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Dynamical classification of elements in PU(2,1)

A € PU(2,1) acts on the ﬁé so has a fixed point. We say
» Ais loxodromic if A fixes exactly 2 points of OHZ.
» A is parabolic if A fixes exactly 1 point of 8H(2C.
» Ais elliptic if A fixes at least 1 point of H2.

| claim:

A fixed point of A € PU(2, 1) corresponds to an eigenvector of the
associated matrix A in U(2,1) or SU(2, 1):

Suppose A € SU(2,1). We know A acts on ﬁé as A(z) = PAz where

z =Pz.

Suppose A has eigenvector v € C>! — {0} with eigenvalue ), so Av = \v.
Let v =Pv. Then A(v) = PAv =PAv =Pv = v.

Thus an eigenvector v of A corresponds to a fixed point v = Pv of A.
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A € PU(2,1) acts on the ﬁé so has a fixed point. We say
» Ais loxodromic if A fixes exactly 2 points of OHZ.
» A is parabolic if A fixes exactly 1 point of 8H(2C.
» Ais elliptic if A fixes at least 1 point of H2.

| claim:
A fixed point of A € PU(2, 1) corresponds to an eigenvector of the
associated matrix A in U(2,1) or SU(2, 1):

Suppose A € SU(2,1). We know A acts on ﬁé as A(z) = PAz where
z =Pz

Suppose A has eigenvector v € C>! — {0} with eigenvalue ), so Av = \v.
Let v =Pv. Then A(v) = PAv =PAv =Pv = v.
Thus an eigenvector v of A corresponds to a fixed point v = Pv of A.

The local dynamics around the v is determined by the eigenvalue .



Eigenvalues, determinant, trace

Suppose that A € SU(2,1), A € C and v € C>! — {0} with Av = )\v.
As A € SU(2,1) we know A=t = H1A*H.

So H'A*Hv = A~'v = A\~!v and so A~! is an eigenvalue of A*.
Therefore X is also an eigenvalue of A.

If |A] =1 then X' = X and this does not say anything!
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Hence, either (v,w) =0 or u = P



Eigenvalues, determinant, trace

Suppose that A € SU(2,1), A € C and v € C>! — {0} with Av = )\v.
As A € SU(2,1) we know A=t = H1A*H.

So H'A*Hv = A~'v = A\~!v and so A~! is an eigenvalue of A*.
Therefore X is also an eigenvalue of A.

If |A] =1 then X' = X and this does not say anything!

Suppose A, p € C and v, w € C>! — {0} with Av = Av and Aw = pw.
Then (v,w) = (Av, Aw) = (v, uw) = (v, w).

Hence, either (v,w) =0 or u = P

Since A € SU(2,1) we have 1 = det(A), the product of the eigenvalues.

Let 7 be tr(A), the sum of the eigenvalues. Then 7 = tr(A™1).
This implies that the characteristic polynomial of A is

xa(x) =x3 =72 +7x — 1= x> — tr(A)x® + tr(A~)x — 1.



Expanding/contracting dynamics

Suppose |A| # 1.

We have (v,v) = (Av, Av) = (Av, \v) = |A|?(v, V).
Since || # 1 we have (v,v) = 0.

Since v # 0 we see that v € V and so v = Pv € 9HZ.

Moreover, A~ # X and there exists w € C21 — {0} with Aw = X w.

As above (w,w) = [A\|~2(w,w). Sow € V.
Hence A has a second fixed point w = Pw € OHZ.

Then v and w are attracting/repelling fixed points of A in OHZ.
It is not hard to show A has no other fixed points in ﬁé.

Thus A has an eigenvalue A with |A| # 1 if and only if A is loxodromic.
Since A and X" are two eigenvalues, the third must be A\~
Therefore tr(A) = A+ A+ AA"L.

Let a be the geodesic with endpoints v and w, called the axis of A.
A translates along a by distance ¢ and rotates around a an angle ¢.

Then \ = ett/2e=/%/3 and tr(A) = 2 cosh(¢/2)e~¢/3 + e?/¢/3



Non-diagonalizable elements of SU(2, 1)

Suppose that A € SU(2,1) has a repeated eigenvalue A € C.
By the previous slide, we have |\| = 1, that is A\ = e/?.

Suppose A is non-diagonalizable.

