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Abstract

This is a survey of recent progress on Beauville surfaces, concentrating almost
entirely on the group-theoretic and combinatorial problems associated with them. A
Beauville surface S is a complex surface formed from two orientably regular hyper-
maps of genus at least 2 (viewed as compact Riemann surfaces and hence as algebraic
curves), with the same automorphism group G acting freely on their product. The
following questions are discussed: Which groups G (called Beauville groups) have
this property? What can be said about the automorphism group and the fundamen-
tal group of S? Beauville surfaces are defined (as algebraic varieties) over the field Q
of algebraic numbers, so how does the absolute Galois group GalQ/Q act on them?

MSC classification: primary 20B25, secondary 05C10, 11G32, 14J25, 14J50, 51M20.

1 Introduction

The objects now known as Beauville surfaces1 were introduced by the algebraic geometer
Arnaud Beauville in [5, p. 159]. A Beauville surface S is a complex surface of general
type [5, 33], constructed from a pair of orientably regular hypermaps (regular dessins, in
Grothendieck’s terminology [34]) of genus at least 2, with the same automorphism group G.
The basic idea is that S can be designed to have certain properties by appropriate choices
of G and its actions on the hypermaps. Since 2000, the geometric properties of Beauville
surfaces, such as their rigidity (discussed in Section 9) have been intensively studied by
Bauer, Catanese, Grunewald and others (see [3, 4, 9] for instance). More recently, group-
theorists such as Guralnick, Lubotzky, Magaard, Malle and others have been interested

1Here, as is customary in algebraic geometry, a ‘surface’ is an algebraic variety which is 2-dimensional
over the field of coefficients; in this case, that field is C so these surfaces have dimension 4 as real manifolds.
Rather confusingly, a complex algebraic curve, 1-dimensional over C, can be regarded as a Riemann surface,
where ‘surface’ now indicates 2-dimensionality over R!
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in determining which groups G (known as Beauville groups) can be used in this con-
struction. The rigidity properties of Beauville surfaces have been used by the author [39]
to determine the structure of the automorphism group of a Beauville surface, and by
González-Diez, Torres-Teigell and the author [31, 30] to extend an example of Serre [55],
constructing arbitrarily large orbits of the absolute Galois group GalQ/Q consisting of
mutually non-homeomorphic algebraic varieties. This survey will describe some of these
discoveries, and in addition, will suggest that there are interesting combinatorial questions
to be investigated, including connections between Beauville surfaces and polytopes.

The paper is organised as follows. Section 2 explains how Bely̆ı’s Theorem gives a link
between curves and hypermaps, used in Section 3 to give two equivalent definitions of a
Beauville surface. These are translated into purely group-theoretic terms in Section 5, after
a brief discussion of possible links with polytopes in Section 4. Various classes of Beauville
groups are described in Sections 6–8. The fundamental groups and automorphism groups
of Beauville surfaces are described in Sections 9 and 10, and the absolute Galois group and
its action on Beauville surfaces are discussed in Sections 10 and 11.

Acknowledgement The author is grateful to Gabino González-Diez and Bernhard Köck
for some very helpful comments on an earlier draft of this paper, and to the organisers
of the Workshop on Symmetry in Graphs, Maps and Polytopes at the Fields Institute,
Toronto, 24–27 October 2011, for the opportunity to give a talk on which it is based.

2 Curves and hypermaps

Since Beauville surfaces are constructed from pairs of hypermaps on algebraic curves, this
section will briefly summarise the connection between curves and hypermaps.

Compact Riemann surfaces are the same as algebraic curves (smooth, projective, de-
fined over C). This fact, first discovered by Riemann, is now expressed as an equivalence
of categories: see [26, 53] for details. It is particularly interesting to know which compact
Riemann surfaces are defined (as algebraic varieties) over various subfields of C. Bely̆ı’s
Theorem answers this question for the field Q of algebraic numbers, by showing that the
following conditions on a compact Riemann surface (or algebraic curve) C are equivalent:

(a) C is defined over Q;

(b) there is a meromorphic function β : C → P1(C) branched over at most three points;

(c) C is uniformised by a subgroup K of finite index in a triangle group ∆;

(d) the complex structure on C is obtained, in a canonical way, from a hypermap H on
C.

A curve with these properties is called a Bely̆ı curve. In fact, Bely̆ı [6] gave an ingenious
proof that (a) implies (b), and a two-line argument, referring to Weil’s Rigidity Theo-
rem [64], for the converse; full details (which are rather intricate) were later provided by
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Wolfart [67] and Köck [47]. Conditions (c) and (d) are straightforward reinterpretations
of (b), due to Grothendieck, Wolfart and others (see [26, 42, 68], for instance). Bely̆ı’s
Theorem has been extended to complex surfaces by González-Diez [28]. He and Girondo
have written a very readable account of Bely̆ı’s Theorem and related matters in [26].

In (b), P1(C) is the complex projective line (or Riemann sphere) Ĉ = C ∪ {∞}; the
three ramification points can be assumed, by applying a Möbius transformation, to be 0, 1
and ∞; a function β with these properties is called a Bely̆ı function.

In (c), uniformisation means that C ∼= U/K where U is one of the three simply
connected Riemann surfaces, namely P1(C), C or the hyperbolic plane H, and K is a
subgroup of a triangle group ∆ acting as a group of automorphisms of U . The inclusion
K → ∆ induces a covering γ : U/K → U/∆ corresponding to β:

U/K ∼= C

γ ↓ ↓ β

U/∆ ∼= P1(C)

The degree (number of sheets) of this covering is equal to the index of K in ∆. We will be
mainly interested in the case where C has genus at least 2, so that U = H.

