The Dynamics of Complex Polynomial Vector Fields in $\ensuremath{\mathbb{C}}$

Kealey Dias

City University of New York (Bronx CC)

December 14, 2012

Kealey Dias The Dynamics of Complex Polynomial Vector Fields in $\mathbb C$

Objects of Study

The set of **monic and centered polynomials** of degree $d \ge 2$

$$P(z) = z^d + a_{d-2}z^{d-2} + \dots + a_0$$

parameterized by $\underline{a} = (a_0, \ldots, a_{d-2}) \in \mathbb{C}^{d-1}$.

We study the maximal trajectories $t \mapsto \gamma(t, z_0)$ of ξ_P with $t \in \mathbb{R}$, i.e. maximal solutions to associated autonomous ODE

$$\dot{z} = P(z), \quad \gamma(0, z) = z$$

Intro Classification Parameter Space Bifurcations

Quadratic Examples: $P(z) = z^2 + a$

 $\zeta\notin i\mathbb{R}$

 $\zeta = \pm i \sqrt{a}$

 $\zeta = 0, \text{ mult}(\zeta) = 2$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

Motivation (Holomorphic Dynamics)

Time-1 flow of $\dot{z} = f(z) - z$ approximates iteration of f

Important results utilizing vector fields:

- Parabolic bifurcations [Benziger, Shishikura, Oudkerk, Buff, Tan Lei, Epstein,...]
- Area of quadratic Julia sets [Buff, Cheritat]

Motivation (\mathbb{R}^2 , \mathbb{C}^2 Vector Fields)

Open problem: Understand global dynamics of vector fields

 \mathbb{R}^2 polynomial vector fields not completely understood:

Hilbert's 16th problem (limit cycles)
 Perturbing C vector fields a common strategy
 [Alvarez, Gasull, Prohens; Llibre, Schlomiuk]

Higher order systems:

 C vector fields used to understand C² and higher dimensional complex systems [Rousseau, Teyssier]

< 同 > < 三 > < 三 >

Motivation (\mathbb{R}^2 , \mathbb{C}^2 Vector Fields)

Open problem: Understand global dynamics of vector fields

 \mathbb{R}^2 polynomial vector fields not completely understood:

Hilbert's 16th problem (limit cycles)
 Perturbing C vector fields a common strategy
 [Alvarez, Gasull, Prohens; Llibre, Schlomiuk]

Higher order systems:

 C vector fields used to understand C² and higher dimensional complex systems [Rousseau, Teyssier]

伺 ト く ヨ ト く ヨ ト

Equilibrium Points of ξ_P - zeros of P

If ζ is a simple root of P with multiplier $\lambda = P'(\zeta)$ then ξ_P is holomorphically conjugate in a neighborhood of ζ to the linear vector field $\lambda z \frac{d}{dz}$.

If ζ is a multiple root of P of multiplicity m > 1, then ξ_P has m-1 attracting and m-1 repelling directions at ζ .

イロト イポト イラト イラト

Equilibrium Points of ξ_P - zeros of P

If ζ is a simple root of P with multiplier $\lambda = P'(\zeta)$ then ξ_P is holomorphically conjugate in a neighborhood of ζ to the linear vector field $\lambda z \frac{d}{dz}$.

If ζ is a multiple root of P of multiplicity m > 1, then ξ_P has m-1 attracting and m-1 repelling directions at ζ .

The Cubic Example $Z^3 \frac{d}{dz}$

Multiple equilibrium point at 0 of multiplicity m = 3

Two attracting directions: $\pm i\mathbb{R}$ Two repelling directions: $\pm \mathbb{R}$ Two attracting petalsTwo repelling petals

A **sepal** is the intersection of an attracting and repelling petal. In this example: **four sepal zones**.

The Cubic Example $Z^3 \frac{d}{dz}$

Multiple equilibrium point at 0 of multiplicity m = 3

Two attracting directions: $\pm i\mathbb{R}$ Two repelling directions: $\pm \mathbb{R}$ Two attracting petalsTwo repelling petals

A **sepal** is the intersection of an attracting and repelling petal. In this example: **four sepal zones**.

