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Motivation

� A number of applications in �nancial modelling call
for the description of the joint law of asset returns
over some horizon of interest.

� For many of these applications it is well recognized
that the marginal return distributions of each asset
return taken individually is not Gaussian (Jondeau,
Poon, and Rockinger (2007), Menn, Fabozzi and
Rachev (2005), McNeil, Frey and Embrechts (2005),
Boyarchenko and Levendorskii (2002)).

� Hence the focus on non-Gaussian multivariate return
distributions.



Applications

� Applications include the design of optimal portfolios
where the interest is in the physical multivariate re-
turn distribution,

� the pricing of options on a basket of stocks for which
the relevant return distribution is risk neutral.

� The marginal distributions re�ect varying degrees of
skewness and excess kurtosis, features that may be
inherited and even exaggerated in portfolios.

� We investigate and report on the comparative per-
formance of three tractable multivariate models for
asset returns that have recently appeared in the lit-
erature.



Tractability and
Alternatives

� The particular feature of tractability for the three
chosen models is the ability to estimate the models in
dimensions as high as 50; by reduction to a suitable
sequence of univariate estimation problems.

� There are a variety of multivariate elliptical distrib-
utions like the multivariate t � distribution Kotz
and Nadarajah (2004), or the multivariate variance
gamma (Madan and Seneta (1990), Schoutens and
Cariboni (2009) that impose a uniform tail structure
across the di¤erent assets that we do not study here.
The methods developed could however be applied to
these models as well.



Model FGC

� The �rst of these models is a full rank Gaussian cop-
ula (FGC) that has been proposed and studied by
Malevergne and Sornette (2005).

� In this model each asset return is a nonlinear trans-
form of a set of standard normal variates that are
correlated with a correlation matrix C of possibly
full rank.



Model LML

� The second model follows the idea implicit in a mul-
tivariate normal model where all the variables are
linear transformations of independent Gaussian vari-
ates.

� We now consider a linear mixture of independent but
non-Gaussian variates, that like the Gaussian vari-
able, are in�nitely divisible and associated with the
unit time distribution of a Lévy process.

� The model was implemented for portfolio design in
asset allocation by Madan and Yen (2008) using
independent components analysis (ICA, Hyvärinen,
Karhunen and Oja (2001)) to identify the indepen-
dent variables.

� It was also used by Madan (2006) in an equilibrium
asset pricing model. We denote this model LML

for Lévy mixture of independent Lévy.



Model VGC

� The third model writes the marginals as following
the variance gamma law (Madan and Seneta (1990),
Madan, Carr and Chang (1998)) . The marginals are
gamma time changed Brownian motion at unit time
and we correlate the Brownian motions.

� The model was proposed by Eberlein and Madan
(2008) and employed by Madan (2009) in a study
pricing options on a basket of stocks. We term this
model V GC for correlated variance gamma.



Choice of Data

� In order to investigate models of dependence it is
helpful to consider data where there is some pre-
sumption of the presence of dependencies.

� Though this is expected of stock returns in gen-
eral as they presumably share exposure to common
macro movements of the economies in which they
trade, one would expect such dependencies to be
even greater for sector speci�c exchange traded funds
(ETF 0s) that constitute diversi�ed portfolios of sim-
ilar collections of stocks.

� Additionally we have daily data on the market values
of these funds, thereby providing us with a fertile en-
vironment in which to test our models of multivariate
dependence.



� With these considerations in mind the three models
are estimated on a number of ETF returns parti-
tioned by economic sector, as well as one set that
selects a single ETF from each of nine sectors.



Model Evaluation Methods

� The question then arises as to how one may evaluate
model performance on this data. For many applica-
tions one is interested in the return on portfolios and
so we ask how well the models explain the univariate
distribution of arbitrary portfolios.

� For this evaluation we construct a thousand arbitrary
randomly generated long short portfolio returns on
the unit sphere of dimension matching the number
of ETF 0s.



� We construct both the actual portfolio return in our
data and the distribution of this return as predicted
by each of our three estimated models.

� We then construct the p � value on a chi-square
test for whether the actual return comes from each
of the three models in turn.

� Finally we graph the proportion of portfolios with a
p� value greater than x for a range of x values.

