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Motivation

� The market for liquid assets as a counterparty in
classical �nancial economics is viewed as accepting
any amount of a �nancially traded asset at the going
market price.

� The speci�c asset describes the cash �ow accessed
and for this cash �ow there is just one price at which
it one may buy or sell any amount desired by mar-
ket participants who are usually seen as small and
atomistic relative to the size of the market.

� Hence we have the law of one price prevailing in the
classical model.



Two Price Markets

� We maintain this vision of the market as a counter-
party.

� However, when modeling markets we now permit just
one di¤erence.

� This di¤erence is to allow for the price to depend on
the direction of trade.

� There are then two prices, one for buying from the
market and another for selling to the market.

� The former may be termed the ask price while the
latter is the bid price.



Structured Products

� There is a large segment of �nancial markets that
creates �nancial products using the liquid markets for
hedging risks and in these markets there are typically
two prices, one for buying and the other for selling.

� The di¤erences between these two prices can be quite
large.

� The di¤erences re�ect the very real and substantial
costs of holding unhedgeable risks in incomplete mar-
kets.

� To the extent one may hedge exposures using liq-
uid markets the spreads may be decreased but not
necessarily otherwise.



Related Work

� The motivations for our spreads in markets are more
closely related to those in Bernardo and Ledoit (2000),
Cochrane and Saa-Requejo (2000), µCerný and Hodges
(2000), Carr, Geman and Madan (2001) and Jaschke
and Kuchler (2001).

� Relative to these papers the current contribution is
to develop closed form formulas for bid and ask prices
in general, and for put and call options in particular.

� These formulas are a consequence of our model for
markets as a counterparty coupled with the parame-
trization of indices of acceptability accomplished in
Cherny and Madan (2009).



Markets as a Counterparty
and the Implied

Theoretical Bid and Ask
Prices

� We begin with the liquid market as a counterparty
in classical �nance.

� The space of traded cash �ows we take to be all
bounded random variables on a base probability space
(
;F ; P ) :

� In the best possible case we have complete markets
and a unique pricing measure Q equivalent to P:

� For any cash �ow C with a nonzero price w we may
form the di¤erence X = C � w that now has zero
price and we may buy from or sell to market any
amount of the cash �ow X:



� In addition we may also buy at a higher price or
sell for a lower price making the set of cash �ows
marketed in liquid markets, all cash �ows with the
property that EQ(X) � 0:



Marketed Cash Flows

� The set of such classically marketed cash �ows in liq-
uid markets is well understood in �nance and amounts
to the collection of all positive alpha trades.

� From the perspective of incomplete markets where
exact replication at a determinate cost of replication
is not possible and residual risk must be held this
collection of marketed cash �ows is too wide and
unrealistic.

� More exactly, if a cash �ow C is priced at w and
the market buys the cash �ow X = C � w then in
incomplete markets the price w would be a bid price.

� If the market were instead to sell �X = w�C then
this would not be possible and one would expect to
pay a spread s with the market willing to accept
(w + s)� C.



� With market incompleteness the set of cash �ows
just marketable are no longer closed under negation.



Marketed Cash Flow
Properties

� We note that the set of classically marketed cash
�ows is convex, and linear combinations of marketed
cash �ows are marketed.

� The set of classically marketed cash �ows is also
closed under scaling as we may scale positions given
that in the classical model we may trade any amount.

� Our more general model for the marketed cash �ows
preserves these two properties and hence the set of
marketed cash �ows is still a convex cone.

� Furthermore, as all nonnegative cash �ows are cer-
tainly marketed.



Marketed Cash Flows
Formalized

� The set of marketed cash �ows is thus a convex cone
containing the nonnegative cash �ows.

� It follows from Artzner, Delbaen, Eber and Heath
(1999) that the set of marketed cash �ows must con-
sist of all cash �ows X satisfying

EQ[X] � 0 for any Q 2 D

for some convex set D of probability measures equiv-
alent to P:

� We suppose in general that D contains a risk neutral
measure and the set of marketed cash �ows is smaller
than the set of classically marketed cash �ows.



Marketed Cash Flows over
time

� Our model for the market is de�ned by specifying the
class of marketed cash �ows and we do not expect
this set to be constant over time.

� In times of crisis when attitudes to holding residual
risks change the cone may well contract, while it may
get more lenient in boom times.

� It is therefore useful to allow the cone to vary in size
with a parameter that may calibrate the stress level
of the market with the cone contracting as stress
levels increase.

� We recognize that risk attitudes and levels of risk
aversion will in�uence the size of the cone of mar-
keted risks but we do not model explicitly the pref-
erences of participants but the state of the market
as re�ected in the cone of marketed risks or the size
of the set of test measures D.



Parametric Stress Levels

� To accomplish this variation in the set of marketed
cash �ows we follow Cherny and Madan (2009) and
introduce the index of acceptability that allows us to
speak of cash �ows acceptable at level  or equiva-
lently marketed at level :

� An index of acceptability is a map � that associates
with each bounded random variable X a number
�(X) in the extended half line [0;1]; that is the
level of acceptability of X:

� The map has the following four simple properties.

� First, if X and Y are acceptable at a level ; i.e.
�(X) and �(Y ) exceed  then so does �(X +

Y ):



� Second, if X is acceptable at a level  and Y
dominates X then Y is also acceptable at level
:

� Third, positive scalar multiples of random vari-
ables acceptable at a level  are acceptable at
this level.

