COMPLEX HYPERBOLIC GEOMETRY: 2. Eigenvalues and traces in $\operatorname{SU}(2,1)$

John R Parker

Durham University, UK
j.r.parker@durham.ac.uk http://maths.dur.ac.uk/~dma0jrp

Dynamical classification of elements in $\mathrm{PU}(2,1)$

$A \in \mathrm{PU}(2,1)$ acts on the $\overline{\mathbf{H}}_{\mathbb{C}}^{2}$ so has a fixed point. We say

- A is loxodromic if A fixes exactly 2 points of $\partial \mathbf{H}_{\mathbb{C}}^{2}$.
- A is parabolic if A fixes exactly 1 point of $\partial \mathbf{H}_{\mathbb{C}}^{2}$.
- A is elliptic if A fixes at least 1 point of $\mathbf{H}_{\mathbb{C}}^{2}$.

I claim:
A fixed point of $A \in \operatorname{PU}(2,1)$ corresponds to an eigenvector of the associated matrix A in $\mathrm{U}(2,1)$ or $\operatorname{SU}(2,1)$:
Suppose $A \in \operatorname{SU}(2,1)$. We know A acts on $\overline{\mathbf{H}}_{\mathbb{C}}^{2}$ as $A(z)=\mathbb{P} A \mathbf{z}$ where $z=\mathbb{P} \mathbf{z}$.

Suppose A has eigenvector $\mathbf{v} \in \mathbb{C}^{2,1}-\{\mathbf{0}\}$ with eigenvalue λ, so $A \mathbf{v}=\lambda \mathbf{v}$. Let $v=\mathbb{P} \mathbf{v}$. Then $A(v)=\mathbb{P} A \mathbf{v}=\mathbb{P} \lambda \mathbf{v}=\mathbb{P} \mathbf{v}=v$.
Thus an eigenvector \mathbf{v} of A corresponds to a fixed point $v=\mathbb{P} \mathbf{v}$ of A.

Dynamical classification of elements in $\mathrm{PU}(2,1)$

$A \in \mathrm{PU}(2,1)$ acts on the $\overline{\mathbf{H}}_{\mathbb{C}}^{2}$ so has a fixed point. We say

- A is loxodromic if A fixes exactly 2 points of $\partial \mathbf{H}_{\mathbb{C}}^{2}$.
- A is parabolic if A fixes exactly 1 point of $\partial \mathbf{H}_{\mathbb{C}}^{2}$.
- A is elliptic if A fixes at least 1 point of $\mathbf{H}_{\mathbb{C}}^{2}$.

I claim:
A fixed point of $A \in \mathrm{PU}(2,1)$ corresponds to an eigenvector of the associated matrix A in $\mathrm{U}(2,1)$ or $\operatorname{SU}(2,1)$:
Suppose $A \in \operatorname{SU}(2,1)$. We know A acts on $\overline{\mathbf{H}}_{\mathbb{C}}^{2}$ as $A(z)=\mathbb{P} A \mathbf{z}$ where $z=\mathbb{P} \mathbf{z}$.

Suppose A has eigenvector $\mathbf{v} \in \mathbb{C}^{2,1}-\{\mathbf{0}\}$ with eigenvalue λ, so $A \mathbf{v}=\lambda \mathbf{v}$. Let $v=\mathbb{P} \mathbf{v}$. Then $A(v)=\mathbb{P} A \mathbf{v}=\mathbb{P} \lambda \mathbf{v}=\mathbb{P} \mathbf{v}=v$.
Thus an eigenvector \mathbf{v} of A corresponds to a fixed point $v=\mathbb{P} \mathbf{v}$ of A.
The local dynamics around the v is determined by the eigenvalue λ.

Eigenvalues, determinant, trace

Suppose that $A \in \operatorname{SU}(2,1), \lambda \in \mathbb{C}$ and $\mathbf{v} \in \mathbb{C}^{2,1}-\{\mathbf{0}\}$ with $A \mathbf{v}=\lambda \mathbf{v}$. As $A \in \operatorname{SU}(2,1)$ we know $A^{-1}=H^{-1} A^{*} H$.

So $H^{-1} A^{*} H \mathbf{v}=A^{-1} \mathbf{v}=\lambda^{-1} \mathbf{v}$ and so λ^{-1} is an eigenvalue of A^{*}.
Therefore $\bar{\lambda}^{-1}$ is also an eigenvalue of A.
If $|\lambda|=1$ then $\bar{\lambda}^{-1}=\lambda$ and this does not say anything!