� A model with a higher proportion of high p�values
for each candidate probability level does a better job
in explaining the univariate laws of arbitrary portfo-
lios and is therefore a superior model for the data set
in question.



Enquiry into Model
Structure

� Di¤erent models appear to dominate on di¤erent oc-
casions. For example, within sector one gets a better
performance from LML while across sectors FGC
and V GC dominate LML:

� These observations lead us to enquire deeper into
the structure of dependence in the di¤erent models.

� We follow the ideas of Longin and Solnik (2001) re-
lated to extreme correlation and localize further.



Local Correlation Concept

� For this purpose, we develop the concept of local
correlation and observe that for the LML model
there is greater correlation in the tails of the distrib-
ution than in the center while for FGC and V GC
correlation drops of in the tails.

� We call the map of local correlation the correlation
signature of the model and we present the correlation
signatures for our three models as it is estimated for
the energy sector and cross sector grouping.

� A richer understanding of correlations is being called
for in recent researches and we note in this regard
Embrechts (2009).



The Models Studied
FGC

� From one perspective it is uninformative to compute
correlations of non-Gaussian variates as the result
does not lead us to any ability at writing down the
joint probability law.

� We merely have correlation estimates and plenty of
them if the dimension is high, but there we stop.

� However, if the data are transformed to standard
normal variates �rst, before the correlation is com-
puted then the computed correlations may be used
to write down the joint multivariate normal law of
these transformed Gaussian variates with the origi-
nal data being a non-linear transform thereof.

� The result is joint multivariate probably element.



FGC Details

� Let X = (X1; :::; XN) be a vector of dimension N
with marginal distributions for each Xi given by

P (Xi � x) = Fi(x):

� One may transform the marginal laws to standard
normal variates by

Zi = �
�1(Fi(Xi));

where � is the standard normal distribution function.

� By construction Zi is a standard normal variate and
one may recover Xi as

Xi = F
�1
i (�(Zi)) :

� It is supposed that the vector Z = (Z1; � � � ; ZN) is
standard multivariate normal with correlation matrix
C:



� The joint probably density of X may be expressed in
terms of the multivariate normal density for Z by a
simple change of variable.

� In our application we shall take the marginal distri-
butions Fi to come from the variance gamma class
of distributions.



LML Details

� The Lévy mixture model postulates that

X = AY;

for a mixing matrix A with each variable Yi being
independent of (Yj; j 6= i). We further suppose
that each Yj has a variance gamma distribution.

� Given characteristic functions

�j(u) = E
h
exp

�
iuYj

�i
the joint characteristic function of X may be easily
derived as

�X(u) =
NY
j=1

�j
�
(A0u)j

�
:



VGC Details

� The marginal distributions are here postulated to be
in the centered variance gamma class with

Xi = �i (gi � 1) + �i
p
giZi;

where Zi are standard normal variates and the g0is
are a sequence of independent gamma variates with
unit mean and variance �i:

� In the V GC speci�cation we now further suppose
that Z is multivariate normal with correlation matrix
C:

� The joint probability density and characteristic func-
tions are not available in closed form as one has to
integrate out a large number of independent gamma
densities but they appear as products of square roots
that do not separate out in either the density or the
characteristic function.



� The joint law, however, is easily simulated from a
multivariate normal simulation coupled with draw-
ings from gamma densities.



Comparative remarks on
the three models

� The model FGC creates dependence by taking a
nonlinear transform of correlated Gaussian variates.

� On the other hand in V GC the transformation is
linear as seen in equation but both the intercept and
slope are stochastic but simultaneously generated by
a single gamma variate. Hence here we have a sto-
chastic linear transformation of correlated Gaussian
variates.

� In the model LML Gaussian variates do not appear
at all, as we now take a multivariate linear transform
of independent non-Gaussian variates.

� The three models create dependence in apparently
quite di¤erent ways.



� We employ the variance gamma model for our uni-
variate model here, but one could easily extend to
the case of the generalized hyperbolic distribution
(Eberlein (2001)) or its numerous special cases.



Estimation Procedures

� We suppose we have dataXt = (X1t; � � � ; XNt) for
t = 1; � � �T of independent draws from the relevant
distributions.

� We suppose this data has been centered to a zero
sample mean.