� Finally, we have the technical condition of closure
under convergence in probability for the set of
random variables acceptable at a level :



Supporting Measures

� There is an inherent relationship between acceptabil-
ity indices and families of probability measures.

� If � is an acceptability index, then for each  � 0;

there exists a set D of probability measures ab-
solutely continuous with respect to the original prob-
ability such that a random variable is acceptability at
level  if and only if it has a positive expectation un-
der each measure from D :

�(X) �  () EQ[X] � 0 for any Q 2 D:

� The setsD increase in ; i.e. D � D0 for  � 0:
In terms of the family (D)�0 ; the index � gets
the following description: �(X) is the largest value
 such that the expectation of X is positive with
respect to each measure from D :

�(X) = sup
n
 � 0 : EQ[X] � 0 for any Q 2 D

o



Ask Prices

� We now employ a �xed acceptability level  for a
�xed acceptability index � and consider the problem
of pricing the risk of a random variableX, �rst in the
absence of hedging opportunities and then in their
presence.

� Consider �rst the sale or delivery by the market of a
terminal cash �ow represented by the random vari-
able X:

� We expect that when the market sells a cash �ow X
it charges a minimal price a; motivated by competi-
tion.

� However, the resulting residual cash �ow a�X must
be �-acceptable at level  or in the class of level 
marketed cash �ows.



� This minimal price is then the ask price of X. For
a�X to be acceptable at level  the price a must
exceed EQ[X] for all Q 2 D and hence the mini-
mal price is given by

a(X) = inf fa : �(a�X) � g
= inf

n
a : EQ[a�X] �  for any Q 2 D

o
= sup

Q2D
EQ[X]:



Bid Prices

� When the market buys X for a price b it is X � b

that must be acceptable at level  and the maximal
price is

b(X) = inf
Q2D

EQ[X]: (1)

In particular, we see that the bid price is dominated
by the ask price.



Post Hedge Ask

� We now introduce a set of hedging cash �ows H.

� The hedging cash �ows are those that are obtainable
from pursuing di¤erent zero-cost hedging strategies,
i.e. a random variable H 2 H represents the cash
�ow received on following a corresponding zero-cost
or self �nanced trading strategy in a collection of
liquid assets traded in the �nancial markets.

� The ask price of a cash �ow X is now de�ned as the
smallest price such that there exists a hedging strat-
egy with the property that when the market sells X
at this price it also pursues a hedging strategy receiv-
ing a total residual cash �ow that is �-acceptable at
level .

� Mathematically, the  level ask price is:

a(X) = inffa : there exists H 2 H such that �(a+H�X) � g:



Post Hedge Bid

� Similarly, we de�ne the  level bid price as

b(X) = supfb : there exists H 2 H such that �(�b�H+X) � g:

� The upper and lower hedges H;H are elements of
H satisfying respectively

�(a(X) +H �X) � ;

�(�b(X)�H +X) � :



Risk Neutral Measures

� We will focus our discussion on ask prices and the
upper hedge.

� We assume that H is a linear space, which e¤ec-
tively means absence of transactions costs, short sale
constraints, position limits and the law of one price
holds for these assets with trading possible in both
directions at the same price.

� In the presence of hedging assets an important role
is played by a particular class of measures that we
term risk neutral measures. We de�ne the set of risk
neutral measures:

R = fQ : Q is absolutely continuous with respect to P

and EQ[H] = 0 for any H 2 Hg:



� We make the assumption that the level  exceeds
the level

� = supf�(H) : H 2 Hg:



Role of Assumption

� This assumption is clearly necessary since otherwise
we can �nd a hedge whose level of acceptability ex-
ceeds , and then by scaling it up we can bring
�(a+H �X) to the level  for any price a.

� In this case, the ask price becomes minus in�nity.



Theorem

Theorem 1 (i) The sets D and R have nonempty in-
tersection.

(ii) The upper price is the maximum of expectations ofX
over the set of pricing kernels from the above intersection:

a(X) = sup
Q2D\R

EQ(X):

(iii) We have

a(X) = inf
H2H

�w(H �X):

while the set of upper hedges coincides with the set of
solutions of this maximization problem.



Remarks

� We remark that the condition  � � is equivalent
to the assertion that there is no hedging strategy
H 2 H, for which EQ(H) � 0 for all Q 2 D.

� This is almost the same as the condition of No Strictly
Acceptable Opportunities in Carr, Geman and Madan
(2001).

� Thus, statement (i) is an analogue of the Fundamen-
tal Theorem of Asset Pricing in our context. State-
ment (ii) may also be seen as an extension of the
result of Carr, Geman and Madan (2001) providing
the dual formulation of the pricing problem.

� Additionally we note that if we enforce the set of
marketed assets in the illiquid markets to be smaller
than the classical one by ensuring that D contains
a risk neutral measure then � = 0 and we just take
 > 0 for the cone of assets marketed to an illiquid
market.



� In practice the restriction of the searches over risk
neutral measures is intuitively sensible.

� This is because when searching for hedging strate-
gies, if we do not have the risk neutrality condition,
then the hedging assets become assets to invest in
or to take short positions in with a view to earning
returns as opposed to hedging.

� The only reason to take a position in hedging asset
should be to improve the overall risk pro�le and not
to make some extra expected return.



Parametric Models for
Marketed Cash Flows and
Closed Forms for Bid and

Ask Prices

� Parametric and operational models for cones of mar-
keted cash �ows may be constructed when we restrict
the property of being marketed or acceptable to be
solely a function of the probability law of the risk at
hand.

