COMPLEX HYPERBOLIC GEOMETRY: 2. Eigenvalues and traces in SU(2,1)

> John R Parker Durham University, UK j.r.parker@durham.ac.uk http://maths.dur.ac.uk/~dma0jrp

Dynamical classification of elements in PU(2, 1)

 ${\it A} \in {\rm PU}(2,1)$ acts on the $\overline{\textbf{H}}_{\mathbb{C}}^2$ so has a fixed point. We say

- ► A is loxodromic if A fixes exactly 2 points of ∂H²_C.
- A is parabolic if A fixes exactly 1 point of $\partial \mathbf{H}^2_{\mathbb{C}}$.
- A is elliptic if A fixes at least 1 point of $\mathbf{H}^2_{\mathbb{C}}$.

I claim:

A fixed point of $A \in PU(2, 1)$ corresponds to an eigenvector of the associated matrix A in U(2, 1) or SU(2, 1):

Suppose $A \in SU(2,1)$. We know A acts on $\overline{\mathbf{H}}_{\mathbb{C}}^2$ as $A(z) = \mathbb{P}A\mathbf{z}$ where $z = \mathbb{P}\mathbf{z}$.

Suppose A has eigenvector $\mathbf{v} \in \mathbb{C}^{2,1} - \{\mathbf{0}\}$ with eigenvalue λ , so $A\mathbf{v} = \lambda \mathbf{v}$. Let $\mathbf{v} = \mathbb{P}\mathbf{v}$. Then $A(\mathbf{v}) = \mathbb{P}A\mathbf{v} = \mathbb{P}\lambda\mathbf{v} = \mathbb{P}\mathbf{v} = \mathbf{v}$. Thus an eigenvector \mathbf{v} of A corresponds to a fixed point $\mathbf{v} = \mathbb{P}\mathbf{v}$ of A.

Dynamical classification of elements in PU(2, 1)

 ${\it A} \in {\rm PU}(2,1)$ acts on the $\overline{\textbf{H}}_{\mathbb{C}}^2$ so has a fixed point. We say

- ► A is loxodromic if A fixes exactly 2 points of ∂H²_C.
- A is parabolic if A fixes exactly 1 point of $\partial \mathbf{H}^2_{\mathbb{C}}$.
- A is elliptic if A fixes at least 1 point of $\mathbf{H}^2_{\mathbb{C}}$.

I claim:

A fixed point of $A \in PU(2, 1)$ corresponds to an eigenvector of the associated matrix A in U(2, 1) or SU(2, 1):

Suppose $A \in SU(2, 1)$. We know A acts on $\overline{\mathbf{H}}_{\mathbb{C}}^2$ as $A(z) = \mathbb{P}A\mathbf{z}$ where $z = \mathbb{P}\mathbf{z}$.

Suppose A has eigenvector $\mathbf{v} \in \mathbb{C}^{2,1} - \{\mathbf{0}\}$ with eigenvalue λ , so $A\mathbf{v} = \lambda \mathbf{v}$. Let $\mathbf{v} = \mathbb{P}\mathbf{v}$. Then $A(\mathbf{v}) = \mathbb{P}A\mathbf{v} = \mathbb{P}\lambda\mathbf{v} = \mathbb{P}\mathbf{v} = \mathbf{v}$. Thus an eigenvector \mathbf{v} of A corresponds to a fixed point $\mathbf{v} = \mathbb{P}\mathbf{v}$ of A.

The local dynamics around the v is determined by the eigenvalue λ .

Eigenvalues, determinant, trace

Suppose that $A \in SU(2, 1)$, $\lambda \in \mathbb{C}$ and $\mathbf{v} \in \mathbb{C}^{2,1} - {\mathbf{0}}$ with $A\mathbf{v} = \lambda \mathbf{v}$. As $A \in SU(2, 1)$ we know $A^{-1} = H^{-1}A^*H$.

So $H^{-1}A^*H\mathbf{v} = A^{-1}\mathbf{v} = \lambda^{-1}\mathbf{v}$ and so λ^{-1} is an eigenvalue of A^* . Therefore $\overline{\lambda}^{-1}$ is also an eigenvalue of A. If $|\lambda| = 1$ then $\overline{\lambda}^{-1} = \lambda$ and this does not say anything!

