
Arbitrage-Free Pricing, Optimal Investment, and
Equilibrium

Dmitry Kramkov

Carnegie Mellon University

January 16–27, 2012
School on Mathematical Finance

Tata Institute of Fundamental Research
Mumbai, India

1



Plan of the course

Lecture I: Mathematical model of financial market. Arbitrage and
1st fundamental theorem.

Lecture 2: Arbitrage-free valuation. Completeness and 2nd
fundamental theorem.

Lecture 3: Optimal investment.

Lecture 4: General equilibrium.
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Part I

Mathematical model of financial market.
Arbitrage and 1st fundamental theorem
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Mathematical model of financial market

There are d + 1 traded or liquid assets:

1. a savings account with zero interest rate.

2. d stocks. The stocks’ price process S = (St) is a RCLL
stochastic process on (Ω,F , (Ft)0≤t≤T ,P).

Key assumption: trader’s actions do not affect S (“small”
economic agent).

Problem
Obtain conditions on S for model to be “viable”.
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Simple strategies

For a simple strategy with a process of stocks’ quantities:

Ht =
N∑

n=1

θn1(tn−1,tn],

where θn ∈ L0(Ftn−1), the wealth process

Xt(H) = X0 +
∑
tn≤t

θn(Stn − Stn−1).

Mathematical challenge: define X (H) for general H.
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Closability for simple strategies

Closability: the convergence of simple (Hn) to LCRL H in ucp

(Hn − H)∗T = sup
t∈[0,T ]

|Hn
t − Ht | → 0

implies the existence of X (H) such that

(X (Hn)− X (H))∗T → 0.

Theorem (Bichteler-Dellacherie, see Protter (2004))

Closability holds ⇔ S is a semimartingale.
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General strategies
Recall that S is a semimartingale if

S = M + A,

where M is a local martingale and A is a predictable process of
bounded variation. For a semimartingale S we can extend the map

H 7→ X (H)

from simple to general H arriving to stochastic integrals:

Xt(H) = X0 +

∫ t

0
HudSu.

Elegant setup: Emery’s or semimartingale topology; see Protter
(2004).
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Economic viability

Conditions for economic viability of market model:

1. Price S is an outcome of an “equilibrium” (matching of
demand and supply).

2. Any “rational” investor has an “optimal” finite strategy
Q̂ = (Q̂t).

3. There is a “rational” investor with an “optimal” finite
strategy Q̂ = (Q̂t).

4. The market S is “arbitrage-free”.

Under suitable definitions of “terms” all these conditions are
equivalent!

9



1st fundamental theorem

Let Q denote the family of martingale measures for S , that is,

Q = {Q ∼ P : S is a local martingale under Q}

Theorem (1st FTAP)

Absence of arbitrage ⇐⇒ Q 6= ∅.
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Free Lunch with Vanishing Risk (FLVR)

For 1st FTAP to hold true the following definition of arbitrage is
needed (Delbaen and Schachermayer (1994)):

1. There is a set A ∈ Ω with P[A] > 0.

2. For any ε > 0 there is a strategy X such that

2.1 X is admissible, that is, for some constant c > 0,

X ≥ −c .

2.2 X0 ≤ ε (start with almost nothing)
2.3 XT ≥ 1A (end with something)
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Verification of the absence of arbitrage

Assume that Ft = FS
t (the information is generated by S). Then

without loss in generality (Ω,F , (Ft)0≤t≤T ,P) is a canonical
probability space of continuous functions ω = ω(t) on [0,T ] and
St(ω) = ω(t). Suppose

St = S0 +

∫ t

0
µtdu + W P

t ,

where µt = µ((Su)u≤t , t) and W P is a P-Brownian motion.

Problem
Find (necessary and sufficient) conditions on µ = (µt) for the
absence of arbitrage (No FLVR).
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Solution
Levi’s theorem =⇒ that the only possible martingale measure Q
is such that

W Q
t = St − S0,

is a Q-Brownian motion. Then by 1st FTAP

No FLVR ⇐⇒ P ∼ Q.