Trajectories at ∞

Can be shown that ∞ is a pole of order d-2 for ξ_P

- 2(d-1) trajectories γ_{ℓ} with asymptotic angles $\frac{2\pi\ell}{2(d-1)}$, $\ell \in \{0, 1, \dots, 2d-3\}$
- ℓ even, incoming to ∞
- ℓ odd, outgoing from ∞

Trajectories at ∞

Can be shown that ∞ is a pole of order d-2 for ξ_P

- 2(d-1) trajectories γ_{ℓ} with asymptotic angles $\frac{2\pi\ell}{2(d-1)}$, $\ell \in \{0, 1, \dots, 2d-3\}$
- ℓ even, incoming to ∞
- ℓ odd, outgoing from ∞

Separatrices

- Separatrices s_ℓ are maximal trajectories incoming to and outgoing from ∞
- labeled by 2(d 1) asymptotic angles
- *s*ℓ may be landing or homoclinic

伺 ト く ヨ ト く ヨ ト

Separatrices

- Separatrices s_ℓ are maximal trajectories incoming to and outgoing from ∞
- labeled by 2(d 1) asymptotic angles
- *s*ℓ may be landing or homoclinic

Image: A transformed and A

Separatrices

- Separatrices s_ℓ are maximal trajectories incoming to and outgoing from ∞
- labeled by 2(d 1) asymptotic angles
- *s*ℓ may be landing or homoclinic

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

- ζ_1 simple equilibrium pt.
- $P'(\zeta_1) = 10i \Rightarrow \zeta_1$ center

•
$$P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim 10\mathrm{i}z \frac{\mathrm{d}}{\mathrm{d}z}, \ z \in V_{\zeta_1}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

- ζ_1 simple equilibrium pt.
- $P'(\zeta_1) = 10i \Rightarrow \zeta_1$ center • $P(z) \frac{d}{dz} \sim 10iz \frac{d}{dz}, z \in V_{\zeta_1}$

伺 ト く ヨ ト く ヨ ト

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

- ζ_1 simple equilibrium pt.
- $P'(\zeta_1) = 10i \Rightarrow \zeta_1$ center
- $P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim 10\mathrm{i}z \frac{\mathrm{d}}{\mathrm{d}z}, \ z \in V_{\zeta_1}$

伺 ト く ヨ ト く ヨ ト

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

• ζ_1 simple equilibrium pt.

•
$$P'(\zeta_1) = 10i \Rightarrow \zeta_1$$
 center

•
$$P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim 10\mathrm{i}z \frac{\mathrm{d}}{\mathrm{d}z}$$
, $z \in V_{\zeta_1}$

🗇 🕨 🗶 🗄 🕨 🖉

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

• ζ_2 simple equilibrium pt.

•
$$P'(\zeta_2) = -9.6 + 2.8i \Rightarrow \zeta_2$$

sink

•
$$P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim (-9.6 + 2.8\mathrm{i}) z \frac{\mathrm{d}}{\mathrm{d}z},$$

 $z \in V_{\zeta_2}$

- 4 回 🕨 - 4 三 🕨 - 4 三 🕨

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

• ζ_2 simple equilibrium pt.

•
$$P'(\zeta_2) = -9.6 + 2.8i \Rightarrow \zeta_2$$

sink

•
$$P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim (-9.6 + 2.8\mathrm{i}) z \frac{\mathrm{d}}{\mathrm{d}z},$$

 $z \in V_{\zeta_2}$

□→ < E > < E</p>

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

• ζ_2 simple equilibrium pt.

•
$$P'(\zeta_2) = -9.6 + 2.8i \Rightarrow \zeta_2$$

sink

•
$$P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim (-9.6 + 2.8\mathrm{i}) z \frac{\mathrm{d}}{\mathrm{d}z},$$

 $z \in V_{\zeta_2}$

□→ < E > < E</p>

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

• ζ_2 simple equilibrium pt.