Eigenvalues, determinant, trace

Suppose that $A \in SU(2, 1)$, $\lambda \in \mathbb{C}$ and $\mathbf{v} \in \mathbb{C}^{2,1} - {\mathbf{0}}$ with $A\mathbf{v} = \lambda \mathbf{v}$. As $A \in SU(2, 1)$ we know $A^{-1} = H^{-1}A^*H$.

So $H^{-1}A^*H\mathbf{v} = A^{-1}\mathbf{v} = \lambda^{-1}\mathbf{v}$ and so λ^{-1} is an eigenvalue of A^* . Therefore $\overline{\lambda}^{-1}$ is also an eigenvalue of A. If $|\lambda| = 1$ then $\overline{\lambda}^{-1} = \lambda$ and this does not say anything!

Suppose $\lambda, \mu \in \mathbb{C}$ and $\mathbf{v}, \mathbf{w} \in \mathbb{C}^{2,1} - \{\mathbf{0}\}$ with $A\mathbf{v} = \lambda \mathbf{v}$ and $A\mathbf{w} = \mu \mathbf{w}$. Then $\langle \mathbf{v}, \mathbf{w} \rangle = \langle A\mathbf{v}, A\mathbf{w} \rangle = \langle \lambda \mathbf{v}, \mu \mathbf{w} \rangle = \lambda \overline{\mu} \langle \mathbf{v}, \mathbf{w} \rangle$. Hence, either $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{0}$ or $\mu = \overline{\lambda}^{-1}$.

Eigenvalues, determinant, trace

Suppose that $A \in SU(2, 1)$, $\lambda \in \mathbb{C}$ and $\mathbf{v} \in \mathbb{C}^{2,1} - \{\mathbf{0}\}$ with $A\mathbf{v} = \lambda \mathbf{v}$. As $A \in SU(2, 1)$ we know $A^{-1} = H^{-1}A^*H$.

So $H^{-1}A^*H\mathbf{v} = A^{-1}\mathbf{v} = \lambda^{-1}\mathbf{v}$ and so λ^{-1} is an eigenvalue of A^* . Therefore $\overline{\lambda}^{-1}$ is also an eigenvalue of A. If $|\lambda| = 1$ then $\overline{\lambda}^{-1} = \lambda$ and this does not say anything!

Suppose $\lambda, \mu \in \mathbb{C}$ and $\mathbf{v}, \mathbf{w} \in \mathbb{C}^{2,1} - \{\mathbf{0}\}$ with $A\mathbf{v} = \lambda \mathbf{v}$ and $A\mathbf{w} = \mu \mathbf{w}$. Then $\langle \mathbf{v}, \mathbf{w} \rangle = \langle A\mathbf{v}, A\mathbf{w} \rangle = \langle \lambda \mathbf{v}, \mu \mathbf{w} \rangle = \lambda \overline{\mu} \langle \mathbf{v}, \mathbf{w} \rangle$. Hence, either $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ or $\mu = \overline{\lambda}^{-1}$.

Since $A \in SU(2, 1)$ we have 1 = det(A), the product of the eigenvalues. Let τ be tr(A), the sum of the eigenvalues. Then $\overline{\tau} = tr(A^{-1})$. This implies that the characteristic polynomial of A is

$$\chi_A(x) = x^3 - \tau x^2 + \overline{\tau} x - 1 = x^3 - \operatorname{tr}(A)x^2 + \operatorname{tr}(A^{-1})x - 1.$$