One can show (easy!, see Jacod and Shiryaev (2003) for general
results or this kind relying on Hellinger processes) that

P ∼ Q ⇐⇒
∫ T

0
µ2t dt <∞ P + Q a.s..
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Part II

Arbitrage-free valuation. Completeness and 2nd
fundamental theorem
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Outline

Financial market

Pricing = Replication

Black and Scholes formula

2nd fundamental theorem

References

16



Financial security

Financial Security = Cash Flow

Example (Interest Rate Swap)

q q q q q q q
today t1 t2 t3 t4 t5 t6

6

6

?
?

?

6

To owner

From owner

Pricing problem: compute “fair” value of the security today.

17



Classification of financial securities

We classify all financial securities into 2 groups:

1. Traded securities: the price is given by the market.

Financial model = All traded securities

2. Non-traded securities: the price has to be computed.

Remark
This “black-and-white” classification is quite idealistic. Real life
securities are usually “gray”.

In this tutorial we shall deal with Arbitrage-Free Pricing
methodology.
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Arbitrage-free price

Inputs:

1. Financial model (collection of all traded securities)
2. A non-traded security.

Arbitrage strategy (intuitive definition) :

1. start with zero capital (nothing)
2. end with positive and non zero wealth (something)

Assumption

The financial model is arbitrage free.

Definition
An amount p is called an arbitrage-free price if, given an
opportunity to trade the non-traded security at p, one is not able
to construct an arbitrage strategy.
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Replication

Cash flow of non-traded security:

q q q q q q q
today t1 t2 t3 t4 t5 t6

6

6
6

6

6
6

Replicating strategy:

1. starts with some initial capital X0

2. generates exactly the same cash flow in the future

q q q q q q qtoday

X0

t1 t2 t3 t4 t5 t6

?

6

6
6

6

6
6
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Methodology of arbitrage-free pricing

Theorem
An arbitrage-free price p is unique if and only if there is a
replicating strategy. In this case,

p = X0,

where X0 is the initial capital of a replicating strategy.

Main Principle:

Unique Arbitrage-Free Pricing = Replication
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Problem on two calls

Problem
Consider two stocks: A and B. Assume that

A:

$100 �
�
�
�
�3

Q
Q
Q
Q
Qs

$80

$12095%

5%

B:

$100 �
�
�
�
�3

Q
Q
Q
Q
Qs

$80

$1205%

95%

Consider call options on A and B with the same strike K = $100.
Assume that T = 1 and r = 5%.
Compute the difference CA − CB of their arbitrage-free prices.
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Pricing in Black and Scholes model
There are two traded assets: savings account with zero interest
rate and stock with price process:

dSt = St (µdt + σdWt) .

Here W = (Wt)t≥0 is a Wiener process and

µ ∈ R: drift

σ > 0: volatility

Problem (Black and Scholes (1973))

Compute arbitrage-free price V0 of European put option with
maturity T and payoff

Ψ = max(K − ST , 0).
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Replication in Black and Scholes model

Basic principle : Pricing = Replication

Replicating strategy :

1. has wealth evolution:

Xt = X0 +

∫ t

0
∆udSu,

where X0 is the initial capital and ∆t is the number of shares
at time t; 0 ≤ X ≤ K .

2. generates exactly the same payoff as the option:

XT (ω) = Ψ(ω) = max(K − ST (ω), 0), P-a.s..

Two standard methods: “direct” (PDE) and “dual” (martingales).
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PDE method

Since XT = f (ST ) we look for replicating strategy in the form:

Xt = v(St , t)

for some deterministic v = v(s, t). By Ito’s formula,

dXt = vs(St , t)dSt + (vt(St , t) +
1

2
σ2S2

t vss(St , t))dt.

But, (since X is a wealth process)

dXt = ∆tdSt ,

where ∆t (hedging delta) is the number of stocks at time t.
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PDE method

Hence, v = v(s, t) solves PDE:{
vt(s, t) + 1

2σ
2s2vss(s, t) = 0

v(s,T ) = max(K − s, 0)

The arbitrage-free price and the hedging delta are given by

p = v(S0, 0),

∆t = vs(St , t).
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Martingale method

Observation: replication problem is defined “almost surely” and,
hence, is invariant with respect to an equivalent choice of
probability measure.