Then there exist v and w in C>! — {0} with Av = \v and Aw = \w + v.
Then (v,w) = (Av, Aw) = (Av, A\w) + (Av,v) = [A[2(v,w) + A({v,v).

As [A| =1 we see that v € Vg and v = Pv € 9HZ.

It is not hard to show v is the only fixed point of A in He.

Thus A is non-diagonalizable if and only if A is parabolic.



Non-diagonalizable elements of SU(2, 1)

Suppose that A € SU(2,1) has a repeated eigenvalue A € C.
By the previous slide, we have |A\| = 1, that is A = e'?.

Suppose A is non-diagonalizable.
Then there exist v and w in C>! — {0} with Av = \v and Aw = \w + v.
Then (v,w) = (Av, Aw) = (Av, Aw) + (Av,v) = |A|?(v,w) + (v, V).
As [A| =1 we see that v € Vg and v = Pv € 9HZ.
It is not hard to show v is the only fixed point of A in He.
Thus A is non-diagonalizable if and only if A is parabolic.
There are three possibilities

> X has multiplicity 2.

» ) has multiplicity 3 and A has minimal polynomial (t — \)2.

» ) has multiplicity 3 and A has minimal polynomial (t — \)3.
In the first case A = e/® and the third eigenvalue is e =2/ £ /¢,
Then A is screw-parabolic.

In the second and third case A3 = 1.
Then (projectively) A is conjugate to a Heisenberg translation.



Diagonalizable maps with unit eigenvalues

The one remaining case to consider is:

Diagonalizable A € SU(2,1) with all eigenvalues A of A have |A| = 1.
As A diagonalizable, there exists a basis of eigenvectors for SU(2,1).
Since eigenvectors with distinct eigenvalues are Hermitian orthogonal:
There exists an eigenvector v of A in V_ corresponding to a fixed point
v =DPv € H?.

A diagonalizable with unit modulus eigenvalues if and only if A is elliptic.



Diagonalizable maps with unit eigenvalues

The one remaining case to consider is:

Diagonalizable A € SU(2,1) with all eigenvalues X of A have |\| = 1.

As A diagonalizable, there exists a basis of eigenvectors for SU(2,1).
Since eigenvectors with distinct eigenvalues are Hermitian orthogonal:
There exists an eigenvector v of A in V_ corresponding to a fixed point
v =DPv e H.

A diagonalizable with unit modulus eigenvalues if and only if A is elliptic.

The possibilities are
> A has three distinct eigenvalues. There are three conjugacy classes
depending on which eigenvector lies in V_. A is regular elliptic.
> A has an eigenvector A of multiplicity 2. A is a complex reflection.

> |If the 2-dimensional eigenspace V) intersects V_.
A is complex reflection in the complex line PV,.
> If the 2-dimensional eigenspace V) lies in V.
A is complex reflection in a point (comes from PV, —2).

> A has an eigenvector of multiplicity 3. A is projectively the identity.



Goldman’s discriminant function

Let A € SU(2,1) and write 7 = tr(A). Characteristic polynomial is
xa(x) =x3 —7x® +7x — 1.

Define Goldman's discriminant function f(7) by

f(r) = |7|* — 473 — 473 + 18|7|? — 27.

Then f(7) = 0 if and only if xa(x) and x/4(x) have a common root,
so if and only if A has a repeated eigenvalue.



Goldman’s discriminant function

Let A € SU(2,1) and write 7 = tr(A). Characteristic polynomial is
xa(x) =x3 —7x® +7x — 1.
Define Goldman's discriminant function f(7) by
f(r) = |7|* — 475 — 473 + 18|72 - 27.
Then f(7) = 0 if and only if xa(x) and x/4(x) have a common root,
so if and only if A has a repeated eigenvalue.
We can use f(7) to characterise isometries:
» f(7) > 0if and only if A is loxodromic
» f(7) =0 if and only if A is parabolic or a complex reflection
» f(7) < 0if and only if A is regular elliptic
The curve f(7) = 0 is a classical curve called a deltoid.
» 7 outside deltoid if and only if f(7) > 0
» 7 on deltoid if and only if f(7) =0
> 7 inside deltoid if and only if f(7) <0



The deltoid f(7) =0
f(r)=|r|* — 473 — 473 + 187 — 27 = 0.