In (d), a hypermap H on a curve C can be represented in several ways. Perhaps
the most natural way is as a tripartite triangular map T . This consists of a tripartite
graph embedded in C with triangular faces; the three colour classes of vertices represent
the hypervertices, hyperedges and hyperfaces of H, and the edges correspond to incidences
between them. This map can be constructed as the inverse image under β of the trivial
triangulation of P1(C); this has vertices at 0, 1 and ∞, joined by three edges along R, and
two triangular faces (the upper and lower half planes), so that its edges and faces lift to C
without branching, which occurs only at the vertices. Thus T has triangular faces, and its
vertices can be 3-coloured as they lie over 0, 1 or ∞.

A more economical and frequently-used representation of H is as a bipartite map B
on C, called the Walsh map of H [63]. This can be formed from T by deleting the vertices
over∞ and their incident edges; topologically, no information is lost since one can retrieve
T (up to homeomorphisms fixing the graph) by stellating B, placing a vertex in each face
of B, joined by mutually disjoint edges to the incident vertices. Equivalently, B is the
inverse image under β of the trivial bipartite map on P1(C); this consists of two vertices
at 0 and 1, joined by an edge along the unit interval, and one face. Both T and B can also
be formed as the quotients by K of ∆-invariant maps of the same type on the universal
covering space U of C (see [43]).

The most symmetric Bely̆ı curves C (and the only ones we will consider here) are the
quasiplatonic curves, those which have a Bely̆ı function β which is a regular covering, that
is, there is a group G of automorphisms of C inducing the covering β : C → C/G ∼= P1(C).
This is equivalent to C being uniformised by a torsion-free normal subgroup K of finite
index in a triangle group ∆, with ∆/K ∼= G; then K is a surface group, isomorphic to
the fundamental group π1C of C. This is also equivalent to the hypermap H in (d) being
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(orientably) regular, with orientation-preserving automorphism group Aut+H ∼= G; this
means that G is a group of orientation- and colour-preserving automorphisms of T , with
two orbits (necessarily regular) on the faces of T , or equivalently one regular orbit on the
edges of B.

Example 1. Let C be the Fermat curve

Fn = {[x, y, z] ∈ P2(C) | xn + yn + zn = 0}

of degree n. This is a compact Riemann surface, visibly defined over Q, and hence over Q.
The meromorphic function

β : [x, y, z] 7→ −
(x
z

)n
is an n2-sheeted covering C → P1(C), branched where xyz = 0, that is, over 0, 1 and ∞,
each of which lifts to n points on C. The triangulation T therefore has 3n vertices, 3n2

edges and 2n2 faces, so C has Euler characteristic n(3−n) and hence genus (n−1)(n−2)/2;
the underlying graph of T is, in fact, the complete tripartite graph Kn,n,n, and this is a
minimum genus embedding of that graph. Similarly, B is an embedding of the complete
bipartite graph Kn,n: see Fig. 1 for the case n = 3, with opposite sides of the outer hexagon
identified to form a torus.

Figure 1: K3,3 embedded in the Fermat curve F3

As a Riemann surface, C is uniformised by the commutator subgroup K = ∆′ of the
triangle group ∆ = ∆(n, n, n), acting on P1(C), C or H as n < 3, n = 3 or n > 3. This is
a normal subgroup of ∆, with ∆/K ∼= G := Zn ⊕ Zn acting as a group of automorphisms

(j, k) : [x, y, z] 7→ [ζjnx, ζ
k
ny, z] (j, k ∈ Zn)

of C, where ζn = exp(2πi/n), and inducing the regular covering β. Thus C is a quasiplatonic
curve, and H is an orientably regular hypermap with Aut+H ∼= G. (In fact, if n > 3 then
the full automorphism group of C is a semidirect product of G by S3, permuting the
coordinates x, y and z; this corresponds to K being normal in the maximal triangle group
∆(2, 3, 2n), which contains ∆(n, n, n) as a normal subgroup with quotient group S3.)
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3 Definition of a Beauville surface

We say that S is a Beauville surface (of unmixed type) if

1. S = (C1×C2)/G where each Ci is a complex projective algebraic curve of genus gi > 1,
and G is a finite group acting faithfully as a group of automorphisms of each Ci, so
that it acts freely (i.e. without fixed points) on C1 × C2;

2. for each i, Ci/G is isomorphic to P1(C), with the induced projection βi : Ci → P1(C)
branched over three points.

Here we will ignore the technically more difficult case of Beauville surfaces of mixed
type [4, §7], where half the elements of G transpose two isomorphic factors Ci. The product
C1×C2 is a complex manifold (in fact, an algebraic variety) of dimension 2, and hence so is
the quotient S since G acts freely on C1×C2. In combinatorial terms, the above conditions
can be restated as follows:

1. S = (C1 × C2)/G where each Ci is a quasiplatonic curve of genus gi > 1, carrying an
orientably regular hypermap Hi with Aut+Hi

∼= G;

2. the induced action of G on H1 ×H2 is fixed-point-free.

Thus a Beauville surface is formed from a pair of orientably regular hypermaps of hyperbolic
type, with the same automorphism group acting freely on their product.

4 Combinatorial structures

If S is a Beauville surface (C1 × C2)/G, then each curve Ci carries an orientably regular
hypermap (or regular dessin) Hi with Aut+Hi

∼= G. As explained in Section 2, these
hypermaps can be represented combinatorially in several ways, as triangulations Ti or
bipartite maps Bi, for instance. These combinatorial structures on the curves Ci induce
further combinatorial structures on C1 × C2, and hence, by means of the smooth covering
C1 × C2 → S = (C1 × C2)/G, on the Beauville surface S.