� Hence when testing for acceptability at a level  for
a cash �ow X the only information we need is the
distribution function FX of the random variable X:

� In general the market may be concerned with the
covariation of potential risks with risks already being
held and just the probability law is not a su¢ cient
guide to its market acceptability.



� An assessment based on the probability law may
then be seen as a �rst approximation to be possibly
further conditioned by other considerations.



Distortions and
Acceptability

� This is a family of concave distribution functions on
the unit interval [0; 1]. Each function 	 is zero
at zero, unity at unity, increasing and concave in its
argument.

� Furthermore for each u, the sequence 	(u) in-
creases in :

� The index �(X) is then the biggest  such that the
expectation of X remains positive when we distort
its distribution function by 	 :

�(X) = sup
�
 � 0 :

Z 1
�1

xd	(FX(x)) � 0
�
:



Distorted Expectation and
Measure Changes

� One may observe that the distorted expectationZ 1
�1

xd	(FX(x));

equals the expected value of X under a new proba-
bility measure Q(X); having density  (FX(X))
with respect to the original measure P , where  (u)
is the u�derivative of 	(u):

� Note that for a concave distortion this new density
reweights losses upwards when FX(X) is near zero
and discounts gains when FX(X) is near unity.

� So acceptability via concave distortions works as fol-
lows: for a variable X; we have a family of measures
Q(X); which distort the distribution function of X
more and more to the left as  increases.



� The value �(X) is then the maximal level of distor-
tion such that this distorted expectation of X is still
positive. One may think of the level  as a stress level
applied to the cash �ow X being tested for accept-
ability, that is achieved if the stressed expectation is
still positive.



Computation of Distorted
Expectation

� The distorted expectation is easy to compute numer-
ically once we have the distribution function of X:
It is further simpli�ed when we employ the empirical
distribution function of a sample x1; � � �xN . In this
case

Z 1
�1

xd	 (FX(x)) =
NX
n=1

x(n)

�
	

�
n

N

�
�	

�
n� 1
N

��
;

where x(n) are the values xn sorted in increasing
order.



Examples of Distortions

� A particularly simple family of such concave distor-
tions is given by

	(u) = 1� (1� u)1+; u 2 [0; 1];  � 0:

� For the corresponding index of acceptability �; the
inequality �(X) �  for an integer  is equivalent
to the property: expected value of the minimum of
 independent draws from the distribution of X is
positive. For this reason this distortion was termed
MINV AR; as it is related to the expectation of
minimal outcomes across draws.

� Distorted expectations are related to expectations
under a change of measure with density  (FX(X))
with respect to the original probability P .



� One can observe that for the MINV AR distortion
the function   is bounded by 1 + ; which means
that large losses are not reweighted up to in�nitely
large levels.



MINMAXVAR

� We consider this to be a drawback and introduce
another distortion, which reweights large losses up
to in�nity and large gains down to zero. It is termed
MINMAXV AR and is given by

	(u) = 1�
�
1� u

1
1+

�1+
; u 2 [0; 1];  � 0:

� We shall perform most computations in this paper
using acceptability index with thisMINMAXV AR

set of distortions.

� Wemay also generalize the distortionMINMAXV AR

to a parameter family of cones termedMINMAXV AR2

for which

	�;(u) = 1�
�
1� u

1
1+�

�1+
; u 2 [0; 1]; �;  � 0:



� The parameter � controls the rate at which the den-
sity  �;(u) = 	�;0(u) approaches in�nity as u
tends to 0 while  controls the rate at which this
density approaches zero as u tends to unity.

� We refer to � as a measure of risk aversion in the
market while  is a measure of the absence of gain
enticement.



Two other distortions

� For the valuation of some sample structured prod-
ucts we also employ the acceptability indices based
on MAXV AR and MAXMINV AR de�ned re-
spectively by:

	(u) = u
1
1+ ; u 2 [0; 1];  � 0;

	(u) =
�
1� (1� u)1+

� 1
1+ ; u 2 [0; 1];  � 0:



Supporting Measures

� Let us �nally remark that for the acceptability in-
dex the set D of supporting measures consists of
measures Q such that

E

"�
dQ

dP
� x

�+#
� �(x) for each x � 0;

where � is the conjugate dual to 	 :

�(v) = sup
u2[0;1]

(	(u)� uv) :

� We may also shift attention to a base measure be-
ing the uniform distribution on the unit interval and
identify random variables with the inverse of their
distribution functions.

� The set of level  acceptable random variablesG(u) =
F�1X (u) are then those that have positive expec-
tation for all measure changes with densities Z(u)



on the unit interval for which the distribution func-
tion, H(u) with H 0 = Z; is �rst order stochas-
tically dominated by the distortion 	(u): Equiva-
lently H(u) � 	(u) for u 2 [0; 1]:



Bid and Ask Prices using
distortions

� We may now employ these distortions to obtain prac-
tically computable expressions for the ask and bid
price as follows. For the ask price we have that

�(a�X) �  ()
Z 1
�1

xd	d(Fa�X(x)) � 0 () a+
Z 1
�1

xd	(F�X(x)) � 0;

from which we arrive at the computationally feasible
representation:

a(X) = �
Z 1
�1

xd	(F�X(x)):

� We now see the ask price directly as the negative of
the distorted expectation of the cash �ow �X: By
a similar argument one infers that

b(X) =
Z 1
�1

xd	 (FX(x)) :



� It is shown in Madan (2009) that the concavity of
	 directly delivers the domination of bid prices by
ask prices.



