Arbitrage-Free Pricing, Optimal Investment, and Equilibrium

Dmitry Kramkov

Carnegie Mellon University

January 16–27, 2012 School on Mathematical Finance Tata Institute of Fundamental Research Mumbai, India

Plan of the course

- Lecture I: Mathematical model of financial market. Arbitrage and 1st fundamental theorem.
- Lecture 2: Arbitrage-free valuation. Completeness and 2nd fundamental theorem.
- Lecture 3: Optimal investment.
- Lecture 4: General equilibrium.

Part I

Mathematical model of financial market. Arbitrage and 1st fundamental theorem

Outline

Mathematical model of financial market

Closability for simple strategies

Economic viability

1st fundamental theorem

Verification of the absence of arbitrage

References

Mathematical model of financial market

There are d + 1 traded or liquid assets:

- 1. a *savings account* with zero interest rate.
- 2. *d stocks*. The stocks' price process $S = (S_t)$ is a RCLL stochastic process on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, \mathbb{P})$.

Key assumption: trader's actions do not affect S ("small" economic agent).

Problem

Obtain conditions on S for model to be "viable".

Simple strategies

For a *simple* strategy with a process of *stocks' quantities*:

$$H_t = \sum_{n=1}^N \theta_n \mathbb{1}_{(t_{n-1}, t_n]}$$

where $\theta_n \in L^0(\mathcal{F}_{t_{n-1}})$, the wealth process

$$X_t(H) = X_0 + \sum_{t_n \leq t} \theta_n(S_{t_n} - S_{t_{n-1}}).$$

Mathematical challenge: define X(H) for general H.

Closability for simple strategies

Closability: the convergence of simple (H^n) to LCRL H in ucp

$$(H^n - H)^*_T = \sup_{t \in [0,T]} |H^n_t - H_t| \to 0$$

implies the existence of X(H) such that

 $(X(H^n)-X(H))_T^* \to 0.$

Theorem (Bichteler-Dellacherie, see Protter (2004))

Closability holds \Leftrightarrow S is a semimartingale.

General strategies

Recall that S is a semimartingale if

S = M + A,

where M is a local martingale and A is a predictable process of bounded variation. For a semimartingale S we can extend the map

$H \mapsto X(H)$

from simple to general *H* arriving to *stochastic integrals*:

$$X_t(H) = X_0 + \int_0^t H_u dS_u.$$

Elegant setup: Emery's or semimartingale topology; see Protter (2004).

Economic viability

Conditions for economic viability of market model:

- 1. Price *S* is an outcome of an "equilibrium" (matching of demand and supply).
- 2. Any "rational" investor has an "optimal" finite strategy $\widehat{Q} = (\widehat{Q}_t)$.
- 3. There is a "rational" investor with an "optimal" finite strategy $\widehat{Q} = (\widehat{Q}_t)$.
- 4. The market S is "arbitrage-free".

Under suitable definitions of "terms" all these conditions are equivalent!

1st fundamental theorem

Let Q denote the family of *martingale measures* for S, that is,

 $Q = \{ \mathbb{Q} \sim \mathbb{P} : S \text{ is a local martingale under } \mathbb{Q} \}$

Theorem (1st FTAP)

Absence of arbitrage $\iff \mathcal{Q} \neq \emptyset$.

Free Lunch with Vanishing Risk (FLVR)

For 1st FTAP to hold true the following definition of arbitrage is needed (Delbaen and Schachermayer (1994)):

- 1. There is a set $A \in \Omega$ with $\mathbb{P}[A] > 0$.
- 2. For any $\epsilon > 0$ there is a strategy X such that

2.1 X is admissible, that is, for some constant c > 0,

 $X \geq -c$.

2.2 $X_0 \le \epsilon$ (start with almost nothing) 2.3 $X_T \ge 1_A$ (end with something)

Verification of the absence of arbitrage

Assume that $\mathcal{F}_t = \mathcal{F}_t^S$ (the information is generated by S). Then without loss in generality $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, \mathbb{P})$ is a canonical probability space of continuous functions $\omega = \omega(t)$ on [0, T] and $S_t(\omega) = \omega(t)$. Suppose

$$S_t = S_0 + \int_0^t \mu_t du + W_t^{\mathbb{P}},$$

where $\mu_t = \mu((S_u)_{u \le t}, t)$ and $W^{\mathbb{P}}$ is a \mathbb{P} -Brownian motion.

Problem

Find (necessary and sufficient) conditions on $\mu = (\mu_t)$ for the absence of arbitrage (No FLVR).

Solution

Levi's theorem \implies that the only possible martingale measure \mathbb{Q} is such that

 $W_t^{\mathbb{Q}} = S_t - S_0,$

is a Q-Brownian motion. Then by 1st FTAP

No FLVR $\iff \mathbb{P} \sim \mathbb{Q}$.