Eigenvalues, determinant, trace

Suppose that $A \in \operatorname{SU}(2,1), \lambda \in \mathbb{C}$ and $\mathbf{v} \in \mathbb{C}^{2,1}-\{\mathbf{0}\}$ with $A \mathbf{v}=\lambda \mathbf{v}$. As $A \in \operatorname{SU}(2,1)$ we know $A^{-1}=H^{-1} A^{*} H$.
So $H^{-1} A^{*} H \mathbf{v}=A^{-1} \mathbf{v}=\lambda^{-1} \mathbf{v}$ and so λ^{-1} is an eigenvalue of A^{*}.
Therefore $\bar{\lambda}^{-1}$ is also an eigenvalue of A.
If $|\lambda|=1$ then $\bar{\lambda}^{-1}=\lambda$ and this does not say anything!
Suppose $\lambda, \mu \in \mathbb{C}$ and $\mathbf{v}, \mathbf{w} \in \mathbb{C}^{2,1}-\{\mathbf{0}\}$ with $A \mathbf{v}=\lambda \mathbf{v}$ and $A \mathbf{w}=\mu \mathbf{w}$.
Then $\langle\mathbf{v}, \mathbf{w}\rangle=\langle A \mathbf{v}, A \mathbf{w}\rangle=\langle\lambda \mathbf{v}, \mu \mathbf{w}\rangle=\lambda \bar{\mu}\langle\mathbf{v}, \mathbf{w}\rangle$.
Hence, either $\langle\mathbf{v}, \mathbf{w}\rangle=0$ or $\mu=\bar{\lambda}^{-1}$.

Eigenvalues, determinant, trace

Suppose that $A \in \operatorname{SU}(2,1), \lambda \in \mathbb{C}$ and $\mathbf{v} \in \mathbb{C}^{2,1}-\{\mathbf{0}\}$ with $A \mathbf{v}=\lambda \mathbf{v}$. As $A \in \operatorname{SU}(2,1)$ we know $A^{-1}=H^{-1} A^{*} H$.
So $H^{-1} A^{*} H \mathbf{v}=A^{-1} \mathbf{v}=\lambda^{-1} \mathbf{v}$ and so λ^{-1} is an eigenvalue of A^{*}.
Therefore $\bar{\lambda}^{-1}$ is also an eigenvalue of A.
If $|\lambda|=1$ then $\bar{\lambda}^{-1}=\lambda$ and this does not say anything!
Suppose $\lambda, \mu \in \mathbb{C}$ and $\mathbf{v}, \mathbf{w} \in \mathbb{C}^{2,1}-\{\mathbf{0}\}$ with $A \mathbf{v}=\lambda \mathbf{v}$ and $A \mathbf{w}=\mu \mathbf{w}$.
Then $\langle\mathbf{v}, \mathbf{w}\rangle=\langle A \mathbf{v}, A \mathbf{w}\rangle=\langle\lambda \mathbf{v}, \mu \mathbf{w}\rangle=\lambda \bar{\mu}\langle\mathbf{v}, \mathbf{w}\rangle$.
Hence, either $\langle\mathbf{v}, \mathbf{w}\rangle=0$ or $\mu=\bar{\lambda}^{-1}$.
Since $A \in \operatorname{SU}(2,1)$ we have $1=\operatorname{det}(A)$, the product of the eigenvalues. Let τ be $\operatorname{tr}(A)$, the sum of the eigenvalues. Then $\bar{\tau}=\operatorname{tr}\left(A^{-1}\right)$.
This implies that the characteristic polynomial of A is
$\chi_{A}(x)=x^{3}-\tau x^{2}+\bar{\tau} x-1=x^{3}-\operatorname{tr}(A) x^{2}+\operatorname{tr}\left(A^{-1}\right) x-1$.