Convenient choice: martingale measure Q for S . We have

dSt = StσdW Q
t ,

where W Q is a Brownian motion under Q.

Replication strategy: (by Martingale Representation Theorem)

Xt = X0 +

∫ t

0
∆dS = EQ[Ψ|Ft ].

Risk-neutral valuation: (no replication!)

p = X0 = EQ[Ψ].
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Martingale method
The computation of hedging delta is conveniently done with
Clark-Ocone formula:

σSt∆t = EQ[DQ
t [ψ]|Ft ],

where DQ is the Malliavin derivative under Q. For example, for
European put

DQ
t [max(K − ST , 0)] = −1{ST<K}D

Q
t [ST ] = −1{ST<K}σST ,

resulting in

∆t = − 1

St
EQ[1{ST<K}ST ]|Ft ] = −Q̃[ST < K |Ft ],

where
dQ̃
dQ

=
ST

S0
.
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Complete financial model
There are d + 1 traded or liquid assets:

1. a savings account with zero interest rate.

2. d stocks. The price process S of the stocks is a
semimartingale on (Ω,F , (Ft)0≤t≤T ,P).

Let Q denote the family of martingale measures for S , that is,

Q = {Q ∼ P : S is a local martingale under Q}

Assumption

Q 6= ∅ ⇐⇒ The model arbitrage-free (No FLVR).

Question
Is the model complete? In other words, does it allow replication of
any non-traded derivative?
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2nd fundamental theorem

Definition
The model is complete if for any random variable ψ with
0 ≤ ψ ≤ 1 one can find a strategy with wealth process X such that
0 ≤ X ≤ 1 and XT = ψ.

Theorem (2nd FTAP)

Completeness ⇐⇒ |Q| = 1.

The theorem is stated in Harrison and Pliska (1983) and follows
from an integral representation theorem in Jacod (1979).
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Risk-Neutral Valuation

Consider a European option with payoff Ψ at maturity T . The
formula

V0 = EQ[Ψ],

where Q ∈ Q is called Risk-Neutral Valuation.

Arbitrage-free models:

Unique Arbitrage-Free Pricing = Replication

Complete models: (no replication!)

Arbitrage-Free Pricing = Risk-Neutral Valuation
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Part III

Optimal investment
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Introduction to optimal investment

Merton’s problem

General framework

Complete market case

Investment in incomplete markets
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Introduction to optimal investment

Consider an economic agent (an investor) in an arbitrage-free
financial model.

x : initial capital

Goal: invest x “optimally” up to maturity T .

Question
How to compare two investment strategies:

1. x −→ XT = XT (ω)

2. x −→ YT = YT (ω)

Clearly, we would prefer 1st to 2nd if XT (ω) ≥ YT (ω), ω ∈ Ω.
However, as the model is arbitrage-free, in this case,
XT (ω) = YT (ω), ω ∈ Ω.
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Introduction to optimal investment

Classical approach (Von Neumann - Morgenstern, Savage): an
investor is “quantified” by

P: “scenario” probability measure

U = U(x): utility function

“Quality” of a strategy

x −→ XT = XT (ω)

is then measured by expected utility: E[U(XT )].
Given two strategies: x −→ XT and x −→ YT the investor will
prefer the 1st one if

E[U(XT )] ≥ E[U(YT )]
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Introduction to optimal investment

Inputs:

1. Arbitrage-free financial model (all traded securities)
2. Risk-averse investor:

x : initial wealth
P: “real world” probability measure

U = U(x): strictly increasing and strictly concave
utility function

Output: an optimal investment strategy with wealth x −→ X̂T

such that

E[U(X̂T )] = u(x) = sup
X∈X (x)

E[U(XT )].

Here X (x) is the set of strategies with initial wealth x .
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Merton’s problem

First papers in continuous time finance: Merton (1969).

Black and Scholes model: a savings account and a stock.

1. We assume that the interest rate is 0.
2. The price of the stock:

dSt = St (µdt + σdWt) .