One can show (easy!, see Jacod and Shiryaev (2003) for general results or this kind relying on Hellinger processes) that

$$\mathbb{P} \sim \mathbb{Q} \iff \int_0^T \mu_t^2 dt < \infty \quad \mathbb{P} + \mathbb{Q} \quad \text{a.s.}$$

References

- Freddy Delbaen and Walter Schachermayer. A general version of the fundamental theorem of asset pricing. *Math. Ann.*, 300(3): 463–520, 1994.
- Jean Jacod and Albert N. Shiryaev. *Limit theorems for stochastic processes*, Springer-Verlag, Berlin, second edition, 2003.
- Philip E. Protter. *Stochastic integration and differential equations*, Springer-Verlag, Berlin, second edition, 2004.

Part II

Arbitrage-free valuation. Completeness and 2nd fundamental theorem

Outline

Financial market

- Pricing = Replication
- Black and Scholes formula
- 2nd fundamental theorem
- References

Financial security

Example (Interest Rate Swap)

Pricing problem: compute "fair" value of the security today.

Classification of financial securities

We classify all financial securities into 2 groups:

1. *Traded securities*: the price is *given* by the market.

Financial model = All traded securities

2. Non-traded securities: the price has to be computed.

Remark

This "black-and-white" classification is quite idealistic. Real life securities are usually "gray".

In this tutorial we shall deal with *Arbitrage-Free Pricing* methodology.

Arbitrage-free price

Inputs:

- 1. Financial model (collection of all traded securities)
- 2. A non-traded security.

Arbitrage strategy (intuitive definition) :

- 1. start with zero capital (nothing)
- 2. end with positive and non zero wealth (something)

Assumption

The financial model is arbitrage free.

Definition

An amount p is called an *arbitrage-free price* if, given an opportunity to trade the non-traded security at p, one is not able to construct an arbitrage strategy.

Replication

Replicating strategy:

- 1. starts with some initial capital X_0
- 2. generates *exactly* the same cash flow in the future

Methodology of arbitrage-free pricing

Theorem

An arbitrage-free price p is unique if and only if there is a replicating strategy. In this case,

 $p=X_0,$

where X_0 is the initial capital of a replicating strategy. Main Principle:

Unique Arbitrage-Free Pricing = Replication

Problem on two calls

Problem

Consider two stocks: A and B. Assume that

Consider call options on A and B with the same strike K =\$100. Assume that T = 1 and r = 5%. Compute the difference $C^A - C^B$ of their arbitrage-free prices.

Pricing in Black and Scholes model

There are two traded assets: *savings account* with zero interest rate and *stock* with price process:

 $dS_t = S_t \left(\mu dt + \sigma dW_t \right).$

Here $W = (W_t)_{t \ge 0}$ is a Wiener process and

- $\mu \in \mathbf{R}$: drift
- $\sigma > 0$: volatility

Problem (Black and Scholes (1973))

Compute arbitrage-free price V_0 of European put option with maturity T and payoff

 $\Psi = \max(K - S_T, 0).$

Replication in Black and Scholes model

Basic principle : Pricing = Replication

Replicating strategy :

1. has wealth evolution:

$$X_t = X_0 + \int_0^t \Delta_u dS_u,$$

where X_0 is the initial capital and Δ_t is the number of shares at time t; $0 \le X \le K$.

2. generates *exactly* the same payoff as the option:

 $X_T(\omega) = \Psi(\omega) = \max(K - S_T(\omega), 0), \quad \mathbb{P}$ -a.s..

Two standard methods: "direct" (PDE) and "dual" (martingales).

PDE method

Since $X_T = f(S_T)$ we look for replicating strategy in the form:

 $X_t = v(S_t, t)$

for some deterministic v = v(s, t). By Ito's formula,

$$dX_t = v_s(S_t, t)dS_t + (v_t(S_t, t) + \frac{1}{2}\sigma^2 S_t^2 v_{ss}(S_t, t))dt.$$

But, (since X is a wealth process)

 $dX_t = \Delta_t dS_t$,

where Δ_t (hedging delta) is the number of stocks at time t.

PDE method

Hence, v = v(s, t) solves PDE: $\begin{cases}
v_t(s, t) + \frac{1}{2}\sigma^2 s^2 v_{ss}(s, t) = 0 \\
v(s, T) = \max(K - s, 0)
\end{cases}$

The arbitrage-free price and the hedging delta are given by

 $p = v(S_0, 0),$ $\Delta_t = v_s(S_t, t).$

Martingale method

Observation: replication problem is defined "almost surely" and, hence, is invariant with respect to an equivalent choice of probability measure.