Hedging Criteria

� For the purpose of �nding operational hedges we ob-
serve that in the context of cones de�ned by dis-
tortions we have the following representation of the
functional w

w(X) =
Z 1
�1

xd	(FX(x)):

� It follows from Theorem 1 (iii) that

a(X) = inf
H2H

�
Z 1
�1

xd	(FH�X(x));

while the set of upper hedges coincides with the set
of optimal solutions of this problem.

� The equivalent expression for in the case of bid prices
is

b(X) = sup
H2H

Z 1
�1

xd	
�
FX�H(x)

�
:



Closed Forms for Bid and
Ask Prices for Call and Put

Options

� Let S be a random variable meaning time-T price of
an underlying asset.

� Consider a call option C = (S � K)+ and a put
option P = (K � S)+.

� Consider an acceptability index � based on a family
(	) of concave distortions.

� We now give the expressions for the ask and bid
prices of C and P in the absence of hedging assets,

� Recall that FS denotes the distribution function of
S.



� The ask and bid prices for C and P are given by:

a(C) =
Z 1
K
	(1� FS(x))dx;

b(C) =
Z 1
K
(1�	(FS(x)))dx;

a(P ) =
Z K
0
	(FS(x))dx;

b(P ) =
Z K
0
(1�	(1� FS(x)))dx:



The Cone of Marketed
Cash Flows Through the
Financial Crisis of 2008

� We take data on bid and ask prices on S&P 500
index options at the end of each quarter for the years
2007 through 2009 and estimate the parameters of
the cone �;  at each of these dates.

� The distribution function for the stock price at each
maturity is taken from the V GSSD model for the
logarithm of the stock price.

� On this model the logarithm for the stock at unit
time has the variance gamma distribution with pa-
rameters �; �; � and the distribution at other time
points t is obtained by scaling the unit time law by
the scaling factor t�:



� The unit time law comes from the variance gamma
Lévy process (Madan and Seneta (1990), Madan,
Carr and Chang (1998)) with three parameters con-
trolling volatility, skewness and kurtosis.



The Variance Gamma Law

� The variance gamma process is de�ned by

X(t) = �g(t) + �W (g(t))

where (W (t); t � 0) is a Brownian motion and
(g(t); t � 0) is a gamma process with unit mean
and variance rate �:

� The resulting composite processX(t) is a pure jump
process, with independent identically distributed in-
crements and an in�nitely divisible law at unit time.
Skewness is controlled by the parameter � while ex-
cess kurtosis is measured in the symmetric case by
3(1 + �).



� The model is calibrated to all strikes and maturi-
ties simultaneously and we estimate the six parame-
ters �; �; �; �; �;  on each quarter end for the three
years.

� There are then twelve sets of parameter estimates.

� We observe from the Table that though the cone
opened up somehwat in September of 2007 it con-
tracted in December of 2007 and narrowed signi�-
cantly in March of 2008.

� Since then it has been opening up somewhat but is
considerably smaller that it was in 2007:

� Volatility and skewness have risen through the crisis
as represented by � and �; though they have reduced
a bit towards the end of 2009:



Table 1
VGSSD and Cone Parameter Values Through the Financial Crisis
Date         sigma          nu       theta         rho    lambda     gamma
20070330 0.1134 1.0226 -0.0917 0.5268 0.0559 0.0437
20070629 0.1321 0.9760 -0.1024 0.5237 0.0521 0.0369
20070928 0.1393 0.9368 -0.1441 0.5550 0.0309 0.0322
20071231 0.1672 0.7176 -0.1994 0.5289 0.0980 0.0842
20080331 0.1553 0.5199 -0.2464 0.5130 0.2327 0.1674
20080630 0.1689 0.6301 -0.2141 0.5153 0.0928 0.0643
20080930 0.2430 0.6174 -0.2890 0.3998 0.1132 0.1774
20081231 0.2682 0.6401 -0.3968 0.5357 0.1427 0.0655
20090327 0.3387 0.6542 -0.3930 0.5051 0.0734 0.1181
20090630 0.2433 0.8827 -0.2493 0.5985 0.0127 0.0481
20090930 0.2259 0.8793 -0.2229 0.5941 0.0020 0.0189
20091229 0.2269 1.0759 -0.1969 0.6513 0.0922 0.1272



Bene�ts of Delta Hedging

� We know that hedging at a Black-Merton-Scholes
delta helps remove the e¤ects of drift, and we shall
quantify these bene�ts, but we additionally ask if
this activity also improves the residual cash �ow by
making it more acceptable even in the absence of
drift.

� To answer this question we consider an underlying
exponential Lévy process driving the stock for which
exact replication provably fails and there is always a
residual cash �ow. We consider the improvements
that may be possible in the residual cash �ow in-
duced by hedging at a Black Scholes delta with a
�at volatility.

� We measure the quality of the cash �ow by the level
of the ask price using the distortion minmaxvar at
stress level :75 for downside puts and stress level
:5 at upside calls, recognizing that calibrated stress
levels for puts are higher than for calls.



Stock Price Process

� We take the underlying process for the stock to be
driftless and a martingale and so there are no issues
associated with accessing drifts in the residual cash
�ow. The stock price process (S(t); t � 0) with
drift rate � may be expressed in terms of the variance
gamma process by

S(t) = S(0) exp (X(t) + (�+ !)t)

! = � logE [exp(X(1))] :

� We �rst report results evaluating the risk pro�le ben-
e�ts of delta hedging where the drift rate is set to
zero.