FGC

� For FGC one �rst estimates the marginal distribu-
tion functions on the univariate data and we employ
distributions in the variance gamma class for this
purpose.

� This gives us a matrix of marginal V G parameters

�i; �i; �i; i = 1; � � � ; N:

� We then form the univariate data

Zit = �
�1(FV G (Xit;�i; �i; �i))

and we then estimate the correlation matrix C by

Cjk =
1

T

TX
t=1

ZjtZkt:



� We then simulate 10; 000 readings from a multi-
variate normal density Zs = (Z1s; � � �ZNs) ; s =
1; � � � ; 10; 000; with this correlation matrix and gen-
erate simulated readings

Xjs = F
�1
V G

�
�
�
Zjs

�
; �j; �j; �j

�
:

This matrix of simulated draws from the estimated
model will be used subsequently in our analysis of
model quality.



LML

� For the LML model we �rst identify the mixing
matrix following Madan and Yen (2008) and employ
independent components analysis for this purpose.

� The hypothesis of independent components analy-
sis is precisely the statement that one is observing a
linear mixture of independent variates and this pro-
cedure �rst performs a principal components analysis
(PCA) to generate a set of unit variance orthogonal
random variables constructed as linear combinations
of the original observed variables.

� It is then observed that an equivalent PCA is ob-
tained on multiplication by any rotation matrix.



� The procedure is based on recognizing that a mix-
ing of non-Gaussian signals induces a convergence
to Gaussianity and hence the path back to the orig-
inal signals amounts to maximizing a metric of non-
Gaussianity.

� Such a criterion is employed to search over the class
of rotation matrices to construct the matrix A that
is the product of the matrix delivering the PCA fol-
lowed by the non-Gaussianity maximizing rotation
matrix.

� The speci�c criterion used is the maximization of the
expected logarithm of the hyperbolic cosine (Hyväri-
nen (1999)).



� Once the matrix A has been identi�ed, one obtains
data on the independent components on premultipli-
cation of the observed data matrix by the inverse of
A:

� We further postulate that these independent com-
ponents are variance gamma random variables and
we estimate the parameters of the variance gamma
model on the data for these components.

� We then generate a simulated matrix of 10000 draws
from this estimated dependence model. First we
generate an N � 1 vector of independent variance
gamma random variables 10000 times from the N
estimated variance gamma laws.

� We then multiply each N � 1 vector by the N �N
matrix A to sample a draw of N observations from
this probability law.

� The result is a matrix of N by 10000 readings from
the LML dependence model.



VGC

� For V GC we employ the same V G marginal laws
estimated in FGC and then infer the correlations
between the Gaussian variates from the observed ma-
trix of covariances between observed returns.

� This procedure in�ates Gaussian component corre-
lations relative observed correlations by a factor of
decorrelation induced by the independent gamma time
changes that depends on just the marginal laws.



� This in�ation factor is explicitly described in Eber-
lein and Madan (2008). On occasion these in�ation
factors can lead to an estimated correlation matrix
with some entries above unity.

� In this case we construct the closest correlation to
our symmetric matrix using the procedures of Qi and
Sun (2006).

� We then generate 10000 readings from this law by
generating correlated Gaussian random variables and
independent gamma variates to form a reading on an
N vector.

� The result is a N by 10000 matrix of draws from
the V GC law.



Investigating model quality

� We have estimated three joint laws on asset returns
in dimensions ranging from 3 to 7:

� It is of interest to enquire into the quality of the es-
timated models, or their ability to describe the data.

� We do not have available in closed form the relevant
joint densities and hence we cannot compute likeli-
hoods and the models are not nested in any case.



� We also do not have estimates of asymptotic dis-
tributions of parameter estimates or likelihoods and
hence cannot employ the procedures of non-nested
tests either.

� We consider a performance based evaluation as op-
posed to testing whether the data comes from the
proposed model.

� In fact these are a tractable class of models available
to us and the data may well not come from any of
them as the modeling of multidimensional �nancial
return data is a fairly complex exercise.

� We enquire instead into how well these models of
dependence explain the univariate laws of randomly
chosen linear mixtures.

� A multivariate model that explains well all linear mix-
tures is clearly a good candidate model for the joint
law.