Convenient choice: martingale measure \mathbb{Q} for S. We have

 $dS_t = S_t \sigma dW_t^{\mathbb{Q}},$

where $W^{\mathbb{Q}}$ is a Brownian motion under \mathbb{Q} . Replication strategy: (by Martingale Representation Theorem)

$$X_t = X_0 + \int_0^t \Delta dS = \mathbb{E}^{\mathbb{Q}}[\Psi|\mathcal{F}_t].$$

Risk-neutral valuation: (no replication!)

 $p=X_0=\mathbb{E}^{\mathbb{Q}}[\Psi].$

Martingale method

The computation of hedging delta is conveniently done with *Clark-Ocone formula*:

 $\sigma S_t \Delta_t = \mathbb{E}^{\mathbb{Q}}[\mathbf{D}_t^{\mathbb{Q}}[\psi]|\mathcal{F}_t],$

where $\mathbf{D}^{\mathbb{Q}}$ is the *Malliavin derivative* under \mathbb{Q} . For example, for European put

 $\mathbf{D}_t^{\mathbb{Q}}[\max(\mathcal{K} - S_{\mathcal{T}}, 0)] = -\mathbf{1}_{\{S_{\mathcal{T}} < \mathcal{K}\}} \mathbf{D}_t^{\mathbb{Q}}[S_{\mathcal{T}}] = -\mathbf{1}_{\{S_{\mathcal{T}} < \mathcal{K}\}} \sigma S_{\mathcal{T}},$

resulting in

$$\Delta_t = -\frac{1}{S_t} \mathbb{E}^{\mathbb{Q}}[\mathbb{1}_{\{S_{\mathcal{T}} < \mathcal{K}\}} S_{\mathcal{T}}] | \mathcal{F}_t] = -\widetilde{\mathbb{Q}}[S_{\mathcal{T}} < \mathcal{K} | \mathcal{F}_t],$$

where

$$\frac{d\overline{\mathbb{Q}}}{d\overline{\mathbb{Q}}} = \frac{S_T}{S_0}.$$

Complete financial model

There are d + 1 traded or liquid assets:

- 1. a *savings account* with zero interest rate.
- d stocks. The price process S of the stocks is a semimartingale on (Ω, F, (F_t)_{0≤t≤T}, ℙ).
- Let Q denote the family of *martingale measures* for S, that is,

 $\mathcal{Q} = \{ \mathbb{Q} \sim \mathbb{P} : S \text{ is a local martingale under } \mathbb{Q} \}$

Assumption

 $\mathcal{Q} \neq \emptyset \quad \iff \quad$ The model arbitrage-free (No FLVR).

Question

Is the model complete? In other words, does it allow replication of any non-traded derivative?

2nd fundamental theorem

Definition

The model is *complete* if for any random variable ψ with $0 \le \psi \le 1$ one can find a strategy with wealth process X such that $0 \le X \le 1$ and $X_T = \psi$.

```
Theorem (2nd FTAP)
```

Completeness $\iff |\mathcal{Q}| = 1.$

The theorem is stated in Harrison and Pliska (1983) and follows from an integral representation theorem in Jacod (1979).

Risk-Neutral Valuation

Consider a European option with payoff Ψ at maturity T. The formula

 $V_0 = \mathbb{E}^{\mathbb{Q}}[\Psi],$

where $\mathbb{Q} \in \mathcal{Q}$ is called *Risk-Neutral Valuation*.

Arbitrage-free models:

Unique Arbitrage-Free Pricing = Replication

Complete models: (no replication!)

Arbitrage-Free Pricing = Risk-Neutral Valuation

References

- Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. *Journal of Political Economy*, 81:637–654, May–June 1973.
- J. Michael Harrison and Stanley R. Pliska. A stochastic calculus model of continuous trading: complete markets. *Stochastic Process. Appl.*, 15(3):313–316, 1983.
- Jean Jacod. *Calcul stochastique et problèmes de martingales*, volume 714 of *Lecture Notes in Mathematics*. Springer, Berlin, 1979.

Part III Optimal investment

Outline

Introduction to optimal investment

Merton's problem

General framework

Complete market case

Investment in incomplete markets

References

Introduction to optimal investment

Consider an economic agent (an investor) in an *arbitrage-free* financial model.

```
x: initial capital
```

Goal: invest x "optimally" up to maturity T.

Question

How to compare two investment strategies:

1. $x \longrightarrow X_T = X_T(\omega)$

2. $x \longrightarrow Y_T = Y_T(\omega)$

Clearly, we would prefer 1st to 2nd if $X_T(\omega) \ge Y_T(\omega)$, $\omega \in \Omega$. However, as the model is arbitrage-free, in this case, $X_T(\omega) = Y_T(\omega)$, $\omega \in \Omega$.