Expanding/contracting dynamics

Suppose $|\lambda| \neq 1$.
We have $\langle\mathbf{v}, \mathbf{v}\rangle=\langle A \mathbf{v}, A \mathbf{v}\rangle=\langle\lambda \mathbf{v}, \lambda \mathbf{v}\rangle=|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle$.
Since $|\lambda|^{2} \neq 1$ we have $\langle\mathbf{v}, \mathbf{v}\rangle=0$.
Since $\mathbf{v} \neq \mathbf{0}$ we see that $\mathbf{v} \in V_{0}$ and so $v=\mathbb{P} \mathbf{v} \in \partial \mathbf{H}_{\mathbb{C}}^{2}$.
Moreover, $\bar{\lambda}^{-1} \neq \lambda$ and there exists $\mathbf{w} \in \mathbb{C}^{2,1}-\{\mathbf{0}\}$ with $A \mathbf{w}=\bar{\lambda}^{-1} \mathbf{w}$.
As above $\langle\mathbf{w}, \mathbf{w}\rangle=|\lambda|^{-2}\langle\mathbf{w}, \mathbf{w}\rangle$. So $\mathbf{w} \in V_{0}$.
Hence A has a second fixed point $w=\mathbb{P} \mathbf{w} \in \partial \mathbf{H}_{\mathbb{C}}^{2}$.
Then v and w are attracting/repelling fixed points of A in $\partial \mathbf{H}_{\mathbb{C}}^{2}$.
It is not hard to show A has no other fixed points in $\overline{\mathbf{H}}_{\mathbb{C}}^{2}$.
Thus A has an eigenvalue λ with $|\lambda| \neq 1$ if and only if A is loxodromic.
Since λ and $\bar{\lambda}^{-1}$ are two eigenvalues, the third must be $\bar{\lambda} \lambda^{-1}$.
Therefore $\operatorname{tr}(A)=\lambda+\bar{\lambda}^{-1}+\bar{\lambda} \lambda^{-1}$.
Let a be the geodesic with endpoints v and w, called the axis of A.
A translates along a by distance ℓ and rotates around a an angle ϕ.
Then $\lambda=e^{ \pm \ell / 2} e^{-i \phi / 3}$ and $\operatorname{tr}(A)=2 \cosh (\ell / 2) e^{-i \phi / 3}+e^{2 i \phi / 3}$.

Non-diagonalizable elements of $\operatorname{SU}(2,1)$

Suppose that $A \in \mathrm{SU}(2,1)$ has a repeated eigenvalue $\lambda \in \mathbb{C}$. By the previous slide, we have $|\lambda|=1$, that is $\lambda=e^{i \phi}$.
Suppose A is non-diagonalizable.
Then there exist \mathbf{v} and \mathbf{w} in $\mathbb{C}^{2,1}-\{\mathbf{0}\}$ with $A \mathbf{v}=\lambda \mathbf{v}$ and $A \mathbf{w}=\lambda \mathbf{w}+\mathbf{v}$.
Then $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\boldsymbol{A} \mathbf{v}, A \mathbf{w}\rangle=\langle\lambda \mathbf{v}, \lambda \mathbf{w}\rangle+\langle\lambda \mathbf{v}, \mathbf{v}\rangle=|\lambda|^{2}\langle\mathbf{v}, \mathbf{w}\rangle+\lambda\langle\mathbf{v}, \mathbf{v}\rangle$.
As $|\lambda|=1$ we see that $\mathbf{v} \in V_{0}$ and $v=\mathbb{P} \mathbf{v} \in \partial \mathbb{H}_{\mathbb{C}}^{2}$.
It is not hard to show v is the only fixed point of A in $\overline{\mathbf{H}}_{\mathbb{C}}^{2}$.
Thus A is non-diagonalizable if and only if A is parabolic.

Non-diagonalizable elements of $\operatorname{SU}(2,1)$

Suppose that $A \in \mathrm{SU}(2,1)$ has a repeated eigenvalue $\lambda \in \mathbb{C}$. By the previous slide, we have $|\lambda|=1$, that is $\lambda=e^{i \phi}$.
Suppose A is non-diagonalizable.
Then there exist \mathbf{v} and \mathbf{w} in $\mathbb{C}^{2,1}-\{\mathbf{0}\}$ with $A \mathbf{v}=\lambda \mathbf{v}$ and $A \mathbf{w}=\lambda \mathbf{w}+\mathbf{v}$.
Then $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\boldsymbol{A} \mathbf{v}, A \mathbf{w}\rangle=\langle\lambda \mathbf{v}, \lambda \mathbf{w}\rangle+\langle\lambda \mathbf{v}, \mathbf{v}\rangle=|\lambda|^{2}\langle\mathbf{v}, \mathbf{w}\rangle+\lambda\langle\mathbf{v}, \mathbf{v}\rangle$.
As $|\lambda|=1$ we see that $\mathbf{v} \in V_{0}$ and $v=\mathbb{P} \mathbf{v} \in \partial \mathbb{H}_{\mathbb{C}}^{2}$.
It is not hard to show v is the only fixed point of A in $\overline{\mathbf{H}}_{\mathbb{C}}^{2}$.
Thus A is non-diagonalizable if and only if A is parabolic.
There are three possibilities

