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Dynamical classification of elements in PU(2, 1)

A ∈ PU(2, 1) acts on the H
2

C so has a fixed point. We say

I A is loxodromic if A fixes exactly 2 points of ∂H2
C.

I A is parabolic if A fixes exactly 1 point of ∂H2
C.

I A is elliptic if A fixes at least 1 point of H2
C.

I claim:
A fixed point of A ∈ PU(2, 1) corresponds to an eigenvector of the
associated matrix A in U(2, 1) or SU(2, 1):

Suppose A ∈ SU(2, 1). We know A acts on H
2

C as A(z) = PAz where
z = Pz.

Suppose A has eigenvector v ∈ C2,1−{0} with eigenvalue λ, so Av = λv.
Let v = Pv. Then A(v) = PAv = Pλv = Pv = v .
Thus an eigenvector v of A corresponds to a fixed point v = Pv of A.

The local dynamics around the v is determined by the eigenvalue λ.
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Eigenvalues, determinant, trace

Suppose that A ∈ SU(2, 1), λ ∈ C and v ∈ C2,1 − {0} with Av = λv.
As A ∈ SU(2, 1) we know A−1 = H−1A∗H.

So H−1A∗Hv = A−1v = λ−1v and so λ−1 is an eigenvalue of A∗.

Therefore λ
−1

is also an eigenvalue of A.

If |λ| = 1 then λ
−1

= λ and this does not say anything!

Suppose λ, µ ∈ C and v, w ∈ C2,1 − {0} with Av = λv and Aw = µw.
Then 〈v,w〉 = 〈Av,Aw〉 = 〈λv, µw〉 = λµ〈v,w〉.
Hence, either 〈v,w〉 = 0 or µ = λ

−1
.

Since A ∈ SU(2, 1) we have 1 = det(A), the product of the eigenvalues.
Let τ be tr(A), the sum of the eigenvalues. Then τ = tr(A−1).
This implies that the characteristic polynomial of A is

χA(x) = x3 − τx2 + τx − 1 = x3 − tr(A)x2 + tr(A−1)x − 1.
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Expanding/contracting dynamics

Suppose |λ| 6= 1.
We have 〈v, v〉 = 〈Av,Av〉 = 〈λv, λv〉 = |λ|2〈v, v〉.
Since |λ|2 6= 1 we have 〈v, v〉 = 0.
Since v 6= 0 we see that v ∈ V0 and so v = Pv ∈ ∂H2

C.

Moreover, λ
−1 6= λ and there exists w ∈ C2,1 − {0} with Aw = λ

−1
w.

As above 〈w,w〉 = |λ|−2〈w,w〉. So w ∈ V0.
Hence A has a second fixed point w = Pw ∈ ∂H2

C.

Then v and w are attracting/repelling fixed points of A in ∂H2
C.

It is not hard to show A has no other fixed points in H
2

C.

Thus A has an eigenvalue λ with |λ| 6= 1 if and only if A is loxodromic.

Since λ and λ
−1

are two eigenvalues, the third must be λλ−1.

Therefore tr(A) = λ+ λ
−1

+ λλ−1.

Let a be the geodesic with endpoints v and w , called the axis of A.
A translates along a by distance ` and rotates around a an angle φ.

Then λ = e±`/2e−iφ/3 and tr(A) = 2 cosh(`/2)e−iφ/3 + e2iφ/3.



Non-diagonalizable elements of SU(2, 1)

Suppose that A ∈ SU(2, 1) has a repeated eigenvalue λ ∈ C.
By the previous slide, we have |λ| = 1, that is λ = e iφ.

Suppose A is non-diagonalizable.
Then there exist v and w in C2,1 − {0} with Av = λv and Aw = λw + v.
Then 〈v,w〉 = 〈Av,Aw〉 = 〈λv, λw〉+ 〈λv, v〉 = |λ|2〈v,w〉+ λ〈v, v〉.
As |λ| = 1 we see that v ∈ V0 and v = Pv ∈ ∂H2

C.

It is not hard to show v is the only fixed point of A in H
2

C.
Thus A is non-diagonalizable if and only if A is parabolic.

There are three possibilities

I λ has multiplicity 2.

I λ has multiplicity 3 and A has minimal polynomial (t − λ)2.

I λ has multiplicity 3 and A has minimal polynomial (t − λ)3.

In the first case λ = e iφ and the third eigenvalue is e−2iφ 6= e iφ.
Then A is screw-parabolic.

In the second and third case λ3 = 1.
Then (projectively) A is conjugate to a Heisenberg translation.
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Diagonalizable maps with unit eigenvalues

The one remaining case to consider is:
Diagonalizable A ∈ SU(2, 1) with all eigenvalues λ of A have |λ| = 1.
As A diagonalizable, there exists a basis of eigenvectors for SU(2, 1).
Since eigenvectors with distinct eigenvalues are Hermitian orthogonal:
There exists an eigenvector v of A in V− corresponding to a fixed point
v = Pv ∈ H2.
A diagonalizable with unit modulus eigenvalues if and only if A is elliptic.

The possibilities are

I A has three distinct eigenvalues. There are three conjugacy classes
depending on which eigenvector lies in V−. A is regular elliptic.

I A has an eigenvector λ of multiplicity 2. A is a complex reflection.
I If the 2-dimensional eigenspace Vλ intersects V−.

