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Outline
• Operationally defining Acceptability of
Random Cash Flows

• New Examples of Acceptability Indices
– MINVAR, MAXVAR, MINMAXVAR,
MAXMINVAR

• Applications in the Options Domain
• Construction of Required Sharpe Ratios for
Hedge Funds

• Pricing Contracts written on Daily Returns
• Pricing Gap Risk
• Pricing CFO contracts

2



Making Acceptability
Operational

• The idea of Pricing and Hedging to
acceptability was proposed in Carr, Geman
and Madan (JFE 2001).

• The first part of that paper explored the
analogy with efficient markets redefined as
the absence of no acceptable opportunities
and related this to the existence of a pricing
operator in the convex hull of the measures
defining acceptability.

• The second part considered incomplete
markets more fully and explored the
generalization of super and sub replication
to determining ask and bid prices by
hedging to acceptability.

• The primary personal dissatifaction with
this work was the absence of an operational
definition of acceptability cones capable of
producing real prices and hedges for real
contracts.
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Operational Acceptability
• Consider the task of evaluating trading
opportunities and or strategies.

• We agree that an arbitrage is an excellent
trade but one that is not likely to be found.
– There is an extensive literature testing
market efficiency understood to be the
absence of arbitrage.

– As this is broadly equivalent to the
existence of a pricing kernel or a linear
pricing rule, the tests often focus on
actually testing for the validity of a
particular asset pricing model.
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– Another interesting result of Jacod and
Shiryaev (1998) describes no arbitrage
as zero lying in the interior of the set of
possible price moves.
∗ Hence no arbitrage is just the accep-
tance of a positive probability of a
loss.

• We accept the absence of arbitrage in this
sense though the pricing kernel may be
hard to find.
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Measuring Efficiency
• As we accept market efficiency in the sense
of no arbitrage, we ask what is the level of
market efficiency?

• From this perspective, we view the absence
of arbitrage as a zero level of efficiency.

• In a really efficient economy one should
not be able to come anywhere near an
arbitrage.

• This led us to axiomatize the degree of trade
acceptability with a positive expectation
being a zero level of acceptability while an
arbitrage was an infinitely acceptable trade.
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Axiomatizing Acceptability
Levels

• We work on L∞(Ω,F , P ) a general prob-
ability space. We define an acceptability
index α to be a map from L∞ to the
extended positive reals [0,∞], with α(X)
being the level of acceptability of the
random variableX ∈ L∞.

• The set of trades with cash flows X
acceptable at level x is given by

Ax = {X|α(X) ≥ x} .
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Convexity
• We require thatAx be a convex set for all x
and hence that

α(X) ≥ x, α(Y ) ≥ x

then for λ, 0 ≤ λ ≤ 1
α (λX + (1− λ)Y ) ≥ x.

• This property was already adopted for
acceptability in Artzner, Delbaen, Eber and
Heath (1999) and Carr, Geman, Madan
(2001) and we merely adopt it for all the
acceptability levels x.
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Monotonicity
• Domination increases acceptability and we
require

ifX ≤ Y , then α(X) ≤ α(Y )

• This property is shared with classical
utility theory and preference orderings in
economic theory generally.
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Scale Invariance
• Our interest is in determining the direction
of trades and not their scale.

• The scale may be determined by other
considerations like market impact, liquidity
or depth.
– Classical theory in our view mistakenly
assumes that one may trade at an
arbitrary level with no market impact
and then uses concavity to determine the
optimal trade level.

– We link our acceptability indices to
more traditional performance measures
like the Sharpe ratio or the Gain-Loss
ratio that are scale invariant.

• Hence we impose that
α(λX) = α(X), for λ > 0.
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Fatou Property
• This is a continuity or closure property and
is a relatively technical condition.

• For Xn with |Xn| ≤ 1, and α(Xn) ≥ x
withXn converging toX in probability we
require the α(X) ≥ x.
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Coherent Acceptability
Indices

• The four properties on Convexity,
Monotonicity, Scale Invariance and the
Fatou property define the class of coherent
acceptability indices.