- λ has multiplicity 2.
- λ has multiplicity 3 and A has minimal polynomial $(t-\lambda)^{2}$.
- λ has multiplicity 3 and A has minimal polynomial $(t-\lambda)^{3}$. In the first case $\lambda=e^{i \phi}$ and the third eigenvalue is $e^{-2 i \phi} \neq e^{i \phi}$. Then A is screw-parabolic.

In the second and third case $\lambda^{3}=1$.
Then (projectively) A is conjugate to a Heisenberg translation.

Diagonalizable maps with unit eigenvalues

The one remaining case to consider is:
Diagonalizable $A \in \operatorname{SU}(2,1)$ with all eigenvalues λ of A have $|\lambda|=1$. As A diagonalizable, there exists a basis of eigenvectors for $\mathrm{SU}(2,1)$. Since eigenvectors with distinct eigenvalues are Hermitian orthogonal: There exists an eigenvector \mathbf{v} of A in V_{-}corresponding to a fixed point $v=\mathbb{P} \mathbf{v} \in \mathbf{H}^{2}$.
A diagonalizable with unit modulus eigenvalues if and only if A is elliptic.

Diagonalizable maps with unit eigenvalues

The one remaining case to consider is:
Diagonalizable $A \in \operatorname{SU}(2,1)$ with all eigenvalues λ of A have $|\lambda|=1$. As A diagonalizable, there exists a basis of eigenvectors for $\mathrm{SU}(2,1)$. Since eigenvectors with distinct eigenvalues are Hermitian orthogonal: There exists an eigenvector \mathbf{v} of A in V_{-}corresponding to a fixed point $v=\mathbb{P} \mathbf{v} \in \mathbf{H}^{2}$.
A diagonalizable with unit modulus eigenvalues if and only if A is elliptic.
The possibilities are

- A has three distinct eigenvalues. There are three conjugacy classes depending on which eigenvector lies in $V_{-.} A$ is regular elliptic.
- A has an eigenvector λ of multiplicity $2 . A$ is a complex reflection.
- If the 2-dimensional eigenspace V_{λ} intersects V_{-}. A is complex reflection in the complex line $\mathbb{P} V_{\lambda}$.
- If the 2-dimensional eigenspace V_{λ} lies in V_{+}. A is complex reflection in a point (comes from $\mathbb{P} V_{\lambda^{-2}}$).
- A has an eigenvector of multiplicity 3. A is projectively the identity.

Goldman's discriminant function

Let $A \in \operatorname{SU}(2,1)$ and write $\tau=\operatorname{tr}(A)$. Characteristic polynomial is $\chi_{A}(x)=x^{3}-\tau x^{2}+\bar{\tau} x-1$.
Define Goldman's discriminant function $f(\tau)$ by $f(\tau)=|\tau|^{4}-4 \tau^{3}-4 \bar{\tau}^{3}+18|\tau|^{2}-27$.
Then $f(\tau)=0$ if and only if $\chi_{A}(x)$ and $\chi_{A}^{\prime}(x)$ have a common root, so if and only if A has a repeated eigenvalue.

Goldman's discriminant function

Let $A \in \operatorname{SU}(2,1)$ and write $\tau=\operatorname{tr}(A)$. Characteristic polynomial is $\chi_{A}(x)=x^{3}-\tau x^{2}+\bar{\tau} x-1$.
Define Goldman's discriminant function $f(\tau)$ by $f(\tau)=|\tau|^{4}-4 \tau^{3}-4 \bar{\tau}^{3}+18|\tau|^{2}-27$.
Then $f(\tau)=0$ if and only if $\chi_{A}(x)$ and $\chi_{A}^{\prime}(x)$ have a common root, so if and only if A has a repeated eigenvalue.

We can use $f(\tau)$ to characterise isometries:

- $f(\tau)>0$ if and only if A is loxodromic
- $f(\tau)=0$ if and only if A is parabolic or a complex reflection
- $f(\tau)<0$ if and only if A is regular elliptic

The curve $f(\tau)=0$ is a classical curve called a deltoid.