Options and Parameters

� We analyse two maturities 0:25 and 0:5 years and
four strikes of 80; 90; 110; 120 where the �rst two
are puts and the latter two are calls with the spot
starting at 100:

� This gives us 8 options for our analysis.

� We next have to consider possible values for the pa-
rameters of the underlying Lévy process and we con-
sider three levels for � the volatility of the Brownian
motion of 0:1; 0:15; and 0:2:

� For the excess kurtosis parameter � we take three
levels of 0:25; 0:5 and 1:0: For the skewness para-
meter � we take 5 levels of �:1; �:05; 0; :05; and
:1: This gives us 45 cases.

� We then have a total 360 cases.



Hedging Volatility

� For each case we determine on a simulated path
space the optimal hedging volatility or the �at volatil-
ity that minimizes the ask price computed as the
negative of the distorted expectation of the residual
cash �ow at the stated stress levels for the stress
function minmaxvar.

� We will then report on how the spread of the un-
hedged over the hedged ask price responds to the
structure of the underlying Lévy process. The hedges
are all at a Black-Merton-Scholes delta with a �at
volatility and daily rehedging.



E¤ects of Delta Hedge on
ask prices

� We �nd that beyond the e¤ects of removing drifts
the activity of delta hedging at even a �at Black
Scholes volatility improves the quality of the residual
cash �ow by raising its acceptability or for a �xed
acceptability permitting a reduction in the ask price.

� The average price reduction enabled by delta hedging
is 15% with an interquartile range from 7% to 26%:

� The average increase in the hedge volatility, that is
the ratio of the �at volatility used in hedging to min-
imize the ask price to the true volatility, is a factor
of 2:2 with an interquartile range from :77 to 2:44:



Regression Sensitivities

� In order to analyse the e¤ects of strike, maturity,
and the parameters of the Lévy process on the price
reductions possible we ran a �xed e¤ects model on
the 360 cases studied. We allowed for a a dummy
variable for the strike at 80; 120 relative to 90; 110:
We used a dummy variable for the longer maturity
and the higher levels of �; �; and �: The results are
presented in Table 2.

� We observe a signi�cant reduction overall with a
lower reduction for tail strikes and an increased re-
duction for longer maturities.

� The reduction increases with volatility, falls with ex-
cess kurtosis and is not signi�cant to movements in
the level of statistical skewness, that is usually small.



Table 2
Fixed E¤ect Regression Model
For Price Improvements
variable Coe¤ t-stat
constant 0.1791 7.03
strike dummy -0.0687 -4.48
� up one level 0.0328 1.75
� up two levels 0.0613 3.26
� up one level -0.0543 -2.89
� up two levels -0.0985 -5.24
� down two levels -0.0141 -0.58
� down one level -0.0002 -0.01
� up one level -0.0042 -0.17
� up two levels -0.0096 -0.39
maturity dummy 0.0661 4.31
R2 18.23

25



Table 3
Ask Prices for Six Month Option
Hedge 90P 110C
No Hedge 4.9460 4.8087
Single Delta 4.4358 4.0076
Weekly 3.3703 3.1779
Daily 3.2987 3.0999

30



TABLE 4
Estimated CGMY parameters
on daily index return data
12/12/2002-12/27/2007

C G M Y
SPX 5.6014 168.29 185.32 0.7404
FTSE 4.3387 68.039 91.011 1.0880
SX5E 3.4139 78.471 96.360 0.7841
GDAXI 12.483 78.484 93.218 0.5487
IBEX 1.2005 76.511 104.41 0.9533
N225 0.3085 69.368 120.92 1.3051
HSI 12.716 112.16 114.13 0.5444
NDX 2.5781 112.97 121.80 0.9529
DJX 0.2050 108.95 109.36 0.1247
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Post Hedge Cash Flows

� To observe the di¤erence we consider the case of a
six month 90 put with � = 0:15; � = 0:25; � = 0

where the one delta hedge vol was 0:18 while the
daily delta hedge vol was 0:21:

� We graph the probability distribution of the residual
cash �ow with one delta and a daily delta both on a
�at volatility.

� The resulting distribution in red is clearly more ac-
ceptable and has a lower ask price attaining a 30%
reduction from 4:35 to 3:40:

� This study was extended to consider also a 110 six
month call and we also graphed the distribution for
weekly hedging along with daily hedging.

� These graphs are also presented.
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Figure 1: Residual Cash Flow Probability Distribution
with initial Delta and Daily Delta.
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Figure 2: Residual Cash Flow Probability Distribution for
six month 90 put with one delta in blue, a weekly delta
in red and a daily delta in black.
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Figure 3: Residual Cash Flow Frequency Distribution for
six month 110 call with one delta (blue), a weekly delta
(red) and a daily delta (black).



Drift Removal Bene�ts

� Finally we document brie�y the bene�ts that follow
from the ability of Black Scholes delta hedging at
a �at volatility to contribute towards removing the
possible negative e¤ects of drift.

� For this purpose we consider hedging the 110 call in
a path space where the drift rate is 0:1; 0:25; and
0:5 respectively. The parameters describing the risk
are � = 0:15; � = 0:25; and � = 0:1: In this case
we did not optimize the hedge volatility but just used
0:5:

� We �nd the unhedged ask prices at the stress level
0:5 to be respectively 9:3274; 16:3011; and 32:1304
while the daily delta hedged price is relatively uniform
at respectively 3:0459; 2:6905; 3:4779.