For example T1 × T2 can be regarded as a 4-dimensional CW-complex structure on
C1 × C2: each 2-cell is either a triangle (the product of a vertex on one curve and a face
on the other) or a square (the product of two edges), each 3-cell is a triangular prism (the
product of a triangular face and an edge), and each 4-cell is the product of two triangles (a
3,3 - duoprism). In addition, the 3-colourings of the vertices of the triangulations Ti induce
a 9-colouring of the vertices of T1 × T2. This structure, including its vertex-colouring, is
invariant under the natural action of G × G on C1 × C2. The free action of the diagonal
subgroup means that the quotient surface S inherits the structure of a 4-dimensional
CW-complex (T1 × T2)/G, with the number of k-cells divided by |G| for each dimension
k = 0, . . . , 4. This structure on S is preserved by the automorphisms of S, which are
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described in Section 10. Similarly, the bipartite maps Bi induce a CW-complex (B1×B2)/G
on S, with each k-cell a union of k-cells of (T1 × T2)/G.

Although Beauville surfaces have been studied quite extensively from the points of
view of algebraic geometry and group theory, this aspect of the theory seems not to have
been investigated so far. It should be noted that although the curves Ci carry regular
dessins, these maps need not be regular when viewed as 3-polytopes: they could be chiral,
with automorphism groups having two orbits on flags: this happens for the Beauville
surfaces in Example 3 when f < e (see Section 7 and [41]), and also for those based on
Ree groups and Suzuki groups in [22] (see Section 8). Moreover, although C1×C2 will have
many automorphisms, as a surface or a polytope, taking a quotient by G may destroy most,
and possibly all, of this symmetry: see Section 10, where automorphisms are discussed.

5 Beauville groups

We call a finite group G a Beauville group if there is a Beauville surface S = (C1 × C2)/G.
Here we translate that definition into purely group-theoretic terms.

A group G is a quotient of a triangle group

∆i = ∆(li,mi, ni) = 〈Ai, Bi, Ci | Ali
i = Bmi

i = Cni
i = AiBiCi = 1〉

if and only if it has a presentation

G = 〈ai, bi, ci | alii = bmi
i = cni

i = aibici = 1, . . . 〉, (1)

with each ai, bi, ci the image of Ai, Bi or Ci. The torsion elements of ∆i are the conjugates
of the powers of the generators Ai, Bi and Ci, so the kernel Ki of the natural epimorphism
∆i → G is torsion-free if and only if the generators ai, bi and ci have orders

|ai| = li, |bi| = mi, |ci| = ni. (2)

The triangle group ∆i acts on H if and only if

1

li
+

1

mi

+
1

ni

< 1, (3)

in which case there is an induced action of G on the Riemann surface H/Ki, which is
compact (and thus an algebraic curve Ci) if and only if G is finite. The elements of G with
fixed points in Ci are the conjugates of the powers of the generators ai, bi and ci, forming
a subset

Σi = Σi(G) =
⋃
g∈G

(〈ai〉 ∪ 〈bi〉 ∪ 〈ci〉)g

of G. Then G acts freely on the product C1×C2 of two such curves Ci (i = 1, 2) if and only
if no non-identity element of G has fixed points on both curves, that is,

Σ1 ∩ Σ2 = {1}. (4)
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Thus conditions (1), (2), (3) and (4) are necessary and sufficient for a finite group G to be a
Beauville group. When these conditions are satisfied, we call the pair of generating triples
(ai, bi, ci) a Beauville structure of type (l1,m1, n1; l2,m2, n2) on G. Such a structure on G
uniquely determines the curves Ci, and hence the Beauville surface S. This equivalence
between surfaces and structures means that one can study many aspects of Beauville
surfaces entirely within the theories of finite groups or of regular hypermaps.

6 Beauville’s example

The original examples of Beauville surfaces are constructed as follows:

Example 2. Let C1 = C2 be the Fermat curve Fn of degree n, described in Example 1.
There is a faithful action ρ1 : G→ AutFn of the group G = Zn ⊕ Zn on Fn, given by

(j, k) : [x, y, z] 7→ [ζjnx, ζ
k
ny, z]

for all j, k ∈ Zn. In this action of G, the elements with fixed points are the multiples
of the generating triple a1 = (1, 0) fixing points [0, y, z] ∈ Fn, b1 = (0, 1) fixing points
[x, 0, z] ∈ Fn, and c1 = (−1,−1) fixing points [x, y, 0] ∈ Fn. Thus

Σ1 = {(j, k) ∈ G | j = 0, k = 0 or j = k}.

We need a second action of G on this curve. If α is an automorphism of G then (composing
from right to left) ρ2 := ρ1 ◦ α−1 : G → AutFn is a faithful action of G on Fn with
Σ2 = α(Σ1). If we define α : (j, k) 7→ (4j + 2k, j + k), then simple number theory shows
that this is an automorphism of G with Σ1 ∩Σ2 = {(0, 0)} if and only if n is coprime to 6.

In fact, Beauville set the case n = 5 as an exercise in [5], and then invited the reader
to generalise this construction. In 2000 Catanese [9] showed that these are the only abelian
examples:

Theorem 6.1 (Catanese) The only abelian Beauville groups are the groups G = Zn ⊕ Zn

where n > 1 and n is coprime to 6.

The proof depends on simple applications of the structure theorems for finite abelian
groups. This result raises the question of how many Beauville surfaces are associated with
the group G = Zn⊕Zn. Bauer, Catanese and Grunewald gave asymptotic estimates in [3],
and Garion and Penegini gave upper and lower bounds in [23]. The following argument,
due to González-Diez, Torres-Teigell and the author [29], gives an exact formula.