Introduction to optimal investment

Classical approach (Von Neumann - Morgenstern, Savage): an investor is *"quantified"* by

 \mathbb{P} : "scenario" probability measure

U = U(x): utility function

"Quality" of a strategy

 $x \longrightarrow X_T = X_T(\omega)$

is then measured by *expected utility*: $\mathbb{E}[U(X_T)]$. Given two strategies: $x \longrightarrow X_T$ and $x \longrightarrow Y_T$ the investor will prefer the 1st one if

 $\mathbb{E}[U(X_{\mathcal{T}})] \geq \mathbb{E}[U(Y_{\mathcal{T}})]$
Introduction to optimal investment

Inputs:

- 1. Arbitrage-free financial model (all traded securities)
- 2. Risk-averse investor:
 - x: initial wealth
 - P: "real world" probability measure
 - U = U(x): strictly increasing and strictly concave utility function

Output: an optimal investment strategy with wealth $x \longrightarrow \widehat{X}_T$ such that

$$\mathbb{E}[U(\widehat{X}_{\mathcal{T}})] = u(x) = \sup_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_{\mathcal{T}})].$$

Here $\mathcal{X}(x)$ is the set of strategies with initial wealth x.

First papers in continuous time finance: Merton (1969).

Black and Scholes model: a savings account and a stock.

- 1. We assume that the interest rate is 0.
- 2. The price of the stock:

 $dS_t = S_t \left(\mu dt + \sigma dW_t \right).$

Here $W = (W_t)_{t \ge 0}$ is a Wiener process and $\mu \in \mathbf{R}$: drift $\sigma > 0$: volatility

The problem of optimal investment

 $u(x) = \sup_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_T)]$

becomes in this case a stochastic control problem:

$$u(x,t) = \sup_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_{T-t})] = \sup_{\pi} \mathbb{E}[U(X_{T-t}^{\pi})],$$

where the *controlled* process X^{π} is the wealth process:

$$dX^{\pi} = X^{\pi}\pi(\mu dt + \sigma dW) \quad X_0^{\pi} = x$$

and the *control* process π is the proportion of the capital invested in stock.

Bellman equation:

$$u_t + \sup_{\pi} \left[\pi x \mu u_x + \frac{1}{2} \pi^2 \sigma^2 x^2 u_{xx} \right] = 0.$$

It follows that

$$\begin{cases} u_t(x,t) = \frac{\mu^2 u_x^2}{2\sigma^2 u_{xx}}(x,t) \\ u_{xx}(x,t) < 0 \\ u(x,T) = U(x) \end{cases}$$

and the optimal proportion:

$$\widehat{\pi}(x,t) = -\frac{\mu u_x}{\sigma^2 x u_{xx}}(x,t).$$

In Merton (1969) the system was solved for the case, when

$$U(x, \alpha) = rac{x^{lpha} - 1}{lpha} \quad (lpha < 1).$$

Here

$$-\frac{U'(x)}{xU''(x)} = \frac{1}{1-\alpha} \quad (= \text{const!})$$

This key property is "inherited" be the solution:

$$\frac{u_x}{xu_{xx}}(x,t) = \text{const.}$$

After this substitution the first equation in the system becomes

 $u_t = \text{const } x^2 u_{xx}$

and could be solved analytically. The optimal strategy (Merton's point):

$$\widehat{\pi} = \frac{\mu}{(1-\alpha)\sigma^2}.$$

In general case, we define the conjugate function

$$v(y,t) = \sup_{x>0} \left[u(x,t) - xy \right]$$

The function v satisfies

$$v_t = \text{const } y^2 v_{yy}$$

$$v(y, T) = V(y) := \sup_{x>0} [U(x) - xy]$$

Methodology: compute v first and then find u from the inverse duality relationship:

$$u(x,t) = \inf_{y>0} [v(y,t) + xy]$$

Model of a financial market

There are d + 1 traded or liquid assets:

- 1. a *savings account* with zero interest rate.
- d stocks. The price process S of the stocks is a semimartingale on (Ω, F, (F_t)_{0≤t≤T}, ℙ).

Assumption (No Arbitrage or No FLVR)

$\mathcal{Q} \neq \emptyset$

where Q is the family of martingale measures for S.

Economic agent or investor

- x: initial capital
- U: utility function for consumption at the maturity T such that
 - 1. $U: (0,\infty) \rightarrow \mathbf{R}$
 - 2. U is strictly increasing
 - 3. U is strictly concave
 - 4. The Inada conditions hold true:

 $U'(0) = \infty$ $U'(\infty) = 0$

Problem of optimal investment

The goal of the investor is to maximize *the expected utility of terminal wealth*:

$$u(x) = \sup_{X \in \mathcal{X}(x)} \mathbb{E}[U(X_T)], \quad x > 0$$

Here $\mathcal{X}(x)$ is the set of strategies with initial wealth x.