The Speci�c Procedure

� With such a performance evaluation in mind, we ran-
domly generate 1000 linear combinations with coef-
�cients located on the unit sphere of N dimensional
space.

� For each linear combination we construct readings
on this linear combination in the data and for each
of our three models with 10000 simulated paths we
construct 10000 simulated readings for the same lin-
ear combination.

� The simulated readings are employed to construct
the expected number of observations in 20 equally
spaced cells covering the interquantile range from 5

to 95 percent.



� We also obtain the observed number of readings in
each of these cells for the same linear combination
applied to the observations in the data.

� For each linear combination we construct a chi-square
test p� value based on the observed and expected
number of readings in each of the 20 cells.

� We then graph against x, a candidate p � value

between zero and unity, the proportion of portfolios
with an observed p� value above x:



� There are three such graphs for each of our three
models.

� A model whose graph dominates that for another
model clearly has a higher proportion of portfolios
with high p-values than the dominated model and
hence provides us with a superior explanation of the
univariate laws of arbitrary linear combinations.

� The dominating model therefore constitutes a better
candidate model of dependence for this data.



Local Correlation

� With a view towards taking a deeper look at how
dependence is modeled in an arbitrary joint density
we consider the formulation of local correlation in
the neighbourhood of an arbitrary point in space.

� For this purpose we consider an arbitrary joint density
for two random variables q(x; y):

� We now de�ne

h(x; y) = �2 ln q(x; y):



� Consider expanding the function h to second order
around the point (a; b) to obtain

h(x; y) � h(a; b) + ha(x� a) + hb(y � b)

+
1

2
haa(x� a)2 +

1

2
hbb(y � b)2

+hab(x� a)(y � b):



� A bivariate normal distribution has such an exact
quadratic expression for the log likelihood where we
identify

��1 =

 
haa hab
hba hbb

!



� In this case we would have

� =
1

haahbb � h2ab

 
hbb �hab
�hba haa

!

and the correlation would be

�ab =
�habp
haahbb

:

� We might consider de�ning this value generally as
the local correlation.



� It is then a question as to whether this value is be-
tween �1 and 1: For this we require the square to
be less than one or

h2ab � haahbb:

� This is precisely the condition for the negative of the
log likelihood to be a convex function.



� We must have haa; hbb > 0 along with the condition
for absolute local correlation below unity.

� For many models with unimodal joint densities we
have the concavity of the density near the mode and
hence in this region the negative of the log likelihood
is convex.

� The proposed de�nition for local correlation will yield
magnitudes dominated by unity in absolute value in
this region.

� There is therefore quite generally a local domain in
which one may investigate the shape of local corre-
lation.

� We call this map in this local domain the correlation
signature of the model.



� Additionally there are models with universally log
concave densities and for these models the local cor-
relation is universally well de�ned.

� This is an important class of densities, much stud-
ied in its own right Barlow and Proschan (1981),
Prèkopa (1973).



� We now investigate the nature of this local correla-
tion surface for our three models.

� Consider �rst FGC: Here our joint law is that of
nonlinear transforms of correlated Gaussians. The
joint density is now

f(x; y) = b(g(x); h(y))g0(x)h0(y)

where b(z1; z2) is a bivariate normal density.

� The negative of twice the log density

�(x; y) = �2 ln(f(x; y))
= �2 ln b(g(x); h(y))� 2 ln g0(x)� 2 lnh0(y)



� De�ne eb(z1; z2) = �2 ln b(z1; z2): It follows that
�x = ebxg0(x)

and

�xy = ebxyg0(x)h0(y)



� We have ebxy = � a constant and g0; h0 are high in
the center and low in the tails.

� Hence this model gives correlation in the neck and
lower correlation in the tails.



� If we consider the V GC structure we have

x = �x(gx � 1) + �x
p
gxZx

y = �y(gy � 1) + �y
p
gyZy

� The joint density is now

E

"
1

�x
p
gx
b

 
x� �(gx � 1)

�x
p
gx

;
y � �(gy � 1)

�y
p
gy

!
1

�y
p
gy

#



� The critical function now is

�(x; y) =

�2 lnE

266664
1

�x
p
gx
�

b

�
x��(gx�1)
�x
p
gx

;
y��(gy�1)
�y
p
gy

�
�

1
�y
p
gy

377775
and we may consider in its place the expectation of
the log or

e�(x; y) =
�2E

266664ln
0BBBB@

1
�x
p
gx
�

b

�
x��(gx�1)
�x
p
gx

;
y��(gy�1)
�y
p
gy

�
�

1
�y
p
gy

1CCCCA
377775

and this again gives central correlation as opposed to
tail correlations for reasons comparable to the FGC
model.



