/b2. We

could define Cn = bn/bn+1. Then C(φ;A) =
⊕

n Cn(φ;A) is a graded algbera. If b is princi-

pal, this is a polynomial ring C0(φ;A)[T ].



§9. Deformation of a character.

Let F/Q be a number field with integer ring O.

We fix a set P of properties of Galois characters.

Fix a continuous character ρ : Gal(Q/F ) → F×

with the property P.

A character ρ : Gal(Q/Q) → A× for A ∈ CLW is

called a P-deformation of ρ if (ρ mod mA) = ρ

and ρ satisfies P.

A couple (R,ρ) (universal couple) made of an

object R of CLW and a character ρ : Gal(Q/F )→

R× satisfying P is called a universal couple for ρ

if for any P-deformation ρ : Gal(Q/F )→ A× of ρ,

we have a unique morphism φρ : R → A in CLW

(so it is a local W -algebra homomorphism) such

that φρ ◦ ρ = ρ. By the universality, if exists,

the couple (R, ρ) is determined uniquely up to

isomorphisms.



§10. Groups algebra is universal.

For a p-profinite abelian group G, consider the

group algebra W [[G]] = lim←−n
W [G/Gpn

]. For ex-

ample, Λ = W [[Γ]] (Γ = 1 + pZp) is called the

Iwasawa algebra and is isomorphihc to W [[T ]] by

1 + p ↔ t = 1 + T . Fix an O-ideal c prime to

p and write Hcpn/F for the ray class field mod-

ulo cpn. Then by Artin symbol, we can identify

Gal(Hcpn/F ) with the ray class group ClF(cpn)

(here n can be infinity). Let CF(cp∞) for the

maximal p-profinite quotient of ClF(cp∞). If ρ

has prime-to-p conductor equal to c, we define

a deformation ρ to satisfy P if ρ is unramified

outside cp and has prime-to-p conductor a factor

of c. Then for the Teichmüller lift ρ0 of ρ and

the inclusion κ : CF (cp∞) ↪→ W [[CF (cp∞)]], the

universality of the group algebra tells us

Theorem 1.The couple (W [[CF(cp∞)]], ρ0κG) (resp.

(W [[CF ]], ρ0κ) for CF := CF(1)) is universal among

all P-deformations (resp. among everywhere un-

ramified deformations).



§11. Congruence modules for group alge-

bras.

Let H be a finite p-abelian group. We have a

canonical algebra homomorphism: W [H] → W

sending σ ∈ H to 1. This homomorphism is called

the augmentation homomorphism of the group

algebra. Write this map π : W [H] → W . Then

b = Ker(π) is generated by σ−1 for σ ∈ H. Thus

b =
∑

σ∈H

W [H](σ − 1)W [H].

We compute the congruence module and the dif-

ferential module Cj(π, W ) (j = 0,1).

Corollary 2. We have C0(π;W ) ∼= W/|H|W and

C1(π;W ) = H ⊗Z W .

Let K := Frac(W ). Then π gives rise to the alge-

bra direct factor Kε ⊂ K[H] for the idempotent

ε = 1
|H|

∑
σ∈H σ. Thus a = Kε∩W [H] = (

∑
σ∈H σ)

and π(W (H))/a = (ε)/a ∼= W/|H|W .



§12. A farfetched proof of C1(π;W ) = H⊗ZW .

Consider the functor F : CLW → SETS given by

F(A) = Homgroup(H, A×) = HomW -alg(W [H], A).

Thus R := W [H] and the character ρ : H →
W [H] (the inclusion: H ↪→ W [H]) are universal

among characters of H with values in A ∈ CLW .

Then for any R-module X, consider R[X] = R⊕X
with algebra structure given by rx = 0 and xy = 0
for all r ∈ R and x, y ∈ X.

Define Φ(X) = {ρ ∈ F(R[X])|ρ mod X = ρ}.
Write ρ(σ) = ρ(σ)⊕ u′ρ(σ) for u′ρ : H → X. Since

ρ(στ)⊕ u′ρ(στ) = ρ(στ)

= (ρ(σ)⊕ u′ρ(σ))(ρ(τ)⊕ u′ρ(τ))

= ρ(στ)⊕ (u′ρ(σ)ρ(τ) + ρ(σ)u′ρ(τ)),

we have u′ρ(στ) = u′ρ(σ)ρ(τ) + ρ(σ)u′ρ(τ), and

thus uρ := ρ
−1u′ρ : H → X is a homomorphism

from H into X. This shows

Hom(H, X) = Φ(X).



§13. Proof continues.

Any W -algebra homomorphism ξ : R→ R[X] with

ξ mod X = idR can be aritten as ξ = idR⊕dξ

with dξ : R → X. Since (r ⊕ x)(r′ ⊕ x′) = rr′ ⊕

rx′ + r′x for r, r′ ∈ R and x.x′ ∈ X, we have

dξ(rr′) = rdξ(r
′) + r′dξ(r); so, dξ ∈ DerW(R,X).

By universality of (R, ρ), we have

Φ(X) ∼= {ξ ∈ HomW -alg(R, R[X])|ξ mod X = id}

= DerW (R,X) = HomR(ΩR/W , X).

Thus taking X = K/W , we have

HomW(H ⊗Z W,K/W ) = Hom(H, K/W )

= HomR(ΩR/W , K/W )

= HomW (ΩR/W ⊗R,π W,K/W ).

By taking Pontryagin dual back, we have

H ∼= ΩR/W ⊗R,π W = C1(π;W ).



§14. Class number formula. Let Ind
Q
F id =

id⊕χ and H = CF . Then for ΩF given basically

by the regulator and some power of (2πi),

|L(1, χ)/ΩF |p =
∣∣∣|CF |

∣∣∣
p
.

We can identify C∨F = Hom(CF , Qp/Zp) with the

Selmer group of χ given by

SelQ(χ) := Ker(H1(Q, V (χ)∗)→
∏

l

H1(Il, V (χ)∗))

for the inertia group Il ⊂ Gal(Ql/Ql).

Theorem 2 (Class number formula).Assume that

F/Q is a Galois extension and p - [F : Q]. For the

augmentation homomorphism π : W [CF ] → W ,

we have, for r(W ) = rankZp
W ,

∣∣∣∣∣
L(1, χ)

ΩF

∣∣∣∣∣

r(W)

p

= |C1(π;W )|−1

= |C0(π;W )|−1 =
∣∣∣|SelQ(χ)|

∣∣∣
r(W)

p

and C1(π;W ) = CF⊗W and C0(π;W ) = W/|CF |W .