Here W = (Wt)t≥0 is a Wiener process and

µ ∈ R: drift
σ > 0: volatility
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Merton’s problem

The problem of optimal investment

u(x) = sup
X∈X (x)

E[U(XT )]

becomes in this case a stochastic control problem:

u(x , t) = sup
X∈X (x)

E[U(XT−t)] = sup
π

E[U(Xπ
T−t)],

where the controlled process Xπ is the wealth process:

dXπ = Xππ(µdt + σdW ) Xπ
0 = x

and the control process π is the proportion of the capital invested
in stock.

39



Merton’s problem

Bellman equation:

ut + sup
π

[
πxµux +

1

2
π2σ2x2uxx

]
= 0.

It follows that 
ut(x , t) = µ2u2x

2σ2uxx
(x , t)

uxx(x , t) < 0
u(x ,T ) = U(x)

and the optimal proportion:

π̂(x , t) = − µux

σ2xuxx
(x , t).
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Merton’s problem

In Merton (1969) the system was solved for the case, when

U(x , α) =
xα − 1

α
(α < 1).

Here

− U ′(x)

xU ′′(x)
=

1

1− α
(= const!)

This key property is “inherited” be the solution:

ux

xuxx
(x , t) = const.
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Merton’s problem

After this substitution the first equation in the system becomes

ut = const x2uxx

and could be solved analytically.
The optimal strategy (Merton’s point):

π̂ =
µ

(1− α)σ2
.
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Merton’s problem
In general case, we define the conjugate function

v(y , t) = sup
x>0

[u(x , t)− xy ]

The function v satisfies

vt = const y2vyy

v(y ,T ) = V (y) := sup
x>0

[U(x)− xy ]

Methodology: compute v first and then find u from the inverse
duality relationship:

u(x , t) = inf
y>0

[v(y , t) + xy ]
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Model of a financial market

There are d + 1 traded or liquid assets:

1. a savings account with zero interest rate.

2. d stocks. The price process S of the stocks is a
semimartingale on (Ω,F , (Ft)0≤t≤T ,P).

Assumption (No Arbitrage or No FLVR)

Q 6= ∅

where Q is the family of martingale measures for S .
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Economic agent or investor

x : initial capital

U: utility function for consumption at the maturity T such that

1. U : (0,∞)→ R
2. U is strictly increasing
3. U is strictly concave
4. The Inada conditions hold true:

U ′(0) =∞ U ′(∞) = 0
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Problem of optimal investment

The goal of the investor is to maximize the expected utility of
terminal wealth:

u(x) = sup
X∈X (x)

E[U(XT )], x > 0

Here X (x) is the set of strategies with initial wealth x .

Assumption

The value function is finite:

u(x) <∞, x > 0.
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Two main approaches

1. Bellman equation.

2. Duality and martingales. Basic idea: as

E[U(X̂T (x))] = max
X∈X (0)

E[U(X̂T (x) + XT )]

we have that for any X ∈ X (0)

E[U ′(X̂T (x))XT ] = 0

Hence, there is Q ∈ Q such that

U ′(X̂T (x)) = const
dQ
dP
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Investment in complete models

Complete model: |Q| = 1

Define the functions

V (y) = max
x>0

[U(x)− xy ] , y > 0.

v(y) = E
[

V

(
y(

dQ
dP

)

)]
, y > 0

Theorem

u(x) = inf
y>0

[v(y) + xy ]
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Investment in complete models

Theorem
The following conditions are equivalent:

1. The dual value function v = v(y) is finite:

v(y) <∞, y > 0

2. The primal value function u = u(x) is strictly concave and
satisfies the Inada conditions.

Moreover, in this case, X̂ (x) exists for any x > 0 and

X̂T (x) = −V ′
(

y
dQ
dP

)
, y = u′(x).
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Investment in complete markets

The optimal terminal wealth X̂T (x) is uniquely determined by the
equations:

X̂T (x) = −V ′(y
dQ
dP

)

EQ[X̂T (x)] = x

The optimal number of stocks Ĥt(x) at time t is given by the
integral representation formula:

X̂t(x) = EQ[X̂T (x)|Ft ] = x +

∫ t

0
Ĥu(x)dSu.
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Back to Merton’s problem
For Black and Scholes model we have

dQ
dP

= exp(−µ
σ

WT −
1

2

µ2

σ2
T ) = exp(−µ

σ
W Q

T +
1

2

µ2

σ2
T ),

where
W Q

t = Wt +
µ

σ
t,

is the Q-Brownian motion. We deduce

Ĥt(x)St =
µ

σ2
Rt(x),

where R(x) is the risk-tolerance wealth process defined as the
wealth process replicating the payoff:

RT (x) := − U ′(X̂T (x))

U ′′(X̂T (x))
.
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Basic questions for incomplete models

1. Does the optimal investment strategy X (x) exist?

2. Does the value function u = u(x) satisfy the standard
properties of a utility function? In other words,

2.1 Is u strictly concave?
2.2 Do Inada conditions

u′(0) =∞, u′(∞) = 0

hold true?
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Basic questions for incomplete models

3. Does the conjugate function

v(y) = sup
x>0
{u(x)− xy}, y > 0,

have the representation:

v(y) = inf
Q∈Q

E[V (y
dQ
dP

)],

where
V (y) = sup

x>0
{U(x)− xy}, y > 0?
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Asymptotic elasticity
Recall that the elasticity for U is defined as

E (U)(x) =
xU ′(x)

U(x)

The crucial role is played by the asymptotic elasticity:

AE (U) = lim sup
x→∞

xU ′(x)

U(x)
.

We always have AE (U) ≤ 1.

Assumption

AE (U) < 1.

54



Minimal market independent condition

Theorem (K. and Schachermayer (1999))

The following conditions are equivalent :

1. AE (U) < 1.

2. For any financial model the “qualitative” properties 1–3 hold
true.

In addition, in this case

AE (u) ≤ AE (U) < 1.

Remark
The condition AE (U) < 1 is similar to ∆2-condition in the theory
of Orlicz spaces.
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Necessary and sufficient conditions

Theorem (K. and Schachermayer (2003))

The following conditions are equivalent for given financial model:

1. For any y > 0 there is Q ∈ Q such that

E[V

(
y

dQ
dP

)
] <∞.

2. The “qualitative” properties 1–3 hold true.
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Dual space of supermartingales
The lower bound in

v(y) = inf
Q∈M

E
[

V

(
y

dQ
dP

)]
is, in general, not attained. However, if we extend the space of
density processes of martingale measures to the space Y(y) of
strictly positive supermartingales Y such that

1. Y0 = y

2. XY is a supermartingale for any X ∈ X (x)

then (without any extra assumptions!) we have

v(y) = inf
Y∈Y(y)

E[V (YT )]

and the lower bound above is attained by Ŷ (y) ∈ Y(y). This is
even more convenient for computations!
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Part IV

Equilibrium
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Dynamic (Radner) equilibrium

Inputs:

I M agents, utility functions Um for consumption at common
maturity T , initial random endowments Λm.

I Interest rate r = (rt); hereafter r = 0.

Output: financial market with J stocks having prices S = (S j
t )

where the agents’ optimal strategies (stock’s quantities)
Hm = (Hm,j

t ) satisfy the clearing condition (zero-net supply):

M∑
m=1

Hm,j
t = 0, t ∈ [0,T ], j = 1, . . . , J.
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Construction of Radner equilibrium

Two steps procedure: (see Dana and Jeanblanc (2003))

1. Find static (Arrow-Debreu) equilibrium with pricing measure
Q: welfare theorems + fixed point.

2. Find (any!) J-dimensional local martingale S = (S j
t ) under

Q such that the S market is complete ⇔ Any Q-local
martingale M is a stochastic integral under S :

M = M0 +

∫
HdS .

The second item is easy and the answer is a priori YES or NO
because it does not depend on a choice of Q ∼ P!.
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Static (Arrow-Debreu) equilibrium

Inputs:

I M agents, utility functions Um for consumption at common
maturity T , initial random endowments Λm.

I Interest rate r = 0.