- τ outside deltoid if and only if $f(\tau)>0$
- τ on deltoid if and only if $f(\tau)=0$
- τ inside deltoid if and only if $f(\tau)<0$

The deltoid $f(\tau)=0$

$$
f(\tau)=|\tau|^{4}-4 \tau^{3}-4 \bar{\tau}^{3}+18|\tau|^{2}-27=0
$$

Two generator subgroups of $\operatorname{SU}(2,1)$

We want to parametrise subgroups $\langle A, B\rangle<\mathrm{SU}(2,1)$ up to conjugation.
Traces give a convenient way to do this.

Theorem. Wen

Let $A, B \in \operatorname{SL}(3, \mathbb{C})$. Suppose $\Gamma=\langle A, B\rangle$ is Zariski dense.
Then Γ is determined up to conjugation by the nine traces
$\operatorname{tr}(A), \operatorname{tr}\left(A^{-1}\right), \operatorname{tr}(B), \operatorname{tr}\left(B^{-1}\right), \operatorname{tr}(A B), \operatorname{tr}\left(B^{-1} A^{-1}\right)$,
$\operatorname{tr}\left(A^{-1} B\right), \operatorname{tr}\left(B^{-1} A\right), \operatorname{tr}[A, B]=\operatorname{tr}\left(A B A^{-1} B^{-1}\right)$.
Note that $|\operatorname{tr}[A, B]|$ and $\operatorname{Re}(\operatorname{tr}[A, B])$ are determined by the other traces.
We only need to know the sign of $\operatorname{Im}(\operatorname{tr}[A, B])$.
This is consistent with the fact that $\operatorname{SL}(3, \mathbb{C})$ has complex dimension 8 .
Corollary. Lawton, Will
Let $A, B \in \mathrm{SU}(2,1)$. Suppose $\Gamma=\langle A, B\rangle$ is Zariski dense.
Then Γ is determined up to conjugation by the five traces $\operatorname{tr}(A), \operatorname{tr}(B), \operatorname{tr}(A B), \operatorname{tr}\left(A^{-1} B\right), \operatorname{tr}[A, B]$.

Again we only need to know the sign of $\operatorname{Im}(\operatorname{tr}[A, B])$.
This is consistent with the fact that $\mathrm{SU}(2,1)$ has complex dimension 4.

The three holed sphere

Let Y be a three holed sphere (sometimes called pair of pants).
If the three boundary curves are denoted α, β, γ then
The fundamental group of Y is $\pi_{1}(Y)=\langle[\alpha],[\beta],[\gamma]:[\alpha \beta \gamma]=i d\rangle$.

The three holed sphere

Let Y be a three holed sphere (sometimes called pair of pants). If the three boundary curves are denoted α, β, γ then
The fundamental group of Y is $\pi_{1}(Y)=\langle[\alpha],[\beta],[\gamma]:[\alpha \beta \gamma]=i d\rangle$.

We want to study representations (conjugacy class of homomorphisms) $\rho: \pi_{1}(Y) \longrightarrow \Gamma_{Y}<\operatorname{SU}(2,1)$
Let $\rho([\alpha])=A, \rho([\beta])=B, \rho([\gamma])=C$
Then $\rho\left(\pi_{1}(Y)\right)=\Gamma_{Y}$ is a subgroup of $\operatorname{SU}(2,1)$ generated by A, B, C with $A B C=I$. In other words, $C=(A B)^{-1}=B^{-1} A^{-1}$.

Representations of Γ_{Y}

Let $\rho\left(\pi_{1}(Y)\right)=\Gamma_{Y}<\operatorname{SU}(2,1)$. By Lawton-Will Γ_{Y} determined by $\operatorname{tr}(A), \operatorname{tr}(B), \operatorname{tr}(C), \operatorname{tr}\left(A^{-1} B\right), \operatorname{tr}[A, B]$.
How do we make the last two symmetric in A, B, C ?

Representations of Γ_{Y}

Let $\rho\left(\pi_{1}(Y)\right)=\Gamma_{Y}<\operatorname{SU}(2,1)$. By Lawton-Will Γ_{Y} determined by $\operatorname{tr}(A), \operatorname{tr}(B), \operatorname{tr}(C), \operatorname{tr}\left(A^{-1} B\right), \operatorname{tr}[A, B]$. How do we make the last two symmetric in A, B, C ?
Using $C=(A B)^{-1}=B^{-1} A^{-1}$
$[B, C]=B C B^{-1} C^{-1}=B B^{-1} A^{-1} B^{-1} A B=C[A, B] C^{-1}$
$[C, A]=C A C^{-1} A^{-1}=B^{-1} A^{-1} A A B A^{-1}=B^{-1}[A, B] B$
So $\operatorname{tr}[A, B]=\operatorname{tr}[B, C]=\operatorname{tr}[C, A]$.