• We introduce some other properties that
help in formulating operational models of
acceptability.

• The first additional property enables us
to access the results of Kusuoka (2001)
who characterized all law invariant risk
measures and hence indirectly law invariant
cones of acceptability.
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Law Invariance
• We require that the index of acceptability
depend on just the probability law of the
random variable.

• Hence we require that
ifX law

= Y then α(X) = α(Y ).

• This property is shared with traditional
performance measures like the Sharpe ratio
or the Gain Loss ratio.

• Its main purpose is as a vehicle to concrete
examples of acceptability cones.
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Three other properties
• Three other properties we note are
– Second Order Monotonicity, whereby
we require that if Y second order
stochastically dominates X then
α(X) ≤ α(Y ).

14



– Arbitrage Consistency, or X ≥ 0 if and
only if α(X) =∞.
∗ Acceptability indices depart from
traditional preference orderings here
as we are effectively converting the
entire positive orthant to a bliss
point at infinity and we do not rank
two positive cash flows from an
acceptability perspective.

∗ As noted at the start, we do not
expect to find zero cost cash flows
in the positive orthant so why bother
ranking them.
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– Expectation Consistency, if E[X ] < 0,
then α(X) = 0; and E[X ] > 0 then
α(X) > 0.
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Characterization Result
• A map α : L∞ → [0,∞] is a coherent
acceptability index if and only if there
exists a collection (Dx)x∈R+ of subsets of
probability measures absolutely continuous
with respect to P such that Dx ⊆ Dy for
x ≤ y and

α(X) = inf

½
x ∈ R+| inf

Q∈Dx

EQ[X ] < 0

¾
where inf ∅ =∞.

• Alternatively α(X) is the largest x such
thatX ∈ Ax.
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• The determining sets associated with an
index of acceptability are the maximal
collections supporting an index of accept-
ability and these are uniquely identified.

• Arbitrage consistency requires that the
∪xDx coincides with the set of all measures
absolutely continuous with respect to P.

• For expectation consistency D0 = {P} .
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Performance Measures :
Early Examples

• The Sharpe Ratio defined by
SR =

E[X]

σ(X)
, if E[X] ≥ 0

0 otherwise
is scale invariant, law invariant, and
expectation consistent and has the Fatou
property.

• It is well known not to satisfy the
monotonicity property and is not arbi-
trage consistent.
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• The Gain-Loss ratio defined as
GLR(X) =

E[X+]

E[X−]
− 1, if E[X] > 0

0 otherwise

• This measure is law and scale invariant,
arbitrage and expectation consistent, it is
monotonic and has the Fatou property. It is
a coherent acceptability index.

• It also satisfies convexity and second order
monotonicity.
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• A dissatisfaction with this measure is the
absence of a unique identification of the
extreme measures attaining the infimum of
EQ[X ] for Q ∈ Dx.

• The density of the extreme measure for Dx

has the form
c (1 + x1X≤b)

• Another disadvantage is that the extreme
measure does not exaggerate large losses
relative to small ones and treats them
uniformly.

21



• The Tilt Coefficient is defined as the largest
negative exponential tilt such that the tilted
expectation is positive or
TC(X) = inf

©
λ ∈ R+|E[Xe−λX] < 0

ª
.

• This measure is monotone, law invariant
and has the Fatou property.

• It is not convex or scale invariant and
is therefore not a coherent acceptability
index.

• It also fails second order monotonicity.
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The Law Invariant Measures
• An important building block of law
invariant cones of acceptability is TV AR
the measure for tail value at risk. It is
defined as −uλ(X) where

uλ(X) = inf
Q∈Dλ

EQ[X]

Dλ =

½
Q << P |dQ

dP
≤ 1

λ

¾
.

• For X with a continuous distribution the
infimum is attained at

dQ∗

dP
=
1

λ
1X≤qλ(X)

where qλ(X) is the λ− quantile ofX.
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• An acceptability index based on tail value
at risk is defined by

AIT (X) =
1

inf {λ ∈ (0, 1]|uλ(X) ≥ 0} − 1
• We have here a coherent acceptability index
that is arbitrage and expectation consistent
and the extreme measures are identified.