Output: pricing measure Q such that if the agents can trade any
(Q-integrable) contingent claim ξ at the price

p = EQ[ξ]

then their optimal positions (Λ̂m) satisfy the clearing condition:

M∑
m=1

Λ̂m = Λ =
M∑

m=1

Λm.
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Assumptions on agents

(A1) The initial random endowments are strictly positive:

Λm > 0

and the total initial (= terminal) wealth Λ =
∑

m Λm has all
(positive and negative) moments:

E[Λp +

(
1

Λ

)p

] <∞, p ≥ 0.

(A2) Each utility function Um = Um(x) is strictly increasing,
strictly concave, and twice continuously differentiable on
(0,∞). Moreover, it has a bounded relative risk aversion, that
is, for some c > 0,

1

c
≤ Am(x) = −xU ′′m(x)

U ′m(x)
≤ c , x ∈ (0,∞).
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Existence of Radner and Arrow-Debreu equilibrium

Theorem
Under (A1) and (A2) there exists an Arrow-Debreu equilibrium.

(A3) There exists a complete financial market (with J <∞ stocks).

Remark
(A3) is a property of (Ω, (Ft),P) and does not depend on a choice
of equivalent P.

Theorem
Under (A1), (A2), and (A3) there exists a Radner equilibrium.
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Pareto optimal allocation

Theorem (1st welfare)

Any Arrow-Debreu equilibrium Q results in the optimal positions
(Λ̂m) for the agents which are Pareto optimal.

Definition
Random variables α = (αm)1≤m≤M form a Pareto allocation if
there is no other allocation β = (βm)1≤m≤M of the same total
endowment:

M∑
m=1

βm =
M∑

m=1

αm,

which leaves all agents better off:

E[Um(βm)] > E[Um(αm)] for all 1 ≤ m ≤ M.
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Pareto optimal allocation

Key observation: Given the total endowment Λ, the set of all
possible Pareto optimal allocations is finite-dimensional and is
parameterized by the interior of the simplex.

Denote by ΣM the simplex and by R = R(w , x) the representative
agent utility:

ΣM = {w ∈ [0, 1]M :
M∑

m=1

wm = 1},

R(w , x) = sup
x1+···+xM=x

M∑
m=1

wmUm(xm), w ∈ int ΣM , x ∈ R.
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Pareto optimal allocation

Theorem (≈ 2nd welfare)

The following statements are equivalent

1. The allocation α = (αm)m=1,...,M is Pareto optimal.

2. There is a (deterministic) vector w ∈ int ΣM such that

wmU ′m(αm) =
∂R

∂x
(w ,

M∑
m=1

αm), m = 1, . . . ,M.

Moreover, such a vector w is defined uniquely.

Remark
More common form of 2nd welfare theorem: a Pareto allocation is
an Arrow-Debreu allocation for some (non-zero) supply.
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Endogenous Radner equilibrium

Inputs:

I M agents, utility functions Um for consumption at common
maturity T , initial random endowments Λm.

I Interest rate r = (rt); hereafter r = 0.
I J stocks with terminal dividends ψ = (ψj) (stocks are fixed in

advance or endogenously)

Output: prices S = (S j
t ) with terminal values

ST = ψ,

such that the agents’ optimal strategies (stock’s quantities)
Hm = (Hm,j

t ) satisfy the clearing condition (with zero net supply):

M∑
m=1

Hm,j
t = 0, t ∈ [0,T ], j = 1, . . . , J.
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Construction of equilibrium

Two steps procedure :

1. Find static (Arrow-Debreu) equilibrium, that is, find a pricing
measure Q such that in the case when economic agents can
trade any payoff ξ at the price

p = EQ[ξ]

then the clearing condition holds (the total wealth does not
change). Method: fixed point.

2. Define St = EQ[ψ|Ft ], t ∈ [0,T ], (ψ is the terminal
dividend) and verify endogenous completeness of the
S-market.
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Martingale Integral Representation

(Ω,FT ,F = (Ft)t∈[0,T ],P): a complete filtered probability space.

Q: an equivalent probability measure.

S = (S j
t ): J-dimensional martingale under Q.

We want to know whether any local martingale M = (Mt) under Q
admits an integral representation with respect to S , that is,

Mt = M0 +

∫ t

0
HudSu, t ∈ [0,T ],

for some predictable S-integrable process H = (H j
t ).

I Completeness in Mathematical Finance.