•
$$P'(\zeta_2) = -9.6 + 2.8i \Rightarrow \zeta_2$$

sink

•
$$P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim (-9.6 + 2.8\mathrm{i}) z \frac{\mathrm{d}}{\mathrm{d}z}$$
,
 $z \in V_{\zeta_2}$

□→ < E > < E</p>

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

• ζ_3 double equilibrium pt.

•
$$\lambda = \operatorname{Res}(1/P, \zeta_3) =$$

.096 + .128i

$$P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim \\ \frac{1}{(1/z^2 + 1/(z(.096 + \mathrm{i}.128)))} \frac{\mathrm{d}}{\mathrm{d}z}, \\ z \in V_{\zeta_3}$$

★ (部) ▶ ★ 注 ▶ ★ 注 ▶

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

- ζ_3 double equilibrium pt.
- $\lambda = \operatorname{Res}(1/P, \zeta_3) =$.096 + .128i
- $P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim \frac{1}{(1/z^2 + 1/(z(.096 + \mathrm{i}.128)))} \frac{\mathrm{d}}{\mathrm{d}z}, z \in V_{\zeta_3}$

伺 と く ヨ と く ヨ と

3

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

• ζ_3 double equilibrium pt.

•
$$\lambda = \text{Res}(1/P, \zeta_3) =$$

.096 + .128i

$$\frac{P(z)\frac{\mathrm{d}}{\mathrm{d}z} \sim}{\frac{1}{(1/z^2+1/(z(.096+\mathrm{i}.128)))}\frac{\mathrm{d}}{\mathrm{d}z}},$$
$$z \in V_{\zeta_3}$$

$$P(z) = (z - \zeta_1)(z - \zeta_2)(z - \zeta_3)^2$$

• ζ_3 double equilibrium pt.

•
$$\lambda = \text{Res}(1/P, \zeta_3) =$$

.096 + .128i

•
$$P(z) \frac{\mathrm{d}}{\mathrm{d}z} \sim \frac{1}{(1/z^2+1/(z(.096+\mathrm{i.128})))} \frac{\mathrm{d}}{\mathrm{d}z},$$

 $z \in V_{\zeta_3}$

 ∞ pole of order 2
 There are 2(d - 1) = 6 trajectories meeting at infinity

伺 ト く ヨ ト く ヨ ト

• ∞ pole of order 2

 There are 2(d − 1) = 6 trajectories meeting at infinity

伺 ト く ヨ ト く ヨ ト

- ∞ pole of order 2
- There are 2(d 1) = 6 trajectories meeting at infinity

Work So Far

C-vector fields: Partial results exist

- Local Dynamics [Jenkins, Strebel, Sverdlove, Brickman and Thomas, Gasull, Garijo, Jarque, Needham, Hájek,...]
- Global Topology [Neumann, Federov, Andronov]
- Bifurcations of rational vector fields under rotations [Muciño-Raymundo]

Douady, Estrada, Sentenac [DES]: classified structurally stable $\mathbb{C}\text{-polynomial}$ vector fields

The Classification Problem

"What are the objects of a given type, up to equivalence?"

 $(3, 1+i, 3i) \in \mathbb{R}^1_+ \times \mathbb{H}^2_+$

Combinatorial Invariant

Analytic Invariants

Accesses to ∞

2d − 2 accesses to ∞
An end e_ℓ is infinity with access between γ_{ℓ−1} and γ_ℓ

Zones

Three types of connected components of $\mathbb{C} \setminus (\{seps\} \cup \{eq \ pts\})$.

 $\alpha\omega\text{-zones}$

•
$$\zeta_{\alpha} \neq \zeta_{\omega}$$

- landing and homoclinic separatrices
- even and odd ends

< 同 > < 三 > < 三 >

Zones

Three types of connected components of $\mathbb{C} \setminus (\{seps\} \cup \{eq \ pts\})$.