• We do ignore gains completely and treat all
losses uniformly.
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Weighted Value at Risk
• Tail Value at Risk leads us to weighted
value at risk by integrating with respect to
a measure on the quantile levels. Let µ be a
measure on (0, 1] and define

uµ(X) =

Z
(0,1]

uλ(X)µ(dλ)

• To define an acceptability index we are
going to have to find a sequence of
measures µx indexed by the level of
acceptability and it is not clear how to go
about doing this.

• There is however an alternative equivalent
characterization of weighted value at risk
defined by relating the measure µ to a
concave distribution function on the unit
interval Ψµ defined by

Ψµ(y) =

Z y

0

dz

Z 1

z

1

λ
µ(dλ)
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• We may then establish that
uµ(X) =

Z
R
ydΨµ(FX(y))

or the expectation of X under the concave
distortion of the distribution function of X
from FX to Ψµ(FX).

• It is hard to visualize a sequence of
measures µx but relatively easy to formulate
a sequence of concave distortions Ψx from
which the measures may be extracted by

µ(dy) = −yΨ00(dy).
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• We may define the index of acceptability
as the largest level x such that expectations
under concave distortions Ψx are positive
or

AIW (X) = inf

½
x ∈ R+|

Z
R
ydΨx(FX(y)) < 0

¾
where inf∅ =∞.

• The extreme measures are identified as
dQ∗

dP
= Ψ0(FX(x))

• We also have a characterization of the the
setsDx in terms of the conjugate dual ofΨ.
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The Determining System
• Define by Φx(y) the conjugate dual of
Ψ+x (z) = limε↓0Ψx+ε(z) by

Φx(y) = sup
z∈[0,1]

¡
Ψ+x (z)− yz

¢
• The determing system of densities Dx are
given by all densities Z for which

E
£
(Z − y)+

¤ ≤ Φx(y), y ∈ R+.
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Characterization for Law
Invariant Indices

• For a coherent acceptability index α, the
following conditions are equivalent
– α is law invariant.
– α is monotone and second order
monotone.

– α is dilatation monotone, i.e. for any
X ∈ L∞, and G ⊆ F ,

α(E [X|G]) ≥ α(X).

– the determining system of α is law
invariant, i.e. for any x ∈ R+, and any
density Z law

= Z 0 then if Z ∈ Dx, it is
also the case that Z 0 ∈ Dx.

– there exists a family (αγ)γ∈Γ of AIW
indices such that

α(X) = inf
γ∈Γ

αγ(X)
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Remark on Law Invariant
Result

• This result relies on the characterization
by Kusuoka (2001) of all law invariant
monetary utilities (negative risk measures)
as the infimum of a collection of weighted
value at risk measures, specifically there
exists a set of measuresM on [0, 1] with
elements µ such that

u(X) = inf
µ∈M

uµ(X).

• This result was an important step forward
in the operationalization of acceptability
cones.
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The New Acceptability Cones:
MINVAR

• The first family of concave distortions we
considered was

Ψx(y) = 1− (1− y)x

• It is simple to observe that X is acceptable
under this distortion just if the expectation
of the minimum of x independent draws
from the distribution of X is still just
positive.

• Hence we refer to this measure as
MINVAR as it is based on the ex-
pectation of minima.

31



• The extreme measure in this case is
dQ∗

dP
= (x + 1) (1− FX(X))

x , x ∈ R+
• A potential drawback is that large losses
have a maximum weight of (x + 1) in the
densities of the determining system Dx.

• Asymptotically large gains receive a weight
of zero.
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MAXVAR
• The next concave distortion is based on
the maxima of independent draws and is
defined by

Ψx(y) = y
1
1+x

• Here we take expectations from a distribu-
tion G such that the law of the maxima of
x independent draws from this distribution
matches the distribution ofX.