I Jacod’s Theorem (2nd FTAP): the integral representation
holds iff Q is the only martingale measure for S .

I Easy to verify if S is given in terms of local characteristics.
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Martingale Integral Representation
For verification of endogenous completeness in Radner equilibrium
we need the following version.

Inputs: random variables ζ > 0 and ψ = (ψj)

I The density of the martingale measure Q is defined by

dQ
dP

= constζ.

I ψ is the terminal value for S :

St = EQ[ψ|Ft ], t ∈ [0,T ].

Problem
Determine (easily verifiable) conditions on ζ and ψ so that the
martingale representation property holds under Q and S.
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Assumptions

We present results from K. and Predoiu (2011).
The random variables ψ = ST and ζ = constdQdP are given by

ψj = F j(XT ), j = 1, . . . , J,

ζ = G (XT ),

where

I F j = F j(x) and G = G (x) are deterministic functions.

I X = (X i
t ) is a d-dimensional diffusion:

Xt = X0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs , t ∈ [0,T ],

with drift and volatility functions bi = bi (t, x) and
σij = σij(t, x).
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Assumptions on functions

1. The functions F = F (x) and G = G (x) are weakly
differentiable and have exponential growth:

|∇F |+ |∇G | ≤ NeN|x |

2. The Jacobian matrix
(
∂F j

∂x i

)
has rank d almost surely under

the Lebesgue measure on Rd .

In Anderson and Raimondo (2008) and Hugonnier et al. (2010) in
item 2, the Jacobian matrix needs to have full rank only on some
open set (counter-example in our setting).
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Assumptions on the diffusion X

1. The drift vector b = b(t, x) is bounded, analytic with respect
to t, and measurable with respect to x .

2. The volatility matrix σ = σ(t, x) is bounded, analytic with
respect to t, uniformly continuous with respect to x :

|σ(t, x)− σ(t, y)| ≤ ω(|x − y |).

for some strictly increasing function ω = (ω(ε))ε>0 such that
ω(ε)→ 0 as ε ↓ 0, and has a bounded inverse:

|σ−1(t, x)| ≤ N (uniform ellipticity for σσ∗).

I Counter-example on t-analyticity condition in σ = σ(t, x).
I In Anderson and Raimondo (2008) X is a Brownian motion.
I In Hugonnier et al. (2010) the functions b = b(t, x) and
σ = σ(t, x) are analytic with respect to both t and x .
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Main result

Theorem
Under the conditions above the probability measure Q with the
density

dQ
dP

=
G (XT )

E[G (XT )]
,

and the Q-martingale

St = EQ[F (XT )|Ft ], t ∈ [0,T ],

with values in RJ are well-defined and any local martingale M
under Q is a stochastic integral with respect to S.
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Application to finance

Recall that a Pareto pricing measure corresponding to weights
w ∈ int ΣM has the form:

ζ = const
dQ
dP

= const
∂R

∂x
(w ,Λ),

where

Λ =
M∑

m=1

Λm

is the total terminal wealth and

R(w , x) = max
x1+···+xM=x

M∑
m=1

wmUm(xm),

is the representative agent’s utility.
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Assumptions on agents and stocks

I The total terminal wealth of the agents Λ = eH(XT ), where
H = H(x) is Lipschitz continuous.

I Each utility function Um = Um(x) is strictly increasing,
strictly concave, and twice continuously differentiable on
(0,∞). Moreover, for some c > 0,

1

c
≤ Am(x) = −xU ′′m(x)

U ′m(x)
≤ c , x ∈ (0,∞).

I The terminal stocks’ values

S j
T = ψj = F j(XT ),

where F = F (x) is continuously differentiable, has exponential
growth, and its Jacobian matrix has full rank on Rd .
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Endogenous completeness

Theorem
Under the conditions above, for any Pareto weight w ∈ int ΣM , a
Pareto pricing measure Q with the density

dQ
dP

= const
∂R

∂x
(w ,Λ)

and the Q-martingale

St = EQ[ψ|Ft ], t ∈ [0,T ],

are well-defined and the S-market is complete.

Theorem
Under the conditions above there exists endogenous Radner
equilibrium.
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