COMPLEX HYPERBOLIC GEOMETRY: 3. Representations of surface groups

John R Parker Durham University, UK j.r.parker@durham.ac.uk http://maths.dur.ac.uk/~dma0jrp

Hyperbolic surfaces

Let Σ be an orientable surface of finite type: genus g with p boundary components Suppose Euler characteristic $\chi(\Sigma) = 2 - 2g - p < 0$. Let $\pi_1 = \pi_1(\Sigma)$ be the fundamental group of Σ .

Hyperbolic surfaces

Let Σ be an orientable surface of finite type: genus g with p boundary components Suppose Euler characteristic $\chi(\Sigma) = 2 - 2g - p < 0$. Let $\pi_1 = \pi_1(\Sigma)$ be the fundamental group of Σ .

A surface with g = 2, p = 0. Generators of π_1 are shown.

Let $\widetilde{\Sigma}$ be the universal cover of Σ . This is topologically a disc and π_1 acts on $\widetilde{\Sigma}$ by deck transformations: So if $\pi : \widetilde{\Sigma} \longrightarrow \Sigma$ is the projection, $p_1, p_2 \in \widetilde{\Sigma}$ with $\pi(p_1) = \pi(p_2)$ if and only if $p_2 = \alpha(p_1)$ for some $\alpha \in \pi_1(\Sigma)$.

From topology to geometry...and algebra

We want to take this topological picture and impose some geometry, and then analyse using algebra.

Let G be a matrix group corresponding to the isometry group of the hyperbolic plane.

G is one of SU(1,1), $SL(2,\mathbb{R})$ or SO(2,1)

A representation of π_1 is a homomorphism $\rho: \pi_1 \longrightarrow G$

We are only interested in conjugacy classes of representations. We write $\Gamma = \rho(\phi_1)$, a subgroup of *G*.

A map $f: \widetilde{\Sigma} \longrightarrow$ hyperbolic plane is equivariant with respect to the representation ρ if $f(\alpha p) = \rho(\alpha)f(p)$ for all $p \in \widetilde{\Sigma}$, $\alpha \in \pi_1$.

This gives correspondence between topology and geometry and algebra:

- deck transformations, hyperbolic isometries, matrices
- $f: \widetilde{\Sigma} \longrightarrow$ hyperbolic plane.
- $\rho: \pi_1 \longrightarrow \Gamma \subset G$, action by isometries.
- ▶ loop homotopic to boundary, cusp of Σ , parabolic matrix.

Here parabolic means non-diagonalisible.

Geometric action of $\pi_1(\Sigma)$ on the hyperbolic plane

From: WM Goldman What is a Projective Structure, Notices AMS 54 (2007) 30-33

Fuchsian groups

This all works for the trivial representation and the constant map!

Fuchsian groups

This all works for the trivial representation and the constant map!

Let G be a matrix group associated to isometries of hyperbolic plane. A representation $\rho: \pi_1 \longrightarrow \Gamma < G$ is Fuchsian if ρ is

- discrete, so action is properly discontinuous;
- faithful, so Γ isomorphic to π_1
- type-preserving see below
- geometrically finite, so finite sided fundamental parallelogram.

Type-preserving means for each homotopy class α : If α is non-trivial, non-peripheral loops then $\rho(\alpha)$ loxodromic. If α is non-trivial, peripheral loops then $\rho(\alpha)$ parabolic.

Note in this case type-preserving implies discrete and geometrically finite.

Fuchsian groups

This all works for the trivial representation and the constant map!

Let G be a matrix group associated to isometries of hyperbolic plane. A representation $\rho: \pi_1 \longrightarrow \Gamma < G$ is Fuchsian if ρ is

- discrete, so action is properly discontinuous;
- faithful, so Γ isomorphic to π_1
- type-preserving see below
- geometrically finite, so finite sided fundamental parallelogram.

Type-preserving means for each homotopy class α : If α is non-trivial, non-peripheral loops then $\rho(\alpha)$ loxodromic. If α is non-trivial, peripheral loops then $\rho(\alpha)$ parabolic.

Note in this case type-preserving implies discrete and geometrically finite.

Space of all Fuchsian representations, up to conjugacy, is Fricke space. It is one realisation of Teichmüller space.

It is homeomorphic to a ball of dimension 6g - 6 + 2p.

Representations of π_1 in SU(2, 1)

We now consider representations $\rho : \pi_1 \longrightarrow \Gamma < SU(2, 1)$

Example 1. A representation where $\rho(\pi_1) = \Gamma < SU(1, 1)$. It can be embedded as the block diagonal representation. $\{1\} \times \Gamma < \{1\} \times SU(1, 1) < SU(2, 1)$. ρ preserves a complex line.

Example 2. A representation where $\rho(\pi_1) = \Gamma < SO(2, 1)$. Real matrices are special cases of complex matrices, so $\Gamma < SO(2, 1) < SU(2, 1)$.

 ρ preserves a Lagrangian plane.

Representations of π_1 in SU(2, 1)

We now consider representations $\rho: \pi_1 \longrightarrow \Gamma < SU(2, 1)$

Example 1. A representation where $\rho(\pi_1) = \Gamma < SU(1, 1)$. It can be embedded as the block diagonal representation. $\{1\} \times \Gamma < \{1\} \times SU(1, 1) < SU(2, 1)$. ρ preserves a complex line.