� Finally we consider LML with joint density

f(x; y) = g(ax+ by)h(cx+ dy)�

� In this case we get

�(x; y) = �2 ln g(ax+by)�2 lnh(cx+dy)�2 ln�

� If we compute the cross partial we get

�x = eg0a+ eh0c
�xy = eg00ab+ eh00cd
�xx = eg00a2 + eh00c2
�yy = eg00b2 + eh00d2



� For our convexity condition we require that

�xx�yy � �2xy

� or equivalently that�eg00a2 + eh00c2� �eg00b2 + eh00d2� � �eg00ab+ eh00cd�2

� and this yields the condition

eg00 eh00 �a2d2 + b2c2 � 2abcd� � 0
� or

eg00 eh00 (ad� bc)2 � 0
� and hence we just need that

eg00 eh00 � 0:



� This condition is satis�ed if the marginal laws are
themselves log convex.

� We note that the second derivatives pick up in the
tails and the center and are small in the middle.

� This model leads to tail and central correlations with
�at correlations in the middle .

� The LML structure is a fundamentally di¤erent model
with respect to the associated correlation surfaces.



The Data Employed

� We obtained data on the time series of Exchange
Traded Funds (henceforth ETF ) that follow various
sectors of the US economy.

� As we are also interested in risk neutral laws we fo-
cused attention of funds that also have options trad-
ing on the ETF and for which we had a time se-
ries exceeding 700 days of daily data ending on July
21 2009. There are nine industry groups and the
ETF 0s in the group are displayed in Table 1.



TABLE 1
Sectors ETF Tickers
Cons. Disc. xly,rth,xrt,itb,xhb
Energy xle,iye,ieo,oih,xop
Financials xlf,iyf,iai,kbe,kre,rkh,kce
Health and Pharm. xlv,bbh,pph
Ind. and Tech. xli,iyt,iyw,xlk
Int. Netw. Semicond. Softw. hhh, bdh, igw, smh, swh
Mat., RE, Telecomm. xlb, iyr, iyz, tth
Natural Resources ige, gdx, slx, xme
Utilities idm, xlu, uth
Cross Sectors xly,xlp,xle,xlf,xlv,xli,xlk,xlb,xlu



Results

� For each of these nine groups and each of three mod-
els we present nine graphs with three curves each for
FGC in black, LML in blue and V GC in red dis-
playing the proportion of a thousand random linear
combinations with a univariate law explained by the
model with a p-value exceeding a candidate value
given by the x axis.

� Figure (1) displays the result for the Consumer Dis-
cretionary sector where FGC and V GC perform
equally well and dominate LML:

� In Figure (2) we have the results for the Energy sector
where LM dominates followed by V GC and the
FGC:



� For the Financial sector, Figure (3), that saw a lot
of movement, V GC dominates by far the other two
models.

� In the Health related sector Figure (4) LM and
V GC criss cross and dominate FGC:

� For the industrial sector, Figure (5) all three models
are equivalent.

� The technology sector Figure (6) like Energy has
LML dominating followed by V GC and FGC:

� All three models are equivalent for Natural Resources
Figure (7).

� Telecom, Figure (8) sees the order V GC followed
by LML and FGC:

� Finally the Utility sector Figure (9) has LM followed
by V GC and FGC:



� We observe from focusing in some cases around the
10% point that in �ve of the nine groups we have
LML dominating V GC that dominates FGC:

� In a further two cases all three models are equivalent.

� In one case, Financials, V GC dominates the other
two by far.

� There is some broad preference for LML followed
by V GC and then FGC:

� We next consider the cross sector group Figure (10)
with one ETF from each of the nine sectors.