� The bene�ts of eliminating the e¤ects of drift on the
�nal pro�t and loss are quite extensive and clear. It
is probably this aspect of the hedge that drives the
underlying popularity of Black Scholes delta hedging.



Pricing a Sample of
Structured Products

� We consider here daily cash �ow swaps, which are
contracts of the form

F =
TX
t=1

f(St; St�1);

where St is the price of the underlying asset at time t
and T is the maturity of the swap.

� There are three examples of payo¤ functions con-
sidered here, termed a daily cliquet, large realized
variance swap, and large total variation swap. These
are de�ned as follows. For a daily cliquet with strikes
kd < 1 < ku, we have

f(St; St�1) = (St� kdSt�1)+� (St� kuSt�1)+:
A large realized variance swap with strike k is de�ned
by

f(St; St�1) = (ln(St=St�1))
2I(j ln(St=St�1)j > k):



A large total variation swap with strike k corresponds
to

f(St; St�1) = jSt � St�1jI(jSt � St�1j > k):



The Hedges

� We calculate as before, both the unhedged and hedged
prices. In the latter case we consider the underlying
asset and the variance swap as hedge instruments
and in our notation,

H = fHjH = h1(S1�S0)+h2[(ln(S1=S0))2�v] : h1; h2 2 Rg;

where v is the (one-day) price of the variance swap.



The Base Measure

� In the calculations below we use two di¤erent candi-
dates for the physical measure P .

� The �rst one is just the empirical distribution of
ln(St=St�1) over the last four years. However, the
empirical distribution might not include possible large
moves.

� In order to capture them, we consider another can-
didate for the measure P as the CGMY distribution
�tted to the return history (for the description of the
CGMY distribution we refer to Carr, Geman, Madan,
and Yor, 2003). We then sample 10000 outcomes
from this �tted distribution to get a larger sample of
possible outcomes. The results of �tting the CGMY
distribution are reported in Table 4.



� We also present in Figure (4) the graphs of the
binned return data, the �tted CGMY densities, and
the reference �tted Gaussian density for each of the
nine indices employed. These are SPX, FTSE, SX5E,
GDAXI, IBEX, N225, HSI, NDX, and DJX. The data
period was December 12 2002 to December 27 2007.
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Figure 4: Graph displaying CGMY model densities �t to
daily return data on nine indices over four years.



Results

� For each of the three contracts described above,
we consider as underliers our nine indices. For the
acceptability index, we consider 4 di¤erent candi-
dates: AIMIN, AIMAX, AIMAXMIN, and AIMIN-
MAX based respectively onMINV AR;MAXV AR;MAXMINV AR

and MINMAXV AR.

� We calculate the ask and bid prices with no market
and with the hedge spaceH given by both choices of
the measure P . The results are presented in Tables
5�7.

� The strikes used for the daily cliquet were kd = 0:97,
ku = 1:03.

� The realized variance was paid out only when the
absolute return exceeded a half a percent, and the
result is in basis points.



� The total variation was positive only if it exceeded 5
units of the currency.

� The stress level  was chosen to be 0.5 for MINVAR,
0.25 for MAXVAR, and 0.15 for both MAXMINVAR
and MINMAXVAR.



� We observe from the tables that for the cliquet the
bid-ask spreads for the hedged prices are quite low
for the simulated model, while they are higher for
the sample data and are still higher for the unhedged
prices.

� The model prices are lower than the prices from the
data sample possibly re�ecting the lower activity in
the 3% range for the model.

� This is further con�rmed with higher prices for the
realized variance and the total variation.



Table 5. Results on Daily Cliquet
spx ftse sx5e gdaxi ibex n225 hsi ndx djx

No Hedge Sample 38.30 164.51 105.13 156.38 319.51 428.97 466.36 50.73 3.41
Ask Model 37.92 162.06 102.90 151.13 308.50 436.97 449.40 50.19 3.35
No Hedge Sample 33.28 139.87 86.49 123.32 255.80 339.71 380.32 42.38 3.00

MinVar Bid Model 34.53 147.06 91.53 133.04 276.65 365.10 404.42 43.99 3.09
Stress .5 Hedge Sample 35.76 153.81 96.51 142.19 295.10 391.81 430.19 45.89 3.18

Ask Model 34.72 148.09 92.79 135.33 279.02 368.74 407.94 44.50 3.10
Hedge Sample 33.28 139.87 86.49 123.32 255.80 339.71 380.32 42.38 3.00
Bid Model 34.53 147.06 91.53 133.04 276.65 365.10 404.42 43.99 3.09

No Hedge Sample 36.96 158.68 100.60 149.02 307.40 410.24 447.82 48.31 3.29
Ask Model 36.79 157.16 98.91 144.69 297.75 416.96 434.19 47.99 3.25
No Hedge Sample 33.10 140.29 86.90 126.18 264.17 342.18 385.88 41.37 2.96

MaxVar Bid Model 32.99 140.37 85.90 124.05 262.69 358.78 381.17 41.07 2.92
Stress .25 Hedge Sample 35.22 151.46 94.98 139.25 289.45 382.80 420.89 45.06 3.14