Expanding/contracting dynamics

Suppose $|\lambda| \neq 1$. We have $\langle \mathbf{v}, \mathbf{v} \rangle = \langle A\mathbf{v}, A\mathbf{v} \rangle = \langle \lambda \mathbf{v}, \lambda \mathbf{v} \rangle = |\lambda|^2 \langle \mathbf{v}, \mathbf{v} \rangle$. Since $|\lambda|^2 \neq 1$ we have $\langle \mathbf{v}, \mathbf{v} \rangle = 0$. Since $\mathbf{v} \neq \mathbf{0}$ we see that $\mathbf{v} \in V_0$ and so $\mathbf{v} = \mathbb{P}\mathbf{v} \in \partial \mathbf{H}_{\mathbb{C}}^2$. Moreover, $\overline{\lambda}^{-1} \neq \lambda$ and there exists $\mathbf{w} \in \mathbb{C}^{2,1} - \{\mathbf{0}\}$ with $A\mathbf{w} = \overline{\lambda}^{-1}\mathbf{w}$. As above $\langle \mathbf{w}, \mathbf{w} \rangle = |\lambda|^{-2} \langle \mathbf{w}, \mathbf{w} \rangle$. So $\mathbf{w} \in V_0$. Hence A has a second fixed point $\mathbf{w} = \mathbb{P}\mathbf{w} \in \partial \mathbf{H}_{\mathbb{C}}^2$.

Then v and w are attracting/repelling fixed points of A in $\partial \mathbf{H}_{\mathbb{C}}^2$. It is not hard to show A has no other fixed points in $\overline{\mathbf{H}}_{\mathbb{C}}^2$.

Thus A has an eigenvalue λ with $|\lambda| \neq 1$ if and only if A is loxodromic.

Since λ and $\overline{\lambda}^{-1}$ are two eigenvalues, the third must be $\overline{\lambda}\lambda^{-1}$. Therefore $\operatorname{tr}(A) = \lambda + \overline{\lambda}^{-1} + \overline{\lambda}\lambda^{-1}$.

Let *a* be the geodesic with endpoints *v* and *w*, called the axis of *A*. *A* translates along *a* by distance ℓ and rotates around *a* an angle ϕ .

Then $\lambda = e^{\pm \ell/2} e^{-i\phi/3}$ and $tr(A) = 2\cosh(\ell/2)e^{-i\phi/3} + e^{2i\phi/3}$.

Non-diagonalizable elements of SU(2, 1)

Suppose that $A \in SU(2, 1)$ has a repeated eigenvalue $\lambda \in \mathbb{C}$. By the previous slide, we have $|\lambda| = 1$, that is $\lambda = e^{i\phi}$.

Suppose A is non-diagonalizable.

Then there exist \mathbf{v} and \mathbf{w} in $\mathbb{C}^{2,1} - \{\mathbf{0}\}$ with $A\mathbf{v} = \lambda \mathbf{v}$ and $A\mathbf{w} = \lambda \mathbf{w} + \mathbf{v}$. Then $\langle \mathbf{v}, \mathbf{w} \rangle = \langle A\mathbf{v}, A\mathbf{w} \rangle = \langle \lambda \mathbf{v}, \lambda \mathbf{w} \rangle + \langle \lambda \mathbf{v}, \mathbf{v} \rangle = |\lambda|^2 \langle \mathbf{v}, \mathbf{w} \rangle + \lambda \langle \mathbf{v}, \mathbf{v} \rangle$. As $|\lambda| = 1$ we see that $\mathbf{v} \in V_0$ and $\mathbf{v} = \mathbb{P}\mathbf{v} \in \partial \mathbb{H}^2_{\mathbb{C}}$.

It is not hard to show v is the only fixed point of A in $\overline{\mathbf{H}}_{\mathbb{C}}^2$. Thus A is non-diagonalizable if and only if A is parabolic.

Non-diagonalizable elements of SU(2, 1)

Suppose that $A \in SU(2, 1)$ has a repeated eigenvalue $\lambda \in \mathbb{C}$. By the previous slide, we have $|\lambda| = 1$, that is $\lambda = e^{i\phi}$.

Suppose A is non-diagonalizable.

Then there exist \mathbf{v} and \mathbf{w} in $\mathbb{C}^{2,1} - \{\mathbf{0}\}$ with $A\mathbf{v} = \lambda \mathbf{v}$ and $A\mathbf{w} = \lambda \mathbf{w} + \mathbf{v}$. Then $\langle \mathbf{v}, \mathbf{w} \rangle = \langle A\mathbf{v}, A\mathbf{w} \rangle = \langle \lambda \mathbf{v}, \lambda \mathbf{w} \rangle + \langle \lambda \mathbf{v}, \mathbf{v} \rangle = |\lambda|^2 \