• The extreme measure now is
dQ∗

dP
=

1

1 + x
(FX(X))

− x

x+1 , x ∈ R+
• Large losses now receive unbounded large
weights in the determining system, but
large gains have a minimum weight of
(x + 1)−1.
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MAXMINVAR and
MINMAXVAR

• We combine the two distortions in two
ways to define MAXMINVAR by

Ψx(y) =
¡
1− (1− y)x+1

¢ 1
x+1

• and MINMAXVAR by
Ψx(y) = 1−

³
1− y

1
x+1

´x+1
• The densities in the determining system
now have weights tending to infinity for
large losses and zero for large gains.
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Application to Unhedged
Option Writes

• We ask what are levels of acceptability
attained on these measures by strategies of
writing options and holding the position to
maturity and paying out the requisite cash
flow.

• We took data on all out of the money
options on the SPX and the FTSE from
December 2000 to December 2005 and
bucketed these by 7 ranges for moneyness
and 4 ranges for maturity.
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• We thereby obtained 28 cash flow distri-
butions for writing options bucketed by
moneyness and maturity.

• We then computed the level of each of
8 performance measure for each of the 2
indices.

• We report the results in eight 7 by 4 tables
for each index.
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Remarks on Option Writes
• The TC is the smallest measure suggesting
that exponential tilting is quite a severe risk
adjustment.

•MINMAXVAR andMAXMINV AR
are next and comparable with each other.

• This followed by MAXVAR indicative
of the large weighting of losses in this
measure.

• The highest measure is that forMINV AR
among the new coherent indices.

• The values are generally below unity with
the exception of MINVAR for short
maturity out of the money calls.
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SPX Options 
SR TC

Strike Maturity Range Maturity Range
Ranges 0-.25 .25-.5 .5-.75 .75-1.0 0-.25 .25-.5 .5-.75 .75-1.0
.85-.9 0.3166 0.1790 0.2136 0.4585 0.0520 0.0247 0.0345 0.1346
.9-.95 0.1970 0.1234 0.1748 0.2802 0.0266 0.0128 0.0246 0.0600
.95-1.0 0.1281 0.0741 0.0857 0.1043 0.0132 0.0050 0.0067 0.0100
1.0-1.05 0.0697 0.0203 0.0127 0.0566 0.0044 0.0004 0.0002 0.0031
1.05-1.1 0.1761 0.2732 0.2879 0.2347 0.0284 0.0683 0.0763 0.0520
1.1-1.15 0.3544 0.3423 0.4538 0.3667 0.0846 0.0939 0.1536 0.1084
1.15-1.2 0.5336 0.4849 0.4950 0.4409 0.1262 0.1393 0.1574 0.1366

GLR RAROCX10
.85-.9 2.9789 0.8292 0.8997 2.0282 0.3328 0.1073 0.1244 0.2954
.9-.95 1.2354 0.4962 0.6636 0.9792 0.1437 0.0682 0.0961 0.1596
.95-1.0 0.6234 0.2528 0.2768 0.2921 0.0773 0.0380 0.0439 0.0551
1.0-1.05 0.2498 0.0578 0.0345 0.1444 0.0361 0.0100 0.0063 0.0302
1.05-1.1 0.5665 0.9487 1.0264 0.7847 0.1070 0.1861 0.2036 0.1612
1.1-1.15 2.1914 1.5448 2.1740 1.4472 0.2734 0.2344 0.3170 0.2389
1.15-1.2 6.8759 3.8486 2.7580 2.0353 0.7889 0.4555 0.3674 0.2935

AIMIN AIMAX
.85-.9 0.9115 0.3461 0.4710 1.1245 0.3397 0.1667 0.2059 0.4718
.9-.95 0.4708 0.2762 0.2889 0.4581 0.2003 0.1306 0.1341 0.2304
.95-1.0 0.2508 0.0763 0.1169 0.1884 0.1169 0.0398 0.0593 0.1075
1.0-1.05 0.0644 0.0077 0.0216 0.0245 0.0348 0.0044 0.0123 0.0152
1.05-1.1 0.2461 0.3635 0.4193 0.2764 0.1823 0.2791 0.3238 0.2254
1.1-1.15 0.6849 0.4636 0.8665 0.6080 0.3699 0.3050 0.4894 0.3805
1.15-1.2 1.2659 1.1474 0.9899 0.8882 0.5485 0.5218 0.4718 0.4546