Ask Model 34.71 148.20 92.94 135.64 279.29 369.31 407.82 44.50 3.10
Hedge Sample 33.76 143.27 89.00 128.30 266.89 352.76 392.01 42.90 3.03
Bid Model 34.55 147.08 91.42 132.93 276.62 365.28 404.09 43.97 3.09

No Hedge Sample 37.45 160.83 102.27 151.69 311.78 416.93 454.48 49.19 3.33
Ask Model 37.20 158.99 100.40 147.07 301.76 424.28 439.85 48.79 3.29
No Hedge Sample 32.72 138.38 85.44 123.51 258.93 333.14 378.35 40.60 2.93

MaxMinVar Bid Model 32.59 138.68 84.53 121.79 259.18 352.35 375.43 40.25 2.88
Stress .15 Hedge Sample 35.42 152.30 95.52 140.32 291.45 386.01 424.31 45.37 3.15

Ask Model 34.71 148.15 92.93 135.66 279.19 369.18 407.90 44.50 3.10
Hedge Sample 33.59 142.04 88.08 126.48 262.80 348.12 387.72 42.71 3.02
Bid Model 34.54 147.07 91.43 132.88 276.61 365.01 404.23 43.98 3.09

No Hedge Sample 37.37 160.42 101.96 151.16 310.78 415.31 453.04 49.03 3.33
Ask Model 37.12 158.62 100.11 146.61 300.98 422.94 438.66 48.63 3.28
No Hedge Sample 32.81 138.81 85.76 124.05 259.90 334.66 379.76 40.76 2.94

MinMaxVar Bid Model 32.68 139.06 84.83 122.26 259.97 353.72 376.61 40.41 2.89
Stress .15 Hedge Sample 35.38 152.08 95.36 140.01 290.75 385.20 423.49 45.32 3.15

Ask Model 34.71 148.13 92.90 135.61 279.15 369.08 407.84 44.49 3.10
Hedge Sample 33.63 142.25 88.24 126.78 263.42 348.89 388.53 42.77 3.02
Bid Model 34.55 147.08 91.45 132.92 276.65 365.16 404.29 43.99 3.09



Table 6. Results on Realized Variance Payoffs
spx ftse sx5e gdaxi ibex n225 hsi ndx djx

No Hedge Sample 0.7892 0.9513 1.6294 2.0718 1.1411 1.9352 1.2029 1.8919 0.7597
Ask Model 0.7877 0.8916 1.5665 1.9681 1.1389 1.9303 1.2049 1.7964 0.7562
No Hedge Sample 0.6265 0.7634 1.3224 1.6826 0.9144 1.5664 0.9618 1.5334 0.6035

MinVar Bid Model 0.6249 0.7132 1.2702 1.5980 0.9169 1.5720 0.9668 1.4569 0.6007
Stress .5 Hedge Sample 0.6608 0.8011 1.3546 1.7137 0.9495 1.5952 0.9944 1.5641 0.6372

Ask Model 0.6614 0.7495 1.3037 1.6302 0.9525 1.5996 1.0014 1.4860 0.6375
Hedge Sample 0.6265 0.7634 1.3224 1.6826 0.9144 1.5664 0.9618 1.5334 0.6035
Bid Model 0.6249 0.7132 1.2702 1.5980 0.9169 1.5720 0.9668 1.4569 0.6007

No Hedge Sample 0.8462 1.1146 1.8690 2.3318 1.2486 2.0275 1.2746 2.0082 0.8221
Ask Model 0.8548 1.0202 1.8023 2.2383 1.2991 2.0498 1.3382 1.8956 0.8344
No Hedge Sample 0.4640 0.5484 0.9481 1.2104 0.6678 1.1608 0.7075 1.1346 0.4462

MaxVar Bid Model 0.4625 0.5169 0.9121 1.1475 0.6643 1.1689 0.7022 1.0821 0.4441
Stress .25 Hedge Sample 0.6477 0.7871 1.3421 1.7015 0.9361 1.5837 0.9818 1.5518 0.6244

Ask Model 0.6477 0.7359 1.2908 1.6177 0.9390 1.5884 0.9882 1.4743 0.6237
Hedge Sample 0.6288 0.7659 1.3236 1.6841 0.9171 1.5670 0.9639 1.5343 0.6055
Bid Model 0.6273 0.7151 1.2711 1.5988 0.9183 1.5739 0.9684 1.4572 0.6027

No Hedge Sample 0.8188 1.0420 1.7636 2.2167 1.2001 1.9798 1.2397 1.9505 0.7926
Ask Model 0.8227 0.9619 1.6964 2.1173 1.2252 1.9886 1.2768 1.8450 0.7970
No Hedge Sample 0.3781 0.4228 0.7413 0.9574 0.5355 0.9687 0.5784 0.9419 0.3619

MaxMinVar Bid Model 0.3750 0.4053 0.7148 0.9037 0.5252 0.9790 0.5593 0.9035 0.3585
Stress .15 Hedge Sample 0.6527 0.7924 1.3470 1.7063 0.9412 1.5882 0.9867 1.5566 0.6293

Ask Model 0.6529 0.7410 1.2958 1.6225 0.9441 1.5929 0.9933 1.4789 0.6289
Hedge Sample 0.6281 0.7651 1.3232 1.6835 0.9162 1.5669 0.9633 1.5340 0.6049
Bid Model 0.6267 0.7146 1.2710 1.5987 0.9181 1.5732 0.9680 1.4572 0.6022