Two generator subgroups of SU(2, 1)

We want to parametrise subgroups (A, B) < SU(2,1) up to conjugation.
Traces give a convenient way to do this.

Theorem. Wen

Let A, B € SL(3,C). Suppose I' = (A, B) is Zariski dense.
Then I is determined up to conjugation by the nine traces
tr(A), tr(A1Y), tr(B), tr(B71), tr(AB), tr(B~1A™1),
tr(A=1B), tr(B~1A), tr[A, B] = tr(ABA"1B71).

Note that [tr[A, B]| and Re (tr[A, B]) are determined by the other traces.

We only need to know the sign of Im (tr[A, B]).
This is consistent with the fact that SL(3,C) has complex dimension 8.

Corollary. Lawton, Will

Let A, B € SU(2,1). Suppose ' = (A, B) is Zariski dense.
Then T is determined up to conjugation by the five traces
tr(A), tr(B), tr(AB), tr(A~1B), tr[A, B].

Again we only need to know the sign of Im (tr[A, B])
This is consistent with the fact that SU(2, 1) has complex dimension 4.



The three holed sphere

Let Y be a three holed sphere (sometimes called pair of pants).
If the three boundary curves are denoted «, 3, v then
The fundamental group of Y is m1(Y) = ([, [6], 7] : [aBr] = id).
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The three holed sphere

Let Y be a three holed sphere (sometimes called pair of pants).
If the three boundary curves are denoted «, 3, v then
The fundamental group of Y is m1(Y) = ([o], [8], 1] : [aBr] = id).

.

=

Cc
We want to study representations (conjugacy class of homomorphisms)
p ’7T1(Y) — Iy < SU(2, 1)
Let p([o]) = A, p([8]) = B, p(7]) = C
Then p(m1(Y)) =Ty is a subgroup of SU(2,1)
generated by A, B, C with ABC = .
In other words, C = (AB)~! = B~1A-L.

A
W



Representations of [y

Let p(m1(Y)) =Ty < SU(2,1). By Lawton-Will 'y determined by
tr(A), tr(B), tr(C), tr(A~!B), tr[A, B].
How do we make the last two symmetric in A, B, C?
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Let p(m1(Y)) =Ty < SU(2,1). By Lawton-Will 'y determined by
tr(A), tr(B), tr(C), tr(A~!B), tr[A, B].
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Representations of [y

Let p(m1(Y)) =Ty < SU(2,1). By Lawton-Will 'y determined by
tr(A), tr(B), tr(C), tr(A~!B), tr[A, B].
How do we make the last two symmetric in A, B, C?

Using C = (AB)~! = B1A1

[B,C] = BCB-1C~' = BB~1A1B~1AB = C[A, B|C~!
[C,A] = CAC'A = B-'A-1AABA~! = B~![A, B|B
So tr[A, B] = tr[B, C] = tr[C, A].

| claim
tr(A=1B) — tr(A~Htr(B) = tr(B~1C) — tr(B~1)tr(C)
= tr(C1A) — tr(C1tr(A).

By the Cayley-Hamilton Theorem:

xA(A) = A3 — tr(A)A% + tr(A"H)A— 1 = O.

Multiply on the right by A=1B and rearrange to get

AC! —tr(A)C~1 =A?B — tr(A)AB = A~1B — tr(A71)B.
Take traces to get

tr(CLA) — tr(CHtr(A) = tr(A~1B) — tr(A~1)tr(B).



Geometric structure on Y

We suppose that A = p([a]), B = p([5]), C = p([7]) are all loxodromic.
Let a,, ag, a, be the axes of A, B, C (geodesic joining fixed points).
Let c., c3, ¢, be geodesics in homotopy classes [o], [5], [7]-

Then ¢, = an/(A), ¢ = ag/(B), ¢, = a,/(C).

Let ¢, (g, {, be the (Bergman) lengths of ¢, ¢g, c,.
Let ¢o, 3, ¢ be the holonomy angles around c,, cg, ¢c,.
Then

tr(A) = 2 cosh(ly/2)e /3 4 e2i%a/3,

tr(B) = 2cosh({g/2)e¢8/3 4 e2i¢5/3,

tr(C) = 2cosh(£,,/2)e92/3 4 e219+/3,

The invariants tr(A=*B) — tr(A~1)tr(B) and tr[A, B] are harder to
interpret geometrically.



