## COMPLEX HYPERBOLIC GEOMETRY: 3. Representations of surface groups

John R Parker

Durham University, UK
j.r.parker@durham.ac.uk
http://maths.dur.ac.uk/~dma0jrp

## Hyperbolic surfaces

Let $\Sigma$ be an orientable surface of finite type:
genus $g$ with $p$ boundary components
Suppose Euler characteristic $\chi(\Sigma)=2-2 g-p<0$.
Let $\pi_{1}=\pi_{1}(\Sigma)$ be the fundamental group of $\Sigma$.

## Hyperbolic surfaces

Let $\Sigma$ be an orientable surface of finite type:
genus $g$ with $p$ boundary components
Suppose Euler characteristic $\chi(\Sigma)=2-2 g-p<0$.
Let $\pi_{1}=\pi_{1}(\Sigma)$ be the fundamental group of $\Sigma$.


A surface with $g=2, p=0$. Generators of $\pi_{1}$ are shown.
Let $\widetilde{\Sigma}$ be the universal cover of $\Sigma$.
This is topologically a disc and $\pi_{1}$ acts on $\widetilde{\Sigma}$ by deck transformations:
So if $\pi: \widetilde{\Sigma} \longrightarrow \Sigma$ is the projection, $p_{1}, p_{2} \in \widetilde{\Sigma}$ with $\pi\left(p_{1}\right)=\pi\left(p_{2}\right)$ if and only if $p_{2}=\alpha\left(p_{1}\right)$ for some $\alpha \in \pi_{1}(\Sigma)$.

## From topology to geometry...and algebra

We want to take this topological picture and impose some geometry, and then analyse using algebra.

Let $G$ be a matrix group corresponding to the isometry group of the hyperbolic plane.
$G$ is one of $\mathrm{SU}(1,1), \mathrm{SL}(2, \mathbb{R})$ or $\mathrm{SO}(2,1)$
A representation of $\pi_{1}$ is a homomorphism $\rho: \pi_{1} \longrightarrow G$
We are only interested in conjugacy classes of representations.
We write $\Gamma=\rho\left(\phi_{1}\right)$, a subgroup of $G$.
A map $f: \widetilde{\Sigma} \longrightarrow$ hyperbolic plane is equivariant with respect to the representation $\rho$ if $f(\alpha p)=\rho(\alpha) f(p)$ for all $p \in \widetilde{\Sigma}, \alpha \in \pi_{1}$.
This gives correspondence between topology and geometry and algebra:

- deck transformations, hyperbolic isometries, matrices
- $f: \widetilde{\Sigma} \longrightarrow$ hyperbolic plane.
- $\rho: \pi_{1} \longrightarrow \Gamma \subset G$, action by isometries.
- loop homotopic to boundary, cusp of $\Sigma$, parabolic matrix.

Here parabolic means non-diagonalisible.

Geometric action of $\pi_{1}(\Sigma)$ on the hyperbolic plane


From: WM Goldman What is a Projective Structure, Notices AMS 54 (2007) 30-33

## Fuchsian groups

This all works for the trivial representation and the constant map!

## Fuchsian groups

This all works for the trivial representation and the constant map!
Let $G$ be a matrix group associated to isometries of hyperbolic plane.
A representation $\rho: \pi_{1} \longrightarrow \Gamma<G$ is Fuchsian if $\rho$ is

- discrete, so action is properly discontinuous;
- faithful, so 「 isomorphic to $\pi_{1}$
- type-preserving see below
- geometrically finite, so finite sided fundamental parallelogram.

Type-preserving means for each homotopy class $\alpha$ :
If $\alpha$ is non-trivial, non-peripheral loops then $\rho(\alpha)$ loxodromic.
If $\alpha$ is non-trivial, peripheral loops then $\rho(\alpha)$ parabolic.
Note in this case type-preserving implies discrete and geometrically finite.