Assumption

The value function is finite:

 $u(x) < \infty, \quad x > 0.$

Two main approaches

1. Bellman equation.

2. Duality and martingales. Basic idea: as

 $\mathbb{E}[U(\widehat{X}_{\mathcal{T}}(x))] = \max_{X \in \mathcal{X}(0)} \mathbb{E}[U(\widehat{X}_{\mathcal{T}}(x) + X_{\mathcal{T}})]$

we have that for any $X \in \mathcal{X}(0)$

 $\mathbb{E}[U'(\widehat{X}_T(x))X_T]=0$

Hence, there is $\mathbb{Q} \in \mathcal{Q}$ such that

$$U'(\widehat{X}_T(x)) = \operatorname{const} \frac{d\mathbb{Q}}{d\mathbb{P}}$$

Investment in complete models

Complete model: |Q| = 1

Define the functions

$$egin{aligned} V(y) &= \max_{x>0} \left[U(x) - xy
ight], \quad y > 0. \ v(y) &= \mathbb{E} \left[V \left(y(rac{d\mathbb{Q}}{d\mathbb{P}})
ight)
ight], \quad y > 0 \end{aligned}$$

Theorem

$$u(x) = \inf_{y>0} [v(y) + xy]$$

Investment in complete models

Theorem

The following conditions are equivalent:

1. The dual value function v = v(y) is finite:

$$v(y) < \infty, \quad y > 0$$

2. The primal value function u = u(x) is strictly concave and satisfies the Inada conditions.

Moreover, in this case, $\widehat{X}(x)$ exists for any x > 0 and

$$\widehat{X}_{\mathcal{T}}(x) = -V'\left(y\frac{d\mathbb{Q}}{d\mathbb{P}}\right), \quad y = u'(x).$$

Investment in complete markets

The optimal terminal wealth $\hat{X}_T(x)$ is uniquely determined by the equations:

$$\widehat{X}_{\mathcal{T}}(x) = -V'(y rac{d\mathbb{Q}}{d\mathbb{P}})$$

 $\mathbb{E}_{\mathbb{Q}}[\widehat{X}_{\mathcal{T}}(x)] = x$

The optimal number of stocks $\hat{H}_t(x)$ at time *t* is given by the integral representation formula:

$$\widehat{X}_t(x) = \mathbb{E}_{\mathbb{Q}}[\widehat{X}_T(x)|\mathcal{F}_t] = x + \int_0^t \widehat{H}_u(x) dS_u.$$

Back to Merton's problem

For Black and Scholes model we have

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp(-\frac{\mu}{\sigma}W_T - \frac{1}{2}\frac{\mu^2}{\sigma^2}T) = \exp(-\frac{\mu}{\sigma}W_T^{\mathbb{Q}} + \frac{1}{2}\frac{\mu^2}{\sigma^2}T),$$

where

$$W_t^{\mathbb{Q}} = W_t + \frac{\mu}{\sigma}t,$$

is the Q-Brownian motion. We deduce

$$\widehat{H}_t(x)S_t = \frac{\mu}{\sigma^2}R_t(x),$$

where R(x) is the *risk-tolerance wealth process* defined as the wealth process replicating the payoff:

$$R_T(x) := -\frac{U'(\widehat{X}_T(x))}{U''(\widehat{X}_T(x))}$$

Basic questions for incomplete models

- 1. Does the optimal investment strategy X(x) exist?
- 2. Does the value function u = u(x) satisfy the *standard* properties of a utility function? In other words,
 - 2.1 Is *u* strictly concave?
 - 2.2 Do Inada conditions

$$u'(0) = \infty, \quad u'(\infty) = 0$$

hold true?

Basic questions for incomplete models

3. Does the conjugate function

$$v(y) = \sup_{x>0} \{u(x) - xy\}, \quad y > 0,$$

have the representation:

$$v(y) = \inf_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}[V(y\frac{d\mathbb{Q}}{d\mathbb{P}})],$$

where

$$V(y) = \sup_{x>0} \{ U(x) - xy \}, \quad y > 0?$$

Asymptotic elasticity

Recall that the *elasticity* for U is defined as

$$E(U)(x) = \frac{xU'(x)}{U(x)}$$

The crucial role is played by the asymptotic elasticity:

$$AE(U) = \limsup_{x \to \infty} \frac{xU'(x)}{U(x)}.$$

```
We always have AE(U) \leq 1.
Assumption
```

AE(U) < 1.

Minimal market independent condition

Theorem (K. and Schachermayer (1999))

The following conditions are equivalent :

- 1. AE(U) < 1.
- 2. For any financial model the "qualitative" properties 1–3 hold true.

In addition, in this case

 $AE(u) \leq AE(U) < 1.$

Remark

The condition AE(U) < 1 is similar to Δ_2 -condition in the theory of Orlicz spaces.