Example 2. A representation where $\rho(\pi_1) = \Gamma < SO(2, 1)$. Real matrices are special cases of complex matrices, so $\Gamma < SO(2, 1) < SU(2, 1)$. ρ preserves a Lagrangian plane.

If the original representation in Example 1 is Fuchsian, we say $\rho : \pi_1 \longrightarrow \Gamma < \{1\} \times SU(1,1) < SU(2,1)$ is C-Fuchsian. If the original representation in Example 2 is Fuchsian, we say $\rho : \pi_1 \longrightarrow \Gamma < SO(2,1) < SU(2,1)$ is R-Fuchsian.

We want to study more general representations of π_1 in SU(2, 1).

The Toledo invariant

Let $\rho : \pi_1 \longrightarrow \Gamma < SU(2, 1)$ be a representation. Let $f : \widetilde{\Sigma} \longrightarrow \mathbf{H}^2_{\mathbb{C}}$ be a smooth, ρ -equivariant map. So $f(\alpha p) = \rho(\alpha) f(p)$.

The Toledo invariant is $\tau = \tau(\rho) = \frac{1}{2\pi} \int_{\Sigma} f^* \omega$.

Here ω is the Kähler form $\omega = 4i\partial\overline{\partial} \log \langle \mathbf{z}, \mathbf{z} \rangle$. In fact τ only depends on ρ and is independent of f.

The Toledo invariant

Let $\rho : \pi_1 \longrightarrow \Gamma < SU(2, 1)$ be a representation. Let $f : \widetilde{\Sigma} \longrightarrow \mathbf{H}^2_{\mathbb{C}}$ be a smooth, ρ -equivariant map. So $f(\alpha p) = \rho(\alpha)f(p)$.

The Toledo invariant is $\tau = \tau(\rho) = \frac{1}{2\pi} \int_{\Sigma} f^* \omega$.

Here ω is the Kähler form $\omega = 4i\partial\overline{\partial} \log \langle \mathbf{z}, \mathbf{z} \rangle$. In fact τ only depends on ρ and is independent of f.

 τ has the following properties

• au varies continuously with ho

▶ $\chi < \tau < -\chi$ where $\chi = 2 - 2g - p$ is the Euler characteristic

- ρ is \mathbb{C} -Fuchsian if and only if $\tau = \pm \chi$
- if ρ is \mathbb{R} -Fuchsian then $\tau = 0$ (converse of this not true)
- if p = 0 (so Σ closed) then $\tau \in 2\mathbb{Z}$

• if p = 0 then τ indexes components of representation variety (Xia)

Think of τ as generalisation of Cartan's angular invariant.

Complex hyperbolic quasi-Fuchsian representations

We are not interested in all representations. A representation $\rho : \pi \longrightarrow \Gamma < SU(2, 1)$ is complex hyperbolic quasi-Fuchsian (CHQF) if it is

- discrete, so action is properly discontinuous;
- faithful, so Γ isomorphic to π_1
- ► type-preserving (peripheral ⇔ parabolic; loxodromic otherwise)

geometrically finite (more technical definition Bowditch)

Complex hyperbolic quasi-Fuchsian representations

We are not interested in all representations. A representation $\rho : \pi \longrightarrow \Gamma < SU(2, 1)$ is complex hyperbolic quasi-Fuchsian (CHQF) if it is

- discrete, so action is properly discontinuous;
- faithful, so Γ isomorphic to π_1
- ► type-preserving (peripheral ⇔ parabolic; loxodromic otherwise)
- geometrically finite (more technical definition Bowditch)

Every \mathbb{R} -Fuchsian and \mathbb{C} -Fuchsian representation is also CHQF.

When p = 0 then every component of the representation variety contains a CHQF representation Goldman, Kapovich, Leeb

When $p \neq 0$ there is a one parameter family of CHQF representations interpolating between \mathbb{R} -Fuchsian and \mathbb{C} -Fuchsian Gusevskii, Parker

Together, these results means that for every allowable value of τ there is a CHQF representation with this value of τ

Complex hyperbolic quasi-Fuchsian representations

We are not interested in all representations. A representation $\rho : \pi \longrightarrow \Gamma < SU(2, 1)$ is complex hyperbolic quasi-Fuchsian (CHQF) if it is

- discrete, so action is properly discontinuous;
- faithful, so Γ isomorphic to π_1
- ► type-preserving (peripheral ⇔ parabolic; loxodromic otherwise)
- geometrically finite (more technical definition Bowditch)

Every \mathbb{R} -Fuchsian and \mathbb{C} -Fuchsian representation is also CHQF.

When p = 0 then every component of the representation variety contains a CHQF representation Goldman, Kapovich, Leeb

When $p \neq 0$ there is a one parameter family of CHQF representations interpolating between \mathbb{R} -Fuchsian and \mathbb{C} -Fuchsian Gusevskii, Parker

Together, these results means that for every allowable value of τ there is a CHQF representation with this value of τ

There exist exotic CHQF representations with limit set a wild knot Dutenhefner, Gusevskii

・ロト・日本・日本・日本・日本