Sepal zones

•
$$\zeta_{\alpha} = \zeta_{\omega}$$

- landing and homoclinic separatrices
- all even or all odd ends

Zones

Three types of connected components of $\mathbb{C} \setminus (\{seps\} \cup \{eq \ pts\})$.

Center zones

- ${\scriptstyle \bullet}$ center contained in Z
- homoclinic separatrices
- all even or all odd ends
In any simply connected domain avoiding zeros of P,

$$\phi(z)=\int_{z_0}^z\frac{dw}{P(w)}.$$

Note that

$$\phi_*(\xi_P) = \phi'(z) P(z) \frac{\mathrm{d}}{\mathrm{d}z} = \frac{\mathrm{d}}{\mathrm{d}z}.$$

The coordinates $w = \phi(z)$ are called **rectifying coordinates**.

ゆ と く ヨ と く ヨ と

Rectified $\alpha\omega$ -zones are horizontal strips.

Rectified sepal zones are upper or lower half planes.

Rectified center-zones are half-infinite cylinders.

Transversals

Closed geodesics in $\hat{\mathbb{C}} \setminus \{\text{equilibrium pts}\}\ \text{for}\ \frac{|dz|}{|P(z)|}\ \text{through}\ \infty$:

There are h homoclinic separatrices

Transversals

Closed geodesics in $\hat{\mathbb{C}} \setminus \{\text{equilibrium pts}\}\ \text{for}\ \frac{|dz|}{|P(z)|}\ \text{through}\ \infty$:

There are *s* chosen transversals in $\mathbb{C} \setminus (\{seps\} \cup \{eq \ pts\})$

Transversals

Closed geodesics in $\hat{\mathbb{C}} \setminus \{\text{equilibrium pts}\}$ for $\frac{|dz|}{|P(z)|}$ through ∞ :

There are s chosen transversals in $\mathbb{C} \setminus (\{seps\} \cup \{eq \ pts\})$

伺 ト く ヨ ト く ヨ ト

Analytic Invariants

Analytic invariants: (s + h)-tuple in $\mathbb{H}^s \times \mathbb{R}^h_+$:

Analytic Invariants

Analytic invariants: (s + h)-tuple in $\mathbb{H}^{s} \times \mathbb{R}^{h}_{+}$:

To each homoclinic separatrix is assigned $\int_{s_{k,i}} \frac{dz}{P(z)} > 0$

Analytic Invariants

Analytic invariants: (s + h)-tuple in $\mathbb{H}^{s} \times \mathbb{R}^{h}_{+}$:

To each homoclinic separatrix is assigned $\int_{s_{k,j}} \frac{dz}{P(z)} > 0$

To each distinguished transversal is assigned $\int_T \frac{dz}{P(z)} \in \mathbb{H}$

Intro Classification Parameter Space Bifurcations

Invariants for Polynomial Vector Fields

 $(3, 1+i, 3i) \in \mathbb{R}^1_+ \times \mathbb{H}^2_+$

Combinatorial Invariant

Analytic Invariants

Kealey Dias The Dynamics of Complex Polynomial Vector Fields in $\mathbb C$

Classification Problem

Proposition

The combinatorial invariants C and analytic invariants A are complete set of invariants. That is, the map

$$\Phi: \Xi_d \to \bigcup (\mathcal{C}, \mathcal{A})$$

is injective.

個 と く ヨ と く ヨ と

Classification Problem

Proposition

The combinatorial invariants C and analytic invariants A are complete set of invariants. That is, the map

$$\Phi: \Xi_d \to \bigcup (\mathcal{C}, \mathcal{A})$$

is injective.

Theorem (Branner, D.)

Given admissible combinatorial and analytic data, there exists a unique $\xi_P \in \Xi_d$ having the given invariants.