Necessary and sufficient conditions

Theorem (K. and Schachermayer (2003))

The following conditions are equivalent for given financial model:

1. For any y > 0 there is $\mathbb{Q} \in \mathcal{Q}$ such that

$$\mathbb{E}[V\left(y\frac{d\mathbb{Q}}{d\mathbb{P}}\right)]<\infty.$$

2. The "qualitative" properties 1–3 hold true.

Dual space of supermartingales

The lower bound in

$$v(y) = \inf_{\mathbb{Q}\in\mathcal{M}} \mathbb{E}\left[V\left(y\frac{d\mathbb{Q}}{d\mathbb{P}}\right)\right]$$

is, in general, not attained. However, if we extend the space of density processes of martingale measures to the space $\mathcal{Y}(y)$ of strictly positive supermartingales Y such that

1. $Y_0 = y$

2. XY is a supermartingale for any $X \in \mathcal{X}(x)$ then (without any extra assumptions!) we have

 $v(y) = \inf_{Y \in \mathcal{Y}(y)} \mathbb{E}[V(Y_T)]$

and the lower bound above is attained by $\widehat{Y}(y) \in \mathcal{Y}(y)$. This is even more convenient for computations!

References

- D. Kramkov and W. Schachermayer. The asymptotic elasticity of utility functions and optimal investment in incomplete markets. *Ann. Appl. Probab.*, 9(3):904–950, 1999.
- D. Kramkov and W. Schachermayer. Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. *Ann. Appl. Probab.*, 13(4):1504–1516, 2003.
- Robert C. Merton. Lifetime portfolio selection under uncertainty: the continuous-time case. *Rev. Econom. Statist.*, pages 247–257, 1969.

Part IV Equilibrium

Outline

Radner equilibrium

Arrow-Debreu equilibrium

Pareto optimal allocation

Endogenous Radner equilibrium

Martingale Integral Representation

References

Dynamic (Radner) equilibrium

Inputs:

- M agents, utility functions U_m for consumption at common maturity T, initial random endowments Λ_m.
- Interest rate $r = (r_t)$; hereafter r = 0.

Output: financial market with J stocks having prices $S = (S_t^j)$ where the agents' optimal strategies (stock's quantities) $H^m = (H_t^{mj})$ satisfy the *clearing condition* (zero-net supply):

$$\sum_{m=1}^{M} H_t^{m,j} = 0, \quad t \in [0, T], \ j = 1, \dots, J.$$

Construction of Radner equilibrium

Two steps procedure: (see Dana and Jeanblanc (2003))

- Find static (Arrow-Debreu) equilibrium with pricing measure
 Q: welfare theorems + fixed point.
- Find (any!) J-dimensional local martingale S = (S_t^j) under Q such that the S market is complete ⇔ Any Q-local martingale M is a stochastic integral under S:

$$M=M_0+\int HdS.$$

The second item is easy and the answer is a priori YES or NO because it does not depend on a choice of $\mathbb{Q} \sim \mathbb{P}!$.

Static (Arrow-Debreu) equilibrium

Inputs:

- M agents, utility functions U_m for consumption at common maturity T, initial random endowments Λ_m.
- Interest rate r = 0.

Output: pricing measure \mathbb{Q} such that if the agents can trade *any* (\mathbb{Q} -integrable) contingent claim ξ at the price

 $p = \mathbb{E}^{\mathbb{Q}}[\xi]$

then their optimal positions $(\widehat{\Lambda}_m)$ satisfy the clearing condition:

$$\sum_{m=1}^{M}\widehat{\Lambda}_{m}=\Lambda=\sum_{m=1}^{M}\Lambda_{m}.$$

Assumptions on agents

(A1) The initial random endowments are strictly positive:

$\Lambda_m > 0$

and the total initial (= terminal) wealth $\Lambda = \sum_m \Lambda_m$ has all (positive and negative) moments:

$$\mathbb{E}[\Lambda^{p} + \left(\frac{1}{\Lambda}\right)^{p}] < \infty, \quad p \ge 0.$$

(A2) Each utility function $U_m = U_m(x)$ is strictly increasing, strictly concave, and twice continuously differentiable on $(0,\infty)$. Moreover, it has a bounded relative risk aversion, that is, for some c > 0,

$$\frac{1}{c} \leq A_m(x) = -\frac{xU_m''(x)}{U_m'(x)} \leq c, \quad x \in (0,\infty).$$

Existence of Radner and Arrow-Debreu equilibrium

Theorem

Under (A1) and (A2) there exists an Arrow-Debreu equilibrium.

(A3) There exists a complete financial market (with $J < \infty$ stocks).

Remark

(A3) is a property of $(\Omega, (\mathcal{F}_t), \mathbb{P})$ and does not depend on a choice of *equivalent* \mathbb{P} .

Theorem

Under (A1), (A2), and (A3) there exists a Radner equilibrium.