AIMAXMIN AIMINMAX
.85-.9 0.2249 0.1076 0.1359 0.2994 0.2145 0.1049 0.1315 0.2780
.9-.95 0.1330 0.0856 0.0885 0.1458 0.1291 0.0838 0.0866 0.1404
.95-1.0 0.0772 0.0259 0.0388 0.0669 0.0759 0.0257 0.0384 0.0657
1.0-1.05 0.0224 0.0028 0.0078 0.0093 0.0223 0.0028 0.0078 0.0093
1.05-1.1 0.1010 0.1500 0.1727 0.1193 0.0983 0.1440 0.1649 0.1155
1.1-1.15 0.2207 0.1721 0.2823 0.2170 0.2095 0.1648 0.2629 0.2050
1.15-1.2 0.3362 0.3166 0.2871 0.2726 0.3127 0.2944 0.2678 0.2546



FTSE Options
SR TC

Strike Maturity Range Maturity Range
Ranges 0-.25 .25-.5 .5-.75 .75-1.0 0-.25 .25-.5 .5-.75 .75-1.0
.85-.9 0.2505 0.0650 -0.0475 0.0988 0.0396 0.0038 0.0000 0.0090
.9-.95 0.1103 0.0064 -0.1085 -0.0858 0.0100 0.0000 0.0000 0.0000
.95-1.0 0.0462 -0.0214 -0.1615 -0.2076 0.0020 0.0000 0.0000 0.0000
1.0-1.05 -0.0149 -0.0541 -0.2304 -0.2873 0.0000 0.0000 0.0000 0.0000
1.05-1.1 0.5915 0.4471 0.4948 0.4469 0.2599 0.1775 0.2244 0.1822
1.1-1.15 0.6761 0.6869 0.7332 0.5958 0.2326 0.3341 0.4149 0.2851
1.15-1.2 0.5219 0.7185 1.0434 0.8054 0.1167 0.2588 0.5540 0.4188

GLR RAROCX10
.85-.9 1.8315 0.2645 0.0000 0.2802 0.2089 0.0356 0.0000 0.0528
.9-.95 0.5638 0.0203 0.0000 0.0000 0.0686 0.0033 0.0000 0.0000
.95-1.0 0.1802 0.0000 0.0000 0.0000 0.0245 0.0000 0.0000 0.0000
1.0-1.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.05-1.1 3.2350 1.9633 2.0273 1.8022 0.4959 0.3532 0.4291 0.3623
1.1-1.15 9.1868 5.7715 4.2449 2.7973 1.0758 0.7685 0.6863 0.4782
1.15-1.2 17.4153 23.4815 16.0821 5.1221 2.0014 2.8906 2.3423 0.7614

AIMIN AIMAX
.85-.9 0.4579 0.0269 0.0000 0.1385 0.2314 0.0157 0.0000 0.0849
.9-.95 0.1657 0.0000 0.0000 0.0000 0.0867 0.0000 0.0000 0.0000
.95-1.0 0.0526 0.0000 0.0000 0.0000 0.0289 0.0000 0.0000 0.0000
1.0-1.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.05-1.1 1.1565 0.6869 0.8379 0.7031 0.6760 0.5104 0.6533 0.5422
1.1-1.15 1.7939 1.3843 1.5108 1.0274 0.7746 0.7789 0.9108 0.6721
1.15-1.2 2.1375 2.8520 3.2708 1.8586 0.9083 1.1088 1.2811 0.9130