## Fuchsian groups

This all works for the trivial representation and the constant map!
Let $G$ be a matrix group associated to isometries of hyperbolic plane.
A representation $\rho: \pi_{1} \longrightarrow \Gamma<G$ is Fuchsian if $\rho$ is

- discrete, so action is properly discontinuous;
- faithful, so $\Gamma$ isomorphic to $\pi_{1}$
- type-preserving see below
- geometrically finite, so finite sided fundamental parallelogram.

Type-preserving means for each homotopy class $\alpha$ :
If $\alpha$ is non-trivial, non-peripheral loops then $\rho(\alpha)$ loxodromic.
If $\alpha$ is non-trivial, peripheral loops then $\rho(\alpha)$ parabolic.
Note in this case type-preserving implies discrete and geometrically finite.
Space of all Fuchsian representations, up to conjugacy, is Fricke space. It is one realisation of Teichmüller space. It is homeomorphic to a ball of dimension $6 g-6+2 p$.

## Representations of $\pi_{1}$ in $\operatorname{SU}(2,1)$

We now consider representations $\rho: \pi_{1} \longrightarrow \Gamma<\mathrm{SU}(2,1)$
Example 1. A representation where $\rho\left(\pi_{1}\right)=\Gamma<\operatorname{SU}(1,1)$.
It can be embedded as the block diagonal representation.
$\{1\} \times \Gamma<\{1\} \times \operatorname{SU}(1,1)<\operatorname{SU}(2,1)$.
$\rho$ preserves a complex line.
Example 2. A representation where $\rho\left(\pi_{1}\right)=\Gamma<\mathrm{SO}(2,1)$.
Real matrices are special cases of complex matrices, so
$\Gamma<\operatorname{SO}(2,1)<\operatorname{SU}(2,1)$.
$\rho$ preserves a Lagrangian plane.

## Representations of $\pi_{1}$ in $\operatorname{SU}(2,1)$

We now consider representations $\rho: \pi_{1} \longrightarrow \Gamma<\mathrm{SU}(2,1)$
Example 1. A representation where $\rho\left(\pi_{1}\right)=\Gamma<\operatorname{SU}(1,1)$.
It can be embedded as the block diagonal representation.
$\{1\} \times \Gamma<\{1\} \times \operatorname{SU}(1,1)<\operatorname{SU}(2,1)$.
$\rho$ preserves a complex line.
Example 2. A representation where $\rho\left(\pi_{1}\right)=\Gamma<\mathrm{SO}(2,1)$.
Real matrices are special cases of complex matrices, so
$\Gamma<\operatorname{SO}(2,1)<\operatorname{SU}(2,1)$.
$\rho$ preserves a Lagrangian plane.
If the original representation in Example 1 is Fuchsian, we say $\rho: \pi_{1} \longrightarrow \Gamma<\{1\} \times \operatorname{SU}(1,1)<\mathrm{SU}(2,1)$ is $\mathbb{C}$-Fuchsian. If the original representation in Example 2 is Fuchsian, we say $\rho: \pi_{1} \longrightarrow \Gamma<\operatorname{SO}(2,1)<\operatorname{SU}(2,1)$ is $\mathbb{R}$-Fuchsian.
We want to study more general representations of $\pi_{1}$ in $\operatorname{SU}(2,1)$.

## The Toledo invariant

Let $\rho: \pi_{1} \longrightarrow \Gamma<\operatorname{SU}(2,1)$ be a representation.
Let $f: \widetilde{\Sigma} \longrightarrow \mathbf{H}_{\mathbb{C}}^{2}$ be a smooth, $\rho$-equivariant map. So
$f(\alpha p)=\rho(\alpha) f(p)$.
The Toledo invariant is $\tau=\tau(\rho)=\frac{1}{2 \pi} \int_{\Sigma} f^{*} \omega$.
Here $\omega$ is the Kähler form $\omega=4 i \partial \bar{\partial} \log \langle\mathbf{z}, \mathbf{z}\rangle$.
In fact $\tau$ only depends on $\rho$ and is independent of $f$.