Pareto optimal allocation

Theorem (1st welfare)

Any Arrow-Debreu equilibrium \mathbb{Q} results in the optimal positions $(\widehat{\Lambda}_m)$ for the agents which are Pareto optimal.

Definition

Random variables $\alpha = (\alpha^m)_{1 \le m \le M}$ form a Pareto allocation if there is no other allocation $\beta = (\beta^m)_{1 \le m \le M}$ of the same total endowment:

$$\sum_{m=1}^{M} \beta^m = \sum_{m=1}^{M} \alpha^m,$$

which leaves all agents better off:

 $\mathbb{E}[U_m(\beta^m)] > \mathbb{E}[U_m(\alpha^m)] \quad \text{ for all } 1 \le m \le M.$

Pareto optimal allocation

Key observation: Given the total endowment Λ , the set of all possible Pareto optimal allocations is *finite-dimensional* and is parameterized by the interior of the simplex.

Denote by Σ^M the simplex and by R = R(w, x) the representative agent utility:

$$\Sigma^{M} = \{ w \in [0,1]^{M} : \sum_{m=1}^{M} w^{m} = 1 \},$$
$$R(w,x) = \sup_{x^{1} + \dots + x^{M} = x} \sum_{m=1}^{M} w^{m} U_{m}(x^{m}), \quad w \in \operatorname{int} \Sigma^{M}, x \in \mathbf{R}.$$

Pareto optimal allocation

Theorem (\approx 2nd welfare)

The following statements are equivalent

- 1. The allocation $\alpha = (\alpha^m)_{m=1,...,M}$ is Pareto optimal.
- 2. There is a (deterministic) vector $w \in int \Sigma^M$ such that

$$w^m U'_m(\alpha^m) = \frac{\partial R}{\partial x}(w, \sum_{m=1}^M \alpha^m), \quad m = 1, \dots, M.$$

Moreover, such a vector w is defined uniquely.

Remark

More common form of 2nd welfare theorem: a Pareto allocation is an Arrow-Debreu allocation for *some (non-zero) supply*.

Endogenous Radner equilibrium

Inputs:

- M agents, utility functions U_m for consumption at common maturity T, initial random endowments Λ^m.
- Interest rate $r = (r_t)$; hereafter r = 0.
- J stocks with terminal dividends ψ = (ψ^j) (stocks are fixed in advance or *endogenously*)

Output: prices $S = (S_t^j)$ with terminal values

$$S_T = \psi,$$

such that the agents' optimal strategies (stock's quantities) $H^m = (H_t^{m,j})$ satisfy the *clearing condition* (with zero net supply):

$$\sum_{m=1}^{M} H_t^{m,j} = 0, \quad t \in [0, T], \ j = 1, \dots, J.$$

Construction of equilibrium

Two steps procedure :

1. Find static (Arrow-Debreu) equilibrium, that is, find a pricing measure \mathbb{Q} such that in the case when economic agents can trade *any* payoff ξ at the price

 $p = \mathbb{E}^{\mathbb{Q}}[\xi]$

then the clearing condition holds (the total wealth does not change). Method: fixed point.

2. Define $S_t = \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t]$, $t \in [0, T]$, (ψ is the terminal dividend) and verify *endogenous* completeness of the *S*-market.

Martingale Integral Representation

 $(\Omega, \mathcal{F}_T, \mathbf{F} = (\mathcal{F}_t)_{t \in [0, T]}, \mathbb{P})$: a complete filtered probability space. \mathbb{Q} : an equivalent probability measure.

 $S = (S_t^j)$: *J*-dimensional martingale under \mathbb{Q} .

We want to know whether any local martingale $M = (M_t)$ under \mathbb{Q} admits an integral representation with respect to S, that is,

$$M_t = M_0 + \int_0^t H_u dS_u, \quad t \in [0, T],$$

for some predictable *S*-integrable process $H = (H_t^j)$.

- Completeness in Mathematical Finance.
- ► Jacod's Theorem (2nd FTAP): the integral representation holds iff Q is the only martingale measure for S.
- Easy to verify if *S* is given in terms of *local characteristics*.

Martingale Integral Representation

For verification of endogenous completeness in Radner equilibrium we need the following version.

Inputs: random variables $\zeta > 0$ and $\psi = (\psi^j)$

• The density of the martingale measure \mathbb{Q} is defined by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \operatorname{const}\zeta.$$

•
$$\psi$$
 is the terminal value for *S*:

 $S_t = \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t], \quad t \in [0, T].$

Problem

Determine (easily verifiable) conditions on ζ and ψ so that the martingale representation property holds under \mathbb{Q} and S.
Assumptions

We present results from K. and Predoiu (2011). The random variables $\psi = S_T$ and $\zeta = \text{const} \frac{d\mathbb{Q}}{d\mathbb{P}}$ are given by

$$\psi^{j} = F^{j}(X_{T}), \quad j = 1, \dots, J,$$

$$\zeta = G(X_{T}),$$

where

• $F^j = F^j(x)$ and G = G(x) are deterministic functions.