A is complex reflection in the complex line PVλ.
I If the 2-dimensional eigenspace Vλ lies in V+.

A is complex reflection in a point (comes from PVλ−2 ).

I A has an eigenvector of multiplicity 3. A is projectively the identity.
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Goldman’s discriminant function

Let A ∈ SU(2, 1) and write τ = tr(A). Characteristic polynomial is
χA(x) = x3 − τx2 + τx − 1.
Define Goldman’s discriminant function f (τ) by
f (τ) = |τ |4 − 4τ 3 − 4τ 3 + 18|τ |2 − 27.
Then f (τ) = 0 if and only if χA(x) and χ′A(x) have a common root,
so if and only if A has a repeated eigenvalue.

We can use f (τ) to characterise isometries:

I f (τ) > 0 if and only if A is loxodromic

I f (τ) = 0 if and only if A is parabolic or a complex reflection

I f (τ) < 0 if and only if A is regular elliptic

The curve f (τ) = 0 is a classical curve called a deltoid.

I τ outside deltoid if and only if f (τ) > 0

I τ on deltoid if and only if f (τ) = 0

I τ inside deltoid if and only if f (τ) < 0
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The deltoid f (τ) = 0
f (τ) = |τ |4 − 4τ 3 − 4τ 3 + 18|τ |2 − 27 = 0.



Two generator subgroups of SU(2, 1)

We want to parametrise subgroups 〈A,B〉 < SU(2, 1) up to conjugation.
Traces give a convenient way to do this.

Theorem. Wen
Let A,B ∈ SL(3,C). Suppose Γ = 〈A,B〉 is Zariski dense.
Then Γ is determined up to conjugation by the nine traces
tr(A), tr(A−1), tr(B), tr(B−1), tr(AB), tr(B−1A−1),
tr(A−1B), tr(B−1A), tr[A,B] = tr(ABA−1B−1).

Note that |tr[A,B]| and Re
(
tr[A,B]

)
are determined by the other traces.

We only need to know the sign of Im
(
tr[A,B]

)
.

This is consistent with the fact that SL(3,C) has complex dimension 8.

Corollary. Lawton, Will
Let A,B ∈ SU(2, 1). Suppose Γ = 〈A,B〉 is Zariski dense.
Then Γ is determined up to conjugation by the five traces
tr(A), tr(B), tr(AB), tr(A−1B), tr[A,B].

Again we only need to know the sign of Im
(
tr[A,B]

)
.

This is consistent with the fact that SU(2, 1) has complex dimension 4.



The three holed sphere

Let Y be a three holed sphere (sometimes called pair of pants).
If the three boundary curves are denoted α, β, γ then
The fundamental group of Y is π1(Y ) =

〈
[α], [β], [γ] : [αβγ] = id

〉
.

A B

C

α β

γ
Y

We want to study representations (conjugacy class of homomorphisms)
ρ : π1(Y ) −→ ΓY < SU(2, 1)
Let ρ([α]) = A, ρ([β]) = B, ρ([γ]) = C
Then ρ(π1(Y )) = ΓY is a subgroup of SU(2, 1)
generated by A, B, C with ABC = I .
In other words, C = (AB)−1 = B−1A−1.
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Representations of ΓY

Let ρ(π1(Y )) = ΓY < SU(2, 1). By Lawton-Will ΓY determined by
tr(A), tr(B), tr(C ), tr(A−1B), tr[A,B].
How do we make the last two symmetric in A, B, C?

Using C = (AB)−1 = B−1A−1

[B,C ] = BCB−1C−1 = BB−1A−1B−1AB = C [A,B]C−1

[C ,A] = CAC−1A−1 = B−1A−1AABA−1 = B−1[A,B]B
So tr[A,B] = tr[B,C ] = tr[C ,A].

I claim
tr(A−1B)− tr(A−1)tr(B) = tr(B−1C )− tr(B−1)tr(C )
= tr(C−1A)− tr(C−1)tr(A).

By the Cayley-Hamilton Theorem:
χA(A) = A3 − tr(A)A2 + tr(A−1)A− I = O.
Multiply on the right by A−1B and rearrange to get
AC−1 − tr(A)C−1 =A2B − tr(A)AB = A−1B − tr(A−1)B.
Take traces to get
tr(C−1A)− tr(C−1)tr(A) = tr(A−1B)− tr(A−1)tr(B).
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Geometric structure on Y

We suppose that A = ρ([α]), B = ρ([β]), C = ρ([γ]) are all loxodromic.
Let aα, aβ , aγ be the axes of A, B, C (geodesic joining fixed points).
Let cα, cβ , cγ be geodesics in homotopy classes [α], [β], [γ].
Then cα = aα/〈A〉, cβ = aβ/〈B〉, cγ = aγ/〈C 〉.

Let `α, `β , `γ be the (Bergman) lengths of cα, cβ , cγ .
Let φα, φβ , φγ be the holonomy angles around cα, cβ , cγ .
Then
tr(A) = 2 cosh(`α/2)e−iφα/3 + e2iφα/3,
tr(B) = 2 cosh(`β/2)e−iφβ/3 + e2iφβ/3,
tr(C ) = 2 cosh(`γ/2)e−iφγ/3 + e2iφγ/3.

The invariants tr(A−1B)− tr(A−1)tr(B) and tr[A,B] are harder to
interpret geometrically.