� In this grouping we have a clear domination by V GC
over FGC and LML that are somewhat equivalent.
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Figure 1: Portfolio Proportions with given probability val-
ues in the Consumer Discretionary sector.
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Figure 2: Portfolio Proportions with given probability val-
ues in the Energy sector.
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Figure 3: Portfolio Proportions with given probability val-
ues in the Financial sector.
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Figure 4: Portfolio Proportions with given probability val-
ues in the Health related sector.
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Figure 5: Portfolio Proportions with given probability val-
ues in the Industrial sector.
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Figure 6: Portfolio Proportions with given probability val-
ues in the Technology sector.
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Figure 7: Portfolio Proportions with given probability val-
ues in the Natural Resource sector.
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Figure 8: Portfolio Proportions with given probability val-
ues in the Telecom sector.
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Figure 9: Portfolio Proportions with given probability val-
ues in the Utility sector.
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Figure 10: Portfolio Proportions with given probability
values in the Cross Sector group.

Model Correlation
Signatures

� We �rst present the details on how the correlation
signatures are constructed for each model. In each



case we extract the joint density for a pair of returns
in the set of returns jointly modeled.

We then evaluate the local correlation numerically by
evaluating the appropriate derivatives of the negative of
the log likelihood.



FGC

� For the FGC model the joint density is obtained as
follows.

� Let the marginal distribution functions be F (x); G(y).
We then have that

z1 = ��1(F (x))

z2 = ��1(G(y))

are distributed bivariate normal with correlation �:
The density of z = (z1; z2) is

b(z1; z2)

It follows that the density of x; y is

q(x; y) = b(��1(F (x));��1(G(y)))
f(x)

� (z1)

g(y)

�(z2)

Once we have q we may apply our localcorrelation
surface construction to extract the correlation signa-
ture of this model.



� We now wish to incorporate scaling to unit variance.
We may do this via the marginals as

X =
x

�

and

FX(a) = P (X � a) = P
�
x

�
� a

�
Fx(�a):



LML

� We wish to construct the correlation signatures of
our models estimated for example on the energy sec-
tor. There are �ve ETF 0s for which the joint law
was estimated and these are

xle; iye; ieo; oih; xop

We consider xle; iye and ieo; xop: We have mod-
eled daily returns as

xi = �0iy

xj = �0jy

and we have the joint characteristic functions but
we shall compute the correlation signatures for stan-
dardized variates. The variance of x is given by

�2i =
X
k

�2ik

�
�2k + �

2
k�k

�
:



� The standardized vector is

Xi =
xi
�i
=
�0i
�i
y = �0iy

and it is centered of unit variance by construction.



� We easily obtain from the joint characteristic func-
tion the joint characteristic function of any 2 variates
out of the full set modeled.

� We may invert this joint characteristic function us-
ing two dimensional Fourier inversion for the joint
density.



VGC

� For the V GC model the construction is

X = �x(gx � 1) + �x
p
gxZx

Y = �y(gy � 1) + �y
p
gyZy

� Hence given the density of Z = (Zx; Zy) we may
write

q(x; y) = E

264 b
�
x��x(gx�1)
�x
p
gx

;
y��y(gy�1)
�y
p
gy

�
� 1
�x
p
gx

1
�y
p
gy

375
=

Z 1
0

Z 1
0
b

 
x� �x(gx � 1)

�x
p
gx

;
y � �y(gy � 1)

�y
p
gy

!
�px(gx)py(gy)dgxdgy

where px; py are the gamma densities for the two
gamma time changes.



� We may write explicitly asZ 1
0

Z 1
0
b

 
x� �x(gx � 1)

�x
p
gx

;
y � �y(gy � 1)

�y
p
gy

!
�

1

�x�
1
�x
x �

�
1
�x

�g 1
�x
�32

x e
�gx�x �

1

�y�
1
�y
y �

�
1
�y

�g 1�y�32y e
�gy�ydgxdgy

� We make the change of variable to

wx =
gx

�x

wy =
gy

�y



to getZ 1
0

Z 1
0
b

 
x� �x(�xwx � 1)

�x
p
�xwx

;
y � �y(�ywy � 1)

�y
p
�ywy

!
�

1

�x
p
�xwx�

�
1
�x

�w 1
�x
�1

x e�wx �

1

�y
p
�ywy�

�
1
�y

�w 1
�y
�1

y e�wydwxdwy



� We evaluate this as a double sum using Gauss-Laguerre
quadrature for the construction of the joint density in
two dimensions. This is then fed to the local correla-
tion surface construction program for the correlation
signature. We evaluate as

q(x; y) =X
ij

pipjb

 
x� �x(�xwi � 1)

�x
p
�xwi

;
y � �y(�ywj � 1)

�y
p
�ywj

!
�

1

�x
p
�xwi�

�
1
�x

�w 1
�x
�1

i �

1

�y
p
�ywj�

�
1
�y

�w 1
�y
�1

j

where pi are the Laguerre weights and wi are the
points.