• $X = (X_t^i)$ is a *d*-dimensional diffusion:

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s, \quad t \in [0, T],$$

with drift and volatility functions $b^i = b^i(t, x)$ and $\sigma^{ij} = \sigma^{ij}(t, x)$.

Assumptions on functions

1. The functions F = F(x) and G = G(x) are weakly differentiable and have exponential growth:

 $|\nabla F| + |\nabla G| \le N e^{N|x|}$

2. The Jacobian matrix $\left(\frac{\partial F^{j}}{\partial x^{i}}\right)$ has rank *d* almost surely under the Lebesgue measure on \mathbb{R}^{d} .

In Anderson and Raimondo (2008) and Hugonnier et al. (2010) in item 2, the Jacobian matrix needs to have full rank only on some open set (counter-example in our setting).

Assumptions on the diffusion X

- 1. The drift vector b = b(t, x) is bounded, analytic with respect to t, and measurable with respect to x.
- 2. The volatility matrix $\sigma = \sigma(t, x)$ is bounded, analytic with respect to t, uniformly continuous with respect to x:

 $|\sigma(t,x) - \sigma(t,y)| \le \omega(|x-y|).$

for some strictly increasing function $\omega = (\omega(\epsilon))_{\epsilon>0}$ such that $\omega(\epsilon) \to 0$ as $\epsilon \downarrow 0$, and has a bounded inverse:

 $|\sigma^{-1}(t,x)| \leq N$ (uniform ellipticity for $\sigma\sigma^*$).

- Counter-example on *t*-analyticity condition in $\sigma = \sigma(t, x)$.
- ▶ In Anderson and Raimondo (2008) X is a Brownian motion.
- ► In Hugonnier et al. (2010) the functions b = b(t, x) and $\sigma = \sigma(t, x)$ are analytic with respect to both t and x.

Main result

Theorem

Under the conditions above the probability measure \mathbb{Q} with the density

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \frac{G(X_T)}{\mathbb{E}[G(X_T)]},$$

and the \mathbb{Q} -martingale

$$S_t = \mathbb{E}^{\mathbb{Q}}[F(X_T)|\mathcal{F}_t], \quad t \in [0, T],$$

with values in \mathbb{R}^J are well-defined and any local martingale M under \mathbb{Q} is a stochastic integral with respect to S.

Application to finance

Recall that a Pareto pricing measure corresponding to weights $w \in int \Sigma^M$ has the form:

$$\zeta = \text{const} \frac{d\mathbb{Q}}{d\mathbb{P}} = \text{const} \frac{\partial R}{\partial x}(w, \Lambda),$$

where

$$\Lambda = \sum_{m=1}^{M} \Lambda^m$$

is the total terminal wealth and

$$R(w,x) = \max_{x^1+\cdots+x^M=x} \sum_{m=1}^M w^m U_m(x^m),$$

is the representative agent's utility.

Assumptions on agents and stocks

- ► The total terminal wealth of the agents Λ = e^{H(X_T)}, where H = H(x) is Lipschitz continuous.
- ► Each utility function U_m = U_m(x) is strictly increasing, strictly concave, and twice continuously differentiable on (0,∞). Moreover, for some c > 0,

$$\frac{1}{c} \leq A_m(x) = -\frac{xU_m''(x)}{U_m'(x)} \leq c, \quad x \in (0,\infty).$$

The terminal stocks' values

$$S_T^j = \psi^j = F^j(X_T),$$

where F = F(x) is continuously differentiable, has exponential growth, and its Jacobian matrix has full rank on \mathbb{R}^d .

Endogenous completeness

Theorem

Under the conditions above, for any Pareto weight $w \in int \Sigma^M$, a Pareto pricing measure \mathbb{Q} with the density

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = const \frac{\partial R}{\partial x}(w, \Lambda)$$

and the \mathbb{Q} -martingale

$$S_t = \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t], \quad t \in [0, T],$$

are well-defined and the S-market is complete.

Theorem

Under the conditions above there exists endogenous Radner equilibrium.

References

- Robert M. Anderson and Roberto C. Raimondo. Equilibrium in continuous-time financial markets: endogenously dynamically complete markets. *Econometrica*, 76(4):841–907, 2008.
- Rose-Anne Dana and Monique Jeanblanc. *Financial markets in continuous time*. Springer Finance. Springer-Verlag, Berlin, 2003.
- Julien Hugonnier, Semyon Malamud, and Eugene Trubowitz. Endogenous completeness of diffusion driven equilibrium market. Preprint, 2010.
- Dmitry Kramkov and Silviu Predoiu. Integral representation of martingales and endogenous completeness of financial models. Preprint, 2011.