Without loss of generality, one can assume that the first generating triple (a1, b1, c1)
is as above. The second triple differs from it by an automorphism of G, i.e. a matrix
A ∈ GL2(Zn). It is shown in both [23] and [29] that the set Fn of matrices A inducing
automorphisms of G satisfying Σ1 ∩ Σ2 = {(0, 0)} has cardinality

|Fn| = n4
∏
p|n

(
1− 1

p

)(
1− 2

p

)(
1− 3

p

)(
1− 4

p

)
, (5)
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where p ranges over the distinct primes dividing n. (Notice that this expression is 0 unless
n is coprime to 6.) One can prove this by using basic linear algebra in the case where n
is prime, then lifting to powers of that prime by Hensel’s Lemma, and finally using the
Chinese Remainder Theorem for general integers n.

Now two matrices A,A′ ∈ GL2(Zn) give isomorphic Beauville surfaces if and only if
A′ = PA±1Q where P and Q are elements of a certain subgroup of GL2(Zn) isomorphic
to S3, permuting the standard triple {a1, b1, c1}. We thus have an action on Fn by the
wreath product W = S3 o S2, a semidirect product of S3 × S3 by S2: here the two direct
factors S3 correspond to the matrices P and Q, permuting the three vertex colours on each
curve Ci, and the complement S2 corresponds to inverting A and transposing the curves.
The number of non-isomorphic Beauville surfaces obtained is equal to the number of orbits
of W on Fn, and this can be found by applying the Cauchy-Frobenius Counting Lemma
(otherwise known as Burnside’s Lemma). This states that the number of orbits of a finite
group on a finite set is equal to the average number of points fixed by the elements of the
group. In our case, inspection shows that most of the elements of W act without fixed
points on Fn, giving the following result (see [29] for details):

Theorem 6.2 Let n = pe11 · . . . · pess be a natural number coprime to 6, where p1, . . . , pk
are distinct primes. Then the number of isomorphism classes of Beauville surfaces with
Beauville group Zn ⊕ Zn is

Θ(n) =
1

72

(
Θ1(n) + 4

s∏
i=1

Θ2(p
ei
i ) + 6

s∏
i=1

Θ3(p
ei
i ) + 12

s∏
i=1

Θ4(p
ei
i )

)
, (6)

where Θ1(n) = |Fn|,

Θ2(p
e) :=

 p2e
(

1− 1
p

)(
1− 4

p

)
if p ≡ 1 mod (3),

p2e
(

1− 1
p

)(
1− 2

p

)
if p ≡ 2 mod (3),

Θ3(p
e) := p2e(1− 3/p)(1− 5/p),

and

Θ4(p
e) :=

{
2 if p ≡ 1 mod (3),
0 if p ≡ 2 mod (3).

Here 72 is the order of W , while Θ1(n) is the number |Fn| of fixed points of its identity
element, given by (5), and the terms in (6) involving Θ2, Θ3 and Θ4 are the contributions
to the average from conjugacy classes in W containing four, six and twelve elements of
orders 3, 2 and 6.

For large n the sum in (6) is dominated by Θ1(n), so we have

Θ(n) ∼ 1

72
Θ1(n) =

n4

72

∏
p|n

(
1− 1

p

)(
1− 2

p

)(
1− 3

p

)(
1− 4

p

)
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as n→∞ with n coprime to 6. (Note that, despite appearances, Θ(n)/n4 is not bounded
away from 0: if we take n to be the product of the first k primes p > 3, then∏

p|n

(
1− 1

p

)
→ 0

as k →∞ (see [40, Exercise 9.3]), and hence Θ(n)/n4 → 0 for such integers n.)

7 Beauville p-groups

It is natural to try to extend the classification of Beauville groups from abelian groups
to wider classes, such as nilpotent groups. A finite group is nilpotent if and only if it
is a direct product of its Sylow subgroups, and a direct product of Beauville groups of
mutually coprime orders is clearly a Beauville group, so the main objective in such an
extension is to study Beauville structures on p-groups for the various primes p. Barker,
Boston, Peyerimhoff and Vdovina [2] have obtained Beauville 2-groups as quotients of the
fundamental group of a certain simplicial complex, while Barker, Boston and Fairbairn [1]
have constructed many examples for all p. For instance, they show that in addition to the
abelian p-groups Cpe×Cpe with p ≥ 5, given by Example 2, there is at least one nonabelian
Beauville group of every prime-power order pk provided p ≥ 7 and k ≥ 3. (For primes
p < 7, the smallest nonabelian Beauville p-groups have orders 27, 35 and 54.)

Example 3. For each prime p ≥ 5, let

G = G(e, f) = 〈x, y | xpe = yp
e

= 1, yx = y1+pf 〉

where 1 ≤ f ≤ e. Thus G is a semidirect product of two cyclic groups 〈x〉 and 〈y〉 of
order pe, so G has order p2e; it is abelian if and only if f = e. The Frattini subgroup of
G is the normal subgroup Φ = 〈xp, yp〉, with G/Φ ∼= Cp × Cp. The Beauville structures of
type (p, p, p; p, p, p) on Cp × Cp constructed in Example 2 lift back to Beauville structures
of type (pe, pe, pe; pe, pe, pe) on G. These groups appeared in connection with the classifi-
cation of orientably regular embeddings of complete bipartite graphs in [38, 41], and their
connections with dessins were studied in [45].

This example deals with even powers of primes p ≥ 5. Barker, Boston and Fairbairn [1]
give a similar construction for odd powers.