Correlation Signature
Results for Energy and the

Cross Sector Group

� We present in Table 2 the correlation signatures for
two pairs of stocks from the Energy sector, ieo,xop
and xle,iye and three pairs of stocks from the cross
sector group xly,xlp, xli,xlk and xly,xli.

� We observe that the local correlations in LM tend
to be substantially higher and particularly so in the
tails.

� The local correlations are computed at the center of
the distributions and points 10% up and down from
this level.



Conclusion

� Three models of dependence in asset returns with
non-Gaussian marginals are investigated on ETF
daily return data.

� The �rst is a full rank Gaussian copula also stud-
ied and proposed in Malvergne and Sornette (2005)
termed FGC.

� The second is a linear mixture of independent Lévy
processes as proposed in Madan and Yen (2008) and
studied in Madan (2006) termed LML.

� The third correlates Gaussian components in a vari-
ance gamma representation of the marginals as pro-
posed in Eberlein and Madan (2008) termed V GC.



� All three models are easily estimated in fairly high
dimensions as most of the work is done at a uni-
variate level. The models are evaluated on the basis
of their ability to explain the univariate laws of ran-
domly generated portfolios.

� It is observed that on a number of occasions all three
models are at a comparable level of performance.

� In some cases we get a superior performance from the
LMLmodel followed by V GC and FGC: There are
occasions when the V GC and FGC dominate.

� The three models are tractable in di¤erent ways with
the LM model yielding closed form characteristic
functions.



� With a view to exploring more deeply the di¤erent
forms of dependence modeling the concept of local
correlation is introduced. It is shown that the LML

model displays higher levels of local correlation than
that obtained in the FGC and V GC models.



Table 2
Correlation Signature for LM Correlation Signature for FGC

xop xop
0.663066 0.702658 0.725284 0.151467 0.15983 0.179276

ieo 0.639887 0.694015 0.735871 ieo 0.160283 0.168552 0.188268
0.589141 0.664609 0.73184 0.179742 0.188198 0.209177

iye iye
0.709821 0.64253 0.543917 0.073226 0.080281 0.092234

xle 0.725103 0.689161 0.627705 xle 0.076677 0.083968 0.096331
0.712397 0.721196 0.707472 0.083994 0.091854 0.105202

xlp xlp
0.870662 0.824027 0.789156 0.518616 0.539077 0.591593

xly 0.80326 0.791869 0.800942 xly 0.539412 0.554894 0.601744
0.737392 0.775675 0.828535 0.590685 0.599728 0.641581

xlk xlk
0.88267 0.823123 0.768254 0.692328 0.705675 0.746557

xli 0.831342 0.79638 0.779932 xli 0.724125 0.727674 0.758185
0.790777 0.788804 0.809007 0.795676 0.785003 0.803508

xli xli
0.881328 0.833928 0.799507 0.649106 0.675192 0.735665

xly 0.828022 0.800518 0.792809 xly 0.66263 0.680397 0.729319
0.780602 0.784001 0.806905 0.702033 0.71057 0.749299

Correlation Signature for VGC
xop

0.206153 0.211492 0.2177
ieo 0.212761 0.21722 0.222705

0.21984 0.223406 0.228671

iye
0.184961 0.203322 0.188705

xle 0.162205 0.176877 0.163207
0.162894 0.177886 0.164916

xlp
0.586448 0.593867 0.598697

xly 0.591685 0.599928 0.604753
0.599142 0.604244 0.608796

xlk
0.686074 0.698671 0.704153

xli 0.681454 0.696105 0.704073
0.688898 0.69427 0.702349

xli
0.719777 0.713182 0.714502

xly 0.726997 0.725125 0.722426
0.72911 0.730034 0.728464
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