Representations of Γ_{Y}

Let $\rho\left(\pi_{1}(Y)\right)=\Gamma_{Y}<\mathrm{SU}(2,1)$. By Lawton-Will Γ_{Y} determined by $\operatorname{tr}(A), \operatorname{tr}(B), \operatorname{tr}(C), \operatorname{tr}\left(A^{-1} B\right), \operatorname{tr}[A, B]$.
How do we make the last two symmetric in A, B, C ?
Using $C=(A B)^{-1}=B^{-1} A^{-1}$
$[B, C]=B C B^{-1} C^{-1}=B B^{-1} A^{-1} B^{-1} A B=C[A, B] C^{-1}$
$[C, A]=C A C^{-1} A^{-1}=B^{-1} A^{-1} A A B A^{-1}=B^{-1}[A, B] B$
So $\operatorname{tr}[A, B]=\operatorname{tr}[B, C]=\operatorname{tr}[C, A]$.
I claim
$\operatorname{tr}\left(A^{-1} B\right)-\operatorname{tr}\left(A^{-1}\right) \operatorname{tr}(B)=\operatorname{tr}\left(B^{-1} C\right)-\operatorname{tr}\left(B^{-1}\right) \operatorname{tr}(C)$
$=\operatorname{tr}\left(C^{-1} A\right)-\operatorname{tr}\left(C^{-1}\right) \operatorname{tr}(A)$.
By the Cayley-Hamilton Theorem:
$\chi_{A}(A)=A^{3}-\operatorname{tr}(A) A^{2}+\operatorname{tr}\left(A^{-1}\right) A-I=O$.
Multiply on the right by $A^{-1} B$ and rearrange to get $A C^{-1}-\operatorname{tr}(A) C^{-1}=A^{2} B-\operatorname{tr}(A) A B=A^{-1} B-\operatorname{tr}\left(A^{-1}\right) B$.
Take traces to get

$$
\operatorname{tr}\left(C^{-1} A\right)-\operatorname{tr}\left(C^{-1}\right) \operatorname{tr}(A)=\operatorname{tr}\left(A^{-1} B\right)-\operatorname{tr}\left(A^{-1}\right) \operatorname{tr}(B) .
$$

Geometric structure on Y

We suppose that $A=\rho([\alpha]), B=\rho([\beta]), C=\rho([\gamma])$ are all loxodromic. Let $a_{\alpha}, a_{\beta}, a_{\gamma}$ be the axes of A, B, C (geodesic joining fixed points). Let $c_{\alpha}, c_{\beta}, c_{\gamma}$ be geodesics in homotopy classes $[\alpha],[\beta],[\gamma]$.
Then $c_{\alpha}=a_{\alpha} /\langle A\rangle, c_{\beta}=a_{\beta} /\langle B\rangle, c_{\gamma}=a_{\gamma} /\langle C\rangle$.
Let $\ell_{\alpha}, \ell_{\beta}, \ell_{\gamma}$ be the (Bergman) lengths of $c_{\alpha}, c_{\beta}, c_{\gamma}$.
Let $\phi_{\alpha}, \phi_{\beta}, \phi_{\gamma}$ be the holonomy angles around $c_{\alpha}, c_{\beta}, c_{\gamma}$.
Then
$\operatorname{tr}(A)=2 \cosh \left(\ell_{\alpha} / 2\right) e^{-i \phi_{\alpha} / 3}+e^{2 i \phi_{\alpha} / 3}$,
$\operatorname{tr}(B)=2 \cosh \left(\ell_{\beta} / 2\right) e^{-i i_{\beta} / 3}+e^{2 i \phi_{\beta} / 3}$,
$\operatorname{tr}(C)=2 \cosh \left(\ell_{\gamma} / 2\right) e^{-i \phi_{\gamma} / 3}+e^{2 i \phi_{\gamma} / 3}$.
The invariants $\operatorname{tr}\left(A^{-1} B\right)-\operatorname{tr}\left(A^{-1}\right) \operatorname{tr}(B)$ and $\operatorname{tr}[A, B]$ are harder to interpret geometrically.