Example 4. LetG be a 2-generator finite group of prime exponent p ≥ 5. As in Example 3,
any Beauville structure on the quotient group G/Φ ∼= Cp×Cp lifts to a Beauville structure
on G, this time of type (p, p, p; p, p, p). By Kostrikin’s solution [48] of the restricted Burn-
side problem for prime exponents, for each p there is a largest such 2-generator finite group
G, denoted by R(2, p), and all others are quotients of it. These groups R(2, p) are in fact
very large: for instance, Havas, Wall and Wamsley [36] have shown that |R(2, 5)| = 534,
while O’Brien and Vaughan-Lee [52] have shown that |R(2, 7)| = 720416. For a detailed
survey of the restricted Burnside problem, see [61].
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Barker, Boston and Fairbairn show in [1] that the proportion of 2-generator groups
of order p5 which are Beauville groups tends to 1 as p→∞, but that this is not the case
for groups of order p6. The question raised by Fuertes, González-Diez and Jaikin-Zapirain
in [21], namely whether, in any sense, most 2-generator p-groups are Beauville groups,
remains open.

8 Simple Beauville groups

It is easy to see that the alternating group A5 is not a Beauville group. For instance,
its non-identity elements have orders 2, 3 or 5. If l,m, n ∈ {2, 3} then the triangle group
∆(l,m, n) is solvable, whereas A5 is not, so any generating triple for A5 must contain an
element of order 5. Since the Sylow 5-subgroups of A5 are cyclic, any two elements of
order 5 are conjugate to powers of each other, so no two generating triples can satisfy the
Beauville condition (4).

In 2005, Bauer, Catanese and Grunewald [3] made the following conjecture:

Every non-abelian finite simple group except A5 is a Beauville group.

As evidence for this, they showed that An is a Beauville group for all sufficiently large
n, as are the groups PSL2(p) for all primes p > 5 (note that PSL2(5) ∼= A5) and the
Suzuki groups Sz(2e) for all odd primes e. Fuertes and González-Diez [19] showed that
An is a Beauville group for all n ≥ 6. In [22], Fuertes and the author showed that various
other simple groups are Beauville groups, namely PSL2(q) for all prime powers q > 5, and
the Suzuki groups Sz(2e) and the Ree groups R(3e) for all odd e ≥ 3. They also showed
that certain quasisimple groups (perfect central extensions of simple groups) are Beauville
groups, namely the groups SL2(q) for q > 5, again extending a result for prime q in [3].

Around the same time, Garion and Penegini [23] obtained the above result for PSL2(q),
using results of Macbeath [50] on generating triples for this group. They also used proba-
bilistic methods to show that Sz(2e) and R(3e) are Beauville groups for all sufficiently large
odd e, with similar results for several other families of simple groups, including PSL3(q)
and the unitary groups U3(q).

Soon, specialists in the study of finite simple groups became interested in this prob-
lem: the classification of such groups, announced around 30 years ago but not completely
proved until 2004, allows conjectures such as this to be obtained by inspection. Several
major advances were announced in 2010. Firstly, Garion, Larsen, and Lubotzky [24] used
probabilistic methods to show that the conjecture is true with at most finitely many excep-
tions. Soon afterwards, Guralnick and Malle [35] gave a complete proof of the conjecture,
while Fairbairn, Magaard and Parker [18] extended it further to all finite quasisimple groups
except A5 and its central cover SL2(5). In all three cases, the proofs require deep knowledge
of the structure of finite simple groups, especially those of Lie type; see [8, 66] for detailed
accounts of these groups, and [13] for a concise (but hardly pocket-sized) summary.
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9 Fundamental groups and rigidity

Just as each Beauville surface S = (C1×C2)/G is constructed from a group G, it gives rise
to two more groups: as a connected topological space it has a fundamental group π1S, and
as an algebraic variety it has an automorphism group AutS.

The fundamental group of S is easily described. We have a pair of triangle groups ∆i,
each with a normal subgroup Ki

∼= π1Ci such that Ci ∼= H/Ki and ∆i/Ki
∼= G. Each ∆i

acts on H, so there is an induced action of ∆1×∆2 on the simply connected space H×H.
Let Π denote the inverse image of the diagonal subgroup in the natural epimorphism
∆1 ×∆2 → G×G, that is, the subgroup of ∆1 ×∆2 consisting of those pairs which map
onto the same element of G. Beauville condition (4) implies that Π acts freely on H×H,
with (H×H)/Π ∼= S, so π1S can be identified with Π. Thus π1S has a normal subgroup
K1×K2

∼= π1C1×π1C2 ∼= π1(C1×C2), with quotient group G, corresponding to the regular
covering C1 × C2 → S with covering group G. It also has a normal subgroup K1, with
quotient group ∆2, corresponding to the regular covering C1×H→ S with covering group
∆2, and similarly for the normal subgroup K2.

This leads to a property of Beauville surfaces called rigidity [9], meaning essentially
that the topology determines the geometric structure. In a hyperbolic triangle group, the
centraliser of each non-identity element is cyclic. Thus the centraliser in Π = π1S of any
element of Ki contains a surface group (namely K3−i), and is therefore nonabelian, whereas
any other element of Π has an abelian centraliser. It follows that if S ′ = (C ′1 × C ′2)/G′
is another Beauville surface, then any isomorphism π1S → π1S ′ induces isomorphisms
∆i → ∆′i between the corresponding triangle groups (possibly after transposing factors),
and an isomorphism G→ G′ of their Beauville groups. Now any isomorphism of cocompact
hyperbolic triangle groups is induced by an isometry of H, since the corresponding triangles
are isometric. It follows that homeomorphic Beauville surfaces are in fact isometric, and
that S is uniquely determined, up to complex conjugation of either or both of the curves Ci,
by its fundamental group. Such rigidity properties help to explain why Beauville surfaces
are so interesting to algebraic geometers. (The above argument, taken from a more detailed
proof given by González-Diez and Torres-Teigell in [31], is a group-theoretic analogue of the
arguments based on algebraic geometry given by Catanese in [9] and by Bauer, Catanese
and Grunewald in [4].)