No Hedge Sample 0.8089 1.0281 1.7407 2.1884 1.1851 1.9571 1.2247 1.9279 0.7829
Ask Model 0.8127 0.9494 1.6744 2.0900 1.2096 1.9662 1.2606 1.8239 0.7872
No Hedge Sample 0.3836 0.4294 0.7524 0.9716 0.5434 0.9818 0.5868 0.9547 0.3671

MinMaxVar Bid Model 0.3805 0.4115 0.7255 0.9172 0.5330 0.9919 0.5676 0.9157 0.3637
Stress .15 Hedge Sample 0.6524 0.7920 1.3466 1.7059 0.9408 1.5879 0.9863 1.5563 0.6289

Ask Model 0.6525 0.7406 1.2954 1.6222 0.9437 1.5926 0.9929 1.4786 0.6285
Hedge Sample 0.6288 0.7658 1.3238 1.6841 0.9168 1.5675 0.9639 1.5346 0.6056
Bid Model 0.6273 0.7153 1.2716 1.5993 0.9187 1.5739 0.9686 1.4577 0.6029



Table 7. Results on Total Variation Payoff
spx ftse sx5e gdaxi ibex n225 hsi ndx djx

No Hedge Sample 11.3107 54.1705 42.4635 67.7910 112.9533 207.9990 176.8989 23.6941 0.3600
Ask Model 11.5203 50.1056 41.9073 68.7053 108.6655 205.1170 163.3263 23.6366 1.0085
No Hedge Sample 8.1553 40.1079 30.7981 48.0466 82.4132 154.8801 130.9343 17.7039 0.2763

MinVar Bid Model 8.4590 36.2574 30.3891 50.0223 79.0754 156.9029 118.5010 17.7988 0.7425
Stress .5 Hedge Sample 10.6781 52.0641 40.6782 64.9280 106.5695 195.0155 165.5637 22.5391 0.3417

Ask Model 10.6806 46.9825 39.4804 64.5850 101.8281 183.6402 152.0211 21.9295 0.9405
Hedge Sample 8.1553 40.1079 30.7981 48.0466 82.4132 154.8801 130.9343 17.7039 0.2763
Bid Model 8.4590 36.2574 30.3891 50.0223 79.0754 156.9029 118.5010 17.7988 0.7425

No Hedge Sample 10.7003 52.5262 40.8481 64.7661 109.1663 200.0666 170.0844 22.3956 0.3437
Ask Model 11.0899 48.9779 40.9707 67.0128 105.8322 195.3654 158.5390 22.5177 0.9735
No Hedge Sample 7.3908 37.2196 28.9393 46.3034 78.1091 142.5240 120.1894 16.1463 0.2499

MaxVar Bid Model 7.4435 32.0499 27.0138 44.3802 70.0371 137.4448 104.7074 15.7281 0.6525
Stress .25 Hedge Sample 10.0864 49.6951 39.0005 62.8168 103.8599 189.3005 159.7005 21.2689 0.3238

Ask Model 10.0911 44.2299 37.0370 60.6283 95.8107 176.9075 143.3115 20.6767 0.8862
Hedge Sample 8.2344 40.2245 31.4507 50.3643 85.8077 157.8223 134.6838 17.7608 0.2744
Bid Model 8.4581 35.8467 30.1060 49.7206 78.1005 157.8166 118.7712 17.8182 0.7339

No Hedge Sample 10.8793 52.9595 41.3152 65.6734 110.2239 202.3475 172.0095 22.8024 0.3486
Ask Model 11.1958 49.1407 41.1117 67.3153 106.3327 198.1470 159.5289 22.8374 0.9815
No Hedge Sample 6.7437 34.3511 26.6957 42.8540 72.2922 131.5831 110.6218 15.0152 0.2328

MaxMinVar Bid Model 6.7069 28.5612 24.1827 39.7958 62.7924 126.7232 93.6751 14.4479 0.5881
Stress .15 Hedge Sample 10.3028 50.6910 39.6412 63.5877 104.9201 191.5558 162.0830 21.7446 0.3307

Ask Model 10.3048 45.2661 37.9426 62.0996 98.0703 179.6866 146.4578 21.1291 0.9062
Hedge Sample 8.1154 39.3392 30.5167 48.3181 82.8482 155.2856 131.7869 17.5949 0.2727
Bid Model 8.4008 35.5422 29.8164 49.2306 77.5509 155.6511 117.6573 17.7557 0.7309

No Hedge Sample 10.7900 52.5656 41.0049 65.1892 109.4205 200.8388 170.6962 22.6388 0.3462
Ask Model 11.0979 48.6895 40.7431 66.7165 105.3840 196.6352 158.0877 22.6588 0.9729
No Hedge Sample 6.8134 34.6475 26.9332 43.2332 72.9026 132.7346 111.6201 15.1490 0.2347

MinMaxVar Bid Model 6.7788 28.8776 24.4433 40.2218 63.4701 127.9197 94.7054 14.5877 0.5943
Stress .15 Hedge Sample 10.2543 50.4554 39.4393 63.2199 104.3684 190.7548 161.3833 21.6589 0.3296

Ask Model 10.2648 45.0669 37.7799 61.8417 97.6590 178.7198 145.8663 21.0620 0.9027
Hedge Sample 8.1631 39.5746 30.7070 48.6417 83.3374 156.0282 132.4415 17.6865 0.2739
Bid Model 8.4412 35.7444 29.9869 49.5025 77.9796 156.4859 118.2599 17.8306 0.7346