AIMAXMIN AIMINMAX
.85-.9 0.1447 0.0099 0.0000 0.0517 0.1401 0.0098 0.0000 0.0509
.9-.95 0.0556 0.0000 0.0000 0.0000 0.0549 0.0000 0.0000 0.0000
.95-1.0 0.0185 0.0000 0.0000 0.0000 0.0184 0.0000 0.0000 0.0000
1.0-1.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.05-1.1 0.3770 0.2675 0.3313 0.2805 0.3429 0.2492 0.3028 0.2599
1.1-1.15 0.4557 0.4271 0.4886 0.3619 0.4120 0.3852 0.4314 0.3288
1.15-1.2 0.5162 0.6262 0.7293 0.5220 0.4655 0.5498 0.6187 0.4591



Acceptability Levels For
Hedge Funds

• For data on hedge fund returns we had 60
monthly returns on 527 hedge funds and we
centered and scaled this data to zero mean
and unit variance.

• To get a better assessment of the distribu-
tion function we fitted a probability model,
and in particular the centered and scaled
CGMY model for Y = .5.We therefore
estimated just two parameters, G,M.

• We then simulated cash flows from these
distributions and evaluated the new coher-
ent indices on this data as well as similar
data for 27 stocks and 10 as a benchmark.

• The results are reported in a table.
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TABLE 2
Acceptability Levels of Funds From Standardized CGMY

quantiles
Based on .05 .5 .95

S 0 .1177 .3243
MN I 0 .1265 .2492

F .1640 .7175 2.0668

S 0 .0883 .2779
MX I 0 .0957 .1964

F .1374 .4966 1.2346

S 0 .0494 .1426
MXMN I 0 .0535 .1062

F .0738 .2679 .6591

S 0 .0488 .1372
MNMX I 0 .0527 .1032

F .0726 .2495 .5645
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Remarks on Hedge Fund
Levels

• Hedge Funds do access higher levels of
acceptability than one may obtain from
stocks or indices.

• The highest levels are again forMINV AR,
followed byMAXVAR and the compos-
ite measures.

• The measures are generally below unity
indicating a fairly efficient economy.
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From Required Returns to
Required Sharpe Ratios

• Investment in a return distribution X may
be standardized on defining Z such that

X = µ+ σZ

• Let FZ be the distribution function of the
standardized variate. We show that for
each coherent acceptability index, X is
acceptable at level x just if

SR =
µ

σ
≥ cZ(x)

cZ(x) = −
Z ∞

−∞
zd (Ψx(FZ(z)) .
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• Hence hedge funds may affect distributions
by accessing different skews and kurtosis
with a view to raising Sharpe ratios but
required Sharpe ratios for acceptability
may rise by even more.

• A regression of required Sharpe ratios
on skewness and kurtosis indicates a
preference for skewness.

• Kurtosis is confused as higher kurtosis
appears to lower required Sharpe ratios.

• We split Kurtosis into tailweightedness and
peakedness and find the latter is preferred
while the former is shunned.
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TABLE 3
Regression Coefficients of Required Sharpe Ratios
on Skewness and Kurtosis

Constant Skewness Kurtosis R2
MN 0.5536 0.00076 -0.0055 83.45

t-stat (0.98) (-7.07)
MX 0.7572 -0.0529 -0.0037 64.08

t-stat (-29.10) (-2.06)
MXMN 0.9954 -0.0566 -0.0062 76.54

t-stat (-35.36) (-3.90)
MNMX 1.1674 -0.0763 -0.0071 74.88

t-stat (-35.65) (-3.30)
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TABLE 4
Regression Coefficients of Required Sharpe Ratios
Skewness, Peakedness and Tailweightedness

Const Skew Peak Tail R2
MN 1.0738 0.00832 -0.8662 2.0137 96.70

t-stat (23.21) (-115.69) (30.58)
MX 0.8121 -0.0536 -0.3494 3.889 59.01

t-stat (-26.73) (-8.34) (10.56)
MXMN 1.2864 -0.0539 -0.7447 4.8321 64.26

t-stat (-26.41) (-17.45) (12.87)
MNMX 1.4479 -0.0741 -0.7966 5.7761 64.57

t-stat (-28.20) (-14.52) (11.97)
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