10 Automorphism groups of Beauville surfaces

This section summarises results of the author on automorphism groups of Beauville surfaces
in [39]; some of these results have been obtained independently by Fuertes and González-
Diez in [20], and have been extended to mixed Beauville surfaces by González-Diez and
Torres-Teigell in [32].

The rigidity results outlined in the preceding section show that any automorphism of
a Beauville surface S = (C1 × C2)/G lifts to an automorphism of C1 × C2, and this either
preserves or transposes the curves Ci; such automorphisms of S are called direct or indirect
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respectively. First we consider the group Aut0S of direct automorphisms of S, a subgroup
of index at most 2 in AutS.

Let Ai := Aut Ci. There is a natural action of A1 ×A2 on C1 × C2, and we can regard
S as the quotient of C1×C2 by the diagonal subgroup D of the subgroup G×G of A1×A2.
A simple calculation shows that an element (α1, α2) ∈ A1×A2, acting on C1×C2, permutes
the orbits of D, and hence induces an automorphism of S, if and only if

1. each αi is in the normaliser Ni := NAi
(G) of G in Ai, and

2. α1 and α1, acting by conjugation, induce the same automorphism of G.

Such elements (α1, α2) form a subgroup N of N1 × N2, the inverse image of the diagonal
subgroup of AutG×AutG under the natural homomorphism N1×N2 → AutG×AutG.
The kernel of this action of N is D, so the group A0 = Aut0S of direct automorphisms of
S is isomorphic to N/D.

In particular, if each αi ∈ G then condition (1) is satisfied, and (2) is satisfied if and
only if α1α

−1
2 is in the centre Z := Z(G) of G. Thus N contains a normal subgroup

M = N ∩ (G×G) = {(α1, α2) ∈ G×G | α1α
−1
2 ∈ Z} ∼= D × Z,

inducing on S a normal subgroup I := InnS ∼= M/D ∼= Z of A0; the elements of I are
called the inner automorphisms of S, induced by compatible pairs of elements of G acting
on the curves Ci. Since I is isomorphic to the centre of G, it is finite and abelian. The
quotient group A0/I ∼= N/M is called the direct outer automorphism group Out0S of S.

In many cases G = Ni for each i (for instance if G = Ai), so that M = N and
hence A0 = I ∼= Z. If G < Ni for some i, then ∆i is a proper normal subgroup of a
Fuchsian group ∆̃i, with ∆̃i/Ki

∼= Ni. Singerman [57] has shown that any Fuchsian group
containing a triangle group must also be a triangle group, and that any proper normal
inclusion between them must be (up to permutations of the periods) of one of the forms

(a) ∆(s, s, t) /∆(2, s, 2t), (b) ∆(t, t, t) /∆(3, 3, t), (c) ∆(t, t, t) /∆(2, 3, 2t),

with the quotient group isomorphic to C2, C3 or S3 respectively. In all three cases, at least
two of the three periods of ∆i are equal, so we have:

Proposition 10.1 If a Beauville structure on a group G has type (l1,m1, n1; l2,m2, n2),
and for each i the periods li,mi and ni are mutually distinct, then the direct automorphism
group Aut0S of the corresponding Beauville surface S is isomorphic to the centre of G. �

If there are repetitions among either or both of the triples li,mi, ni, then S may have
direct outer automorphisms, arising from proper normal inclusions ∆i / ∆̃i. In this case
Singerman’s results, stated above, allow us to deduce the following:

Proposition 10.2 The direct automorphism group Aut0S of a Beauville surface S has a
normal subgroup InnS ∼= Z(G) with Aut0S/InnS isomorphic to a subgroup of S3×S3. In
particular, Aut0S is a finite solvable group, of derived length at most 3. �
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The direct factors S3 can be regarded as permuting the fibres of βi over 0, 1 and ∞.

Example 4. Let S = (Fn×Fn)/G as in Example 3, with the Beauville group G = Zn⊕Zn.
Since G is abelian we have InnS ∼= G. Then Out0S ∼= C3 or C1 as the automorphism of G
induced by the 3-cycle (a1, b1, c1) is or is not the same as that induced by (a2, b2, c2). Thus
Aut0S is isomorphic to an extension of G by C3, or to G, depending on the choice of the
matrix A ∈ GL2(Zn) = AutG linking the two representations ρi of G on Fn.

Any indirect automorphism of S is induced by an automorphism of C1×C2 of the form

(p1, p2) 7→ (p2φ2, p1φ1),

where φ1 : C1 → C2 and φ2 : C2 → C1 are isomorphisms of curves. It is not hard to prove:

Proposition 10.3 A Beauville surface S = (C1 × C2)/G has an indirect automorphism if
and only if C1 ∼= C2 and G has an automorphism ζ transposing the equivalence classes of
its representations on C1 and C2. �

Here two representations are defined to be equivalent if each is obtained from the other
by composition with an isomorphism of curves.

Corollary 10.4 If a Beauville surface S = (C1 × C2)/G has an indirect automorphism,
then the corresponding Beauville structure on G must consist of two triples of equivalent
types. �

Here two types are defined to be equivalent if each is a permutation of the other. The
analogue of Proposition 10.3 is the following:

Proposition 10.5 The automorphism group AutS of a Beauville surface S = (C1×C2)/G
has a normal subgroup InnS ∼= Z(G) with AutS/InnS isomorphic to a subgroup of S3 oS2.
In particular, AutS is a finite solvable group, of derived length at most 4. �

By the above results, many Beauville surfaces (for instance, most of those with simple
Beauville groups) have only the identity automorphism.