< 同 > < 三 > < 三 >

Parameter Space

The space of polynomial vector fields of degree d is

 $\Xi_d = \{\xi_P\} \simeq \mathbb{C}^{d-1}$

同下 イヨト イヨト

Parameter Space

The space of polynomial vector fields of degree d is

 $\Xi_d = \{\xi_P\} \simeq \mathbb{C}^{d-1}$

Decompose Ξ_d into disjoint loci C such that all $\xi_P \in C$ have the same combinatorial invariant.

伺 ト く ヨ ト く ヨ ト

Parameter Space

The space of polynomial vector fields of degree d is

 $\Xi_d = \{\xi_P\} \simeq \mathbb{C}^{d-1}$

Decompose Ξ_d into disjoint loci C such that all $\xi_P \in C$ have the same combinatorial invariant.

Two goals:

- Examine structure of each locus
- Determine how the loci fit together (bifurcations)

Properties of C

Theorem (D.)

Each C is homeomorphic to $\mathbb{H}^s \times \mathbb{R}^h_+$, and C is naturally foliated by \mathbb{C} -analytic manifolds of complex dimension s.

Properties of \mathcal{C}

Corollary

Each C is connected.

《曰》 《聞》 《臣》 《臣》

æ

Properties of C

Corollary

Each C is connected.

Proposition (D.)

Each C is an \mathbb{R}_+ cone with $\underline{0} \in \mathbb{C}^{d-1}$ $\left(z^d \frac{\mathrm{d}}{\mathrm{d}z} \in \Xi_d\right)$ as base point.

$$P(z) = \prod_{j=1}^d (z-\zeta_j)$$
 and $P_c(z) = \prod_{j=1}^d (z-c\zeta_j)$ in same class.

<ロ> (四) (四) (三) (三) (三) (三)

Properties of C

Corollary

Each C is connected.

Proposition (D.)

Each C is an \mathbb{R}_+ cone with $\underline{0} \in \mathbb{C}^{d-1}$ $\left(z^d \frac{\mathrm{d}}{\mathrm{d}z} \in \Xi_d\right)$ as base point.

$$P(z) = \prod_{j=1}^d (z-\zeta_j)$$
 and $P_c(z) = \prod_{j=1}^d (z-c\zeta_j)$ in same class.

Remark

All combinatorics achievable by bifurcations of $z^{d} \frac{d}{dz}$.

イロト イポト イヨト イヨト 二日

Enumeration Problem

Goal: Find closed-form expression for $c_d := \sharp C$ in Ξ_d

Douady, **Estrada**, and **Sentenac** proved this is the Catalan number C_{d-1} for the **structurally stable** vector fields in Ξ_d .

Theorem (D.)

$$c_d = [z^d]G(z) = \sum_{n=0}^{d-1} \frac{(2-2d)_n(1-d)_n 2^n}{(2)_n n!}$$
$$= {}_2F_1 \left([2-2d, 1-d]; [2]; 2 \right)$$

where $(x)_n = (x)(x+1)\cdots(x+n-1)$ is the Pochhammer symbol

< 回 > < 三 > < 三 >

Enumeration Problem: Idea of Proof

A bracketing problem: count configurations of pairings of square $[\cdots]$ and round (\cdots) parentheses in the string $0 \ 1 \ \dots 2d - 3$.

(0 [1 [2 3] 4] 5)

Combinatorial Invariant

Bracketing

Bifurcations

"What are the qualitative changes when parameters vary?"

The Main Problem

Problem

Given a point $\underline{a} \in \Xi_d$, determine all possible combinatorics in a neighborhood $V_{\underline{a}}$.

□ > < E > < E >

3

The Main Problem

Problem

Given a point $\underline{a} \in \Xi_d$, determine all possible combinatorics in a neighborhood $V_{\underline{a}}$.

A class is either structurally stable or in the bifurcation locus.

ゆ と く ヨ と く ヨ と

Structurally Stable Vector Fields

Theorem (Tan, D.)

For fixed multiplicity, if s_{ℓ} lands at $\zeta_{\underline{a}}$ at \underline{a} , then s_{ℓ} lands at $\zeta_{\underline{a}'}$ for $\underline{a}' \in V_{\underline{a}}$.