## The Toledo invariant

Let $\rho: \pi_{1} \longrightarrow \Gamma<\mathrm{SU}(2,1)$ be a representation.
Let $f: \widetilde{\Sigma} \longrightarrow \mathbf{H}_{\mathbb{C}}^{2}$ be a smooth, $\rho$-equivariant map. So
$f(\alpha p)=\rho(\alpha) f(p)$.
The Toledo invariant is $\tau=\tau(\rho)=\frac{1}{2 \pi} \int_{\Sigma} f^{*} \omega$.
Here $\omega$ is the Kähler form $\omega=4 i \partial \bar{\partial} \log \langle\mathbf{z}, \mathbf{z}\rangle$.
In fact $\tau$ only depends on $\rho$ and is independent of $f$.
$\tau$ has the following properties

- $\tau$ varies continuously with $\rho$
- $\chi<\tau<-\chi$ where $\chi=2-2 g-p$ is the Euler characteristic
- $\rho$ is $\mathbb{C}$-Fuchsian if and only if $\tau= \pm \chi$
- if $\rho$ is $\mathbb{R}$-Fuchsian then $\tau=0$ (converse of this not true)
- if $p=0$ (so $\Sigma$ closed) then $\tau \in 2 \mathbb{Z}$
- if $p=0$ then $\tau$ indexes components of representation variety (Xia)

Think of $\tau$ as generalisation of Cartan's angular invariant.

## Complex hyperbolic quasi-Fuchsian representations

We are not interested in all representations.
A representation $\rho: \pi \longrightarrow \Gamma<\operatorname{SU}(2,1)$ is
complex hyperbolic quasi-Fuchsian (CHQF) if it is

- discrete, so action is properly discontinuous;
- faithful, so $\Gamma$ isomorphic to $\pi_{1}$
- type-preserving (peripheral $\Longleftrightarrow$ parabolic; loxodromic otherwise)
- geometrically finite (more technical definition Bowditch)


## Complex hyperbolic quasi-Fuchsian representations

We are not interested in all representations.
A representation $\rho: \pi \longrightarrow \Gamma<\mathrm{SU}(2,1)$ is
complex hyperbolic quasi-Fuchsian (CHQF) if it is

- discrete, so action is properly discontinuous;
- faithful, so $\Gamma$ isomorphic to $\pi_{1}$
- type-preserving (peripheral $\Longleftrightarrow$ parabolic; loxodromic otherwise)
- geometrically finite (more technical definition Bowditch)

Every $\mathbb{R}$-Fuchsian and $\mathbb{C}$-Fuchsian representation is also CHQF.
When $p=0$ then every component of the representation variety contains a CHQF representation Goldman, Kapovich, Leeb

When $p \neq 0$ there is a one parameter family of CHQF representations interpolating between $\mathbb{R}$-Fuchsian and $\mathbb{C}$-Fuchsian Gusevskii, Parker

Together, these results means that for every allowable value of $\tau$ there is a CHQF representation with this value of $\tau$

## Complex hyperbolic quasi-Fuchsian representations

We are not interested in all representations.
A representation $\rho: \pi \longrightarrow \Gamma<\mathrm{SU}(2,1)$ is
complex hyperbolic quasi-Fuchsian (CHQF) if it is

- discrete, so action is properly discontinuous;
- faithful, so $\Gamma$ isomorphic to $\pi_{1}$
- type-preserving (peripheral $\Longleftrightarrow$ parabolic; loxodromic otherwise)
- geometrically finite (more technical definition Bowditch)

Every $\mathbb{R}$-Fuchsian and $\mathbb{C}$-Fuchsian representation is also CHQF.
When $p=0$ then every component of the representation variety contains a CHQF representation Goldman, Kapovich, Leeb

When $p \neq 0$ there is a one parameter family of CHQF representations interpolating between $\mathbb{R}$-Fuchsian and $\mathbb{C}$-Fuchsian Gusevskii, Parker

Together, these results means that for every allowable value of $\tau$ there is a CHQF representation with this value of $\tau$

There exist exotic CHQF representations with limit set a wild knot Dutenhefner, Gusevskii