There are no restrictions on the centre of a Beauville group, and hence on InnS, other
than the obvious ones that it should be finite and abelian:

Theorem 10.6 Given any finite abelian group H, there is a Beauville group G with centre
Z(G) ∼= H. �

It immediately follows that there is a Beauville surface S with InnS ∼= H; this remains
true, even even if one requires OutS to be as large (isomorphic to S3 o S2) or as small
(the trivial group) as possible. A key ingredient of the proof adapts a method used by
Conder [11] for constructing Hurwitz groups with large centres: we represent H as a direct
product of cyclic groups Cmi

, each isomorphic to the centre of some group SLni
(qi), where

mi = gcd(ni, qi − 1), so that the direct product G of these groups SLni
(qi) has centre

Z(G) ∼= H. Results of Lucchini [49] on generators of special linear groups allow one to
choose the groups SLni

(qi), and hence also their product G, to be quotients of ∆(2, 3, p) and
hence of ∆(p, p, p), for two different primes p = p1, p2, thus giving a Beauville structure of
type (p1, p1, p1; p2, p2, p2) on G. Modifications of this construction provide some control over
the outer automorphism group of the resulting Beauville surface S. For details, see [39].
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11 The absolute Galois group

Bely̆ı’s Theorem [6] implies that the curves Ci used in constructing a Beauville surface S
are defined over the field Q of algebraic numbers, and it follows that S is also defined over
this field. The absolute Galois group is the automorphism group

Γ = GalQ/Q

of this field. Since Q is the direct limit (i.e. union) of the Galois (finite normal) extensions
K of Q, it follows that Γ is the inverse limit

Γ = lim
←

GalK/Q

of the Galois groups of these fields; the homomorphisms in this inverse system are the
restriction mappings

GalL/Q→ GalK/Q

induced by inclusions K ⊆ L between such fields. Since these are all epimorphisms between
finite groups, Γ is in fact a profinite group, that is, a projective limit of finite groups: it
can be identified with the subgroup of the cartesian product Π of all such groups GalK/Q
consisting of the elements whose coordinates are compatible with the restriction mappings.

Giving the finite groups GalK/Q the discrete topology makes Π a topological group,
compact by Tychonoff’s Theorem, so Γ, as a closed subgroup of Π, is also a compact
topological group (in fact, homeomorphic to a Cantor set). The Galois correspondence is
then between the subfields of Q and the closed subgroups of Γ. Understanding Γ is therefore
critical to an understanding of algebraic number theory. There are many important open
problems associated with this group. For instance the Inverse Galois Problem, Hilbert’s
question whether every finite group is isomorphic to a Galois group over Q, is equivalent
to asking whether every finite group is the quotient of Γ by some closed normal subgroup.
Books by Malle and Matzat [51], Serre [56] and Völklein [62] describe progress on this.

In the mid-1980s, Grothendieck [34] proposed that one should study Γ through its
actions on various geometric and combinatorial objects, the simplest of which are oriented
hypermaps, or dessins d’enfants (children’s drawings) as he called them, viewed as un-
branched finite coverings of P1(C) \ {0, 1,∞}. By Bely̆ı’s Theorem these are defined over
Q, and there is a natural action of Γ on them, through its action on the coefficients of the
polynomials and rational functions defining them. This action preserves the obvious nu-
merical parameters of a dessin, such as the numbers and valencies of its vertices and faces,
and hence its genus [44]. However, using elementary properties of the modular j-function
it is easy to show that Γ acts faithfully on dessins of genus 1 (those on elliptic curves). Less
obviously, Schneps [54] has shown that it acts faithfully on plane trees, while Girondo and
González-Diez [25] have shown that is faithful on dessins of each genus g ≥ 2. It is an open
problem whether Γ acts faithfully on regular dessins, i.e. orientably regular hypermaps.

Example 5. Hurwitz [37] showed that if C is a compact Riemann surface (or algebraic
curve) of genus g ≥ 2 then Aut C has order at most 84(g−1). The finite groups G attaining
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this bound, namely the nontrivial finite quotients of the triangle group ∆ = ∆(2, 3, 7), are
called Hurwitz groups. Macbeath [50] classified those groups PSL2(q) which are Hurwitz
groups, and these include the groups G = PSL2(p) for all primes p ≡ ±1 mod (7). For such
groups G there are, in fact, three normal subgroups N of ∆ with ∆/N ∼= G, corresponding
to choosing elements from the three conjugacy classes of elements of order 7 as members of
generating triples for G. We thus obtain three non-isomorphic Riemann surfaces C = H/N ,
of genus

g = 1 +
p(p2 − 1)

168

and with automorphism group PSL2(p), attaining Hurwitz’s bound. Streit [58] showed
that, as algebraic curves, these are defined over the cubic field K = Q(ζ7) ∩ R, and are
conjugate under the Galois group GalK/Q ∼= C3 of that field. The normal inclusions of
the subgroups N in ∆ equip each C with a regular dessin, specifically an orientably regular
7-valent triangular map, inherited from the corresponding ∆-invariant tessellation of H.
These three algebraically conjugate maps are mutually non-isomorphic, and in fact so are
their embedded graphs [46].