In particular, sinks and sources cannot lose a separatrix under small perturbation.

伺 ト く ヨ ト く ヨ ト

Structurally Stable Vector Fields

Theorem (Tan, D.)

For fixed multiplicity, if s_{ℓ} lands at $\zeta_{\underline{a}}$ at \underline{a} , then s_{ℓ} lands at $\zeta_{\underline{a}'}$ for $\underline{a}' \in V_{\underline{a}}$.

In particular, sinks and sources cannot lose a separatrix under small perturbation.

Vector fields with no multiple equilibrium points and no homoclinc separatrices are **structurally stable**.

Structurally Stable Vector Fields

Theorem (Tan, D.)

For fixed multiplicity, if s_{ℓ} lands at $\zeta_{\underline{a}}$ at \underline{a} , then s_{ℓ} lands at $\zeta_{\underline{a}'}$ for $\underline{a}' \in V_{\underline{a}}$.

In particular, sinks and sources cannot lose a separatrix under small perturbation.

Vector fields with no multiple equilibrium points and no homoclinc separatrices are **structurally stable**.

Vector fields having a homoclinic separatrix or multiple point belong to the **bifurcation locus**.

・ 同 ト ・ ヨ ト ・ ヨ ト

個 と く き と く き と

3

個 と く き と く き と

伺 ト く ヨ ト く ヨ ト

個 と く ヨ と く ヨ と

3

→ □ → → □ →

▲圖 → ▲ 臣 → ▲ 臣 →

3

個 と く き と く き と

æ
Bifurcations for fixed multiplicities

Theorem (D.)

Each bifurcation where the multiplicities are preserved is realizable by compositions of bifurcations of types I and II.

Bifurcations for fixed multiplicities

Theorem (D.)

Each bifurcation where the multiplicities are preserved is realizable by compositions of bifurcations of types I and II.

Proof idea.

Show that for every $C \cap \tilde{V}_{\underline{a}} \neq \emptyset$, there exists a sequence of classes $C_i, i = 1, \dots, k-1$ satisfying $C_i \cap \tilde{V}_{\underline{a}} \neq \emptyset$, such that

$$\partial \mathcal{C} \supset \mathcal{C}_1, \ \partial \mathcal{C}_1 \supset \mathcal{C}_2, \dots, \partial \mathcal{C}_{k-1} \supset \mathcal{C}_{\underline{a}},$$

and C_i to C_{i-1} is a bifurcation of one of the two types.

Bifurcations for fixed multiplicities

Theorem (D.)

Each bifurcation where the multiplicities are preserved is realizable by compositions of bifurcations of types I and II.

Proof idea.

Show that for every $C \cap \tilde{V}_{\underline{a}} \neq \emptyset$, there exists a sequence of classes $C_i, i = 1, \dots, k-1$ satisfying $C_i \cap \tilde{V}_{\underline{a}} \neq \emptyset$, such that

$$\partial \mathcal{C} \supset \mathcal{C}_1, \ \partial \mathcal{C}_1 \supset \mathcal{C}_2, \dots, \partial \mathcal{C}_{k-1} \supset \mathcal{C}_{\underline{a}},$$

and C_i to C_{i-1} is a bifurcation of one of the two types.

Remark

Proof relies on $C_1 \cap \partial C_2 \neq \emptyset \Rightarrow C_1 \subset \partial C_2$ for $C \cap \tilde{V}_{\underline{a}} \neq \emptyset$.