Example 6. In [58], Streit generalised the above example, replacing the integer 7 with an
arbitrary integer n ≥ 7. For any prime p ≡ ±1 mod (2n) there are φ(n)/2 conjugacy classes
of elements of order n in the group G = PSL2(p), giving rise to φ(n)/2 normal subgroups
N of the triangle group ∆ = ∆(2, 3, n) with ∆/N ∼= G. These in turn correspond to the
same number of non-isomorphic curves C = H/N , all with automorphism group G and
carrying orientably regular n-valent triangular maps. These curves are defined over the
field Q(ζn) ∩ R, and are equivalent under the Galois group of that field, isomorphic to
Z∗n/{±1}. As before, these maps are mutually non-isomorphic.

12 Conjugate but non-homeomorphic varieties

The examples in the preceding section show how the action of Γ can change analytic
and combinatorial structures defined over Q, but what about topology? The genus of an
algebraic curve can be defined purely algebraically (using the Riemann-Roch Theorem,
for example), so it is invariant under Γ; thus Galois conjugate curves are homeomorphic
to each other. However, in 1964 Serre [55] showed that in each dimension greater than
1 there are pairs of algebraic varieties, defined over Q, which are conjugate under Γ but
not homeomorphic to each other. Subsequently, further examples of such pairs have been
constructed. In fact, there exist arbitrarily large Galois orbits consisting of mutually non-
homeomorphic Beauville surfaces.

Example 7. The first such examples were given by Gonzaléz-Diez and Torres-Teigell [31],
using Beauville structures of type (2, 3, n; p, p, p) on the group G = PSL2(p), for integers
n ≥ 7 and primes p ≡ ±1 mod (2n). As in Example 6, generating triples of type (2, 3, n) in
G give rise to a Galois orbit of φ(n)/2 non-isomorphic curves C1. By using triples of type
(p, p, p) for C2 they obtained an orbit of at least φ(n)/2 mutually non-isomorphic Beauville
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surfaces. By rigidity, these have non-isomorphic fundamental groups, so they are mutually
non-homeomorphic. For fixed n, Dirichlet’s Theorem gives infinitely many suitable primes
p, and elementary properties of Euler’s function show that the size of these orbits of Γ
tends to infinity as n increases.

Example 8. The authors of [31] were unable to determine the exact size of the orbits in
Example 7 because of the technical difficulty of finding how the outer automprphism of
PSL2(p), induced by conjugation in PGL2(p), acts on the associated Beauville surfaces.
In [30], they and the present author avoided this problem by using a similar construction
based on the Beauville group G = PGL2(p), which has only inner automorphisms.

If p is an odd prime then the non-identity elements of PGL2(p) are of three types:
elliptic elements, of order dividing p+ 1, with no fixed points on the projective line P1(p);
parabolic elements, of order p, with one fixed point; and hyperbolic elements, of order
dividing p−1, with two fixed points. An element of one type cannot be conjugate to a power
of an element of another type. For any prime p ≡ 19 mod (24) one can find generating
triples for G of types (2, 3, p − 1), consisting of hyperbolic elements, and (2, 4, p + 1),
consisting of elliptic elements; any such pair of triples forms a Beauville structure on G.

There are φ(p ± 1)/2 conjugacy classes of elements of order p ± 1 in G. This is
therefore the number of normal subgroups of the triangle group ∆1 = ∆(2, 3, p−1) or ∆2 =
∆(2, 4, p+1) with quotient group G, and hence also the number of non-isomorphic algebraic
curves C1 or C2 uniformised by such subgroups. These curves all have automorphism group
G since Singerman’s results [57] show that ∆1 and ∆2 are maximal Fuchsian groups.
These two families of curves Ci are defined over the field Ki = Q(ζp±1) ∩ R, and the
members of each family are conjugate under the Galois group of that field. We thus obtain
φ(p− 1)φ(p + 1)/4 Beauville surfaces S = (C1 × C2)/G, defined over the field K = K1K2;
they are conjugate under GalK/Q and hence under Γ. By rigidity, these surfaces have
mutually non-isomorphic fundamental groups, so they are mutually non-homeomorphic.
As before, the size of this orbit of Γ tends to infinity as p increases.

In both of these examples, although the topological fundamental groups π1S of the
surfaces S in a given orbit are mutually non-isomorphic, the algebraic fundamental groups
πalg
1 S, the profinite completions π̂1S of the topological fundamental groups, are mutually

isomorphic. This is because the finite quotients of the groups π1S correspond to the finite
regular unbranched coverings of S, and these, being algebraically defined, are invariant
under Γ (see [55]). By contrast with the groups π1S, Conder [12] has recently shown that
triangle groups are determined, up to isomorphism, by their finite quotient groups.

In Examples 5–8, together with other similar examples in [14, 45, 46, 59, 60], for
instance, the curves and surfaces in an orbit of Γ are all defined over some subfield of a
cyclotomic field. The group of transformations induced by Γ on such an orbit is therefore
abelian, so the commutator subgroup Γ′ is contained in the kernel of the action. It would
be interesting to have some nonabelian examples, which reveal more of the structure of Γ.
In particular, it would be interesting to know whether Γ acts faithfully on the set of all
Beauville surfaces (as it does on all dessins). If so, then rigidity would imply that it acts
faithfully on regular dessins (see Section 11).
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[37] A. Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich,
Math. Ann. 41 (1893), 403–442.

[38] G. A. Jones, Regular embeddings of complete bipartite graphs: classification and
enumeration, Proc. Lond. Math. Soc. (3) 101 (2010), 427–453.

[39] G. A. Jones, Automorphism groups of Beauville surfaces, arXiv:math.GR/1102.3055.

[40] G. A. Jones and J. M. Jones, Elementary Number Theory, Springer Undergraduate
Mathematics Series, Springer-Verlag, London, 1998.
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