▲□ → ▲ □ → ▲ □ → □

Combinatorics in $V_{\underline{a}}$ for $\xi_{\underline{a}}$ with multiple points

Combinatorics in $V_{\underline{a}}$ for $\xi_{\underline{a}}$ with multiple points

Combinatorics in $V_{\underline{a}}$ for $\xi_{\underline{a}}$ with multiple points

 $V_{\underline{a}} \cap \partial \mathcal{C} \neq \emptyset \Leftrightarrow \Im(\alpha_1) > \Im(\alpha_2)$

∃ → < ∃ →</p>

Combinatorics in $V_{\underline{a}}$ for $\xi_{\underline{a}}$ with multiple points

No Cell-decomposition

$$V_{\underline{a}} \cap \partial \mathcal{C} \neq \emptyset \Leftrightarrow \Im(\alpha_1) = \Im(\alpha_2)$$

No Cell-decomposition

No Cell-decomposition

Kealey Dias The Dynamics of Complex Polynomial Vector Fields in $\mathbb C$

Refined problem

Problem

Given $\underline{a} \in C_{\underline{a}}$ and C such that $\underline{a} \in \partial C$, prove that there exists a sequence of combinatorial classes C_1, \ldots, C_{k-1} and respective subsets C_1, \ldots, C_{k-1} of these such that

 $\partial C \supset C_1, \ \partial C_i \supset C_{i+1}, \ \partial C_{k-1} \ni \underline{a}, \quad i = 1, \dots, k-1$

where going from C_i to C_{i-1} is one of a collection of simple bifurcations to be determined.

First try to understand bifurcations of atomic classes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Refined problem

Problem

Given $\underline{a} \in C_{\underline{a}}$ and C such that $\underline{a} \in \partial C$, prove that there exists a sequence of combinatorial classes C_1, \ldots, C_{k-1} and respective subsets C_1, \ldots, C_{k-1} of these such that

 $\partial C \supset C_1, \ \partial C_i \supset C_{i+1}, \ \partial C_{k-1} \ni \underline{a}, \quad i = 1, \dots, k-1$

where going from C_i to C_{i-1} is one of a collection of simple bifurcations to be determined.

First try to understand bifurcations of atomic classes.

マロン イヨン イヨン ニヨ

Conjecture

 $C_0 \cap \partial C \neq \emptyset$ for all C s.t. $[\ell]$ are even or odd equivalence classes.

- Exactly one multiple point $\zeta_{[m]}$
- All other equilibrium points ζ_[ℓ] are sinks or sources, and B(ζ_[ℓ]) ∩ B(ζ_[m]) ≠ Ø.

Conjecture

 $C_0 \cap \partial C \neq \emptyset$ for all C s.t. $[\ell]$ are even or odd equivalence classes.

- Exactly one multiple point $\zeta_{[m]}$
- All other equilibrium points $\zeta_{[\ell]}$ are sinks or sources, and $\mathcal{B}(\zeta_{[\ell]}) \cap \mathcal{B}(\zeta_{[m]}) \neq \emptyset.$

Conjecture

 $C_0 \cap \partial C \neq \emptyset$ for all C s.t. $[\ell]$ are even or odd equivalence classes.

- Exactly one multiple point $\zeta_{[m]}$
- All other equilibrium points $\zeta_{[\ell]}$ are sinks or sources, and $\mathcal{B}(\zeta_{[\ell]}) \cap \mathcal{B}(\zeta_{[m]}) \neq \emptyset$.

Þ

Conjecture

 $C_0 \cap \partial C \neq \emptyset$ for all C s.t. $[\ell]$ are even or odd equivalence classes.

- Exactly one multiple point $\zeta_{[m]}$
- All other equilibrium points ζ_[ℓ] are sinks or sources, and B(ζ_[ℓ]) ∩ B(ζ_[m]) ≠ Ø.

Þ

Conclusions

- Still much to be understood. Achieved a significantly better understanding of complex polynomial vector fields in the plane
- Methods used could be extended to include more general families of complex vector fields

Conclusions

- Still much to be understood. Achieved a significantly better understanding of complex polynomial vector fields in the plane
- Methods used could be extended to include more general families of complex vector fields

Conclusions

- Still much to be understood. Achieved a significantly better understanding of complex polynomial vector fields in the plane
- Methods used could be extended to include more general families of complex vector fields

> < = > < = >

Thank You!

Kealey Dias The Dynamics of Complex Polynomial Vector Fields in $\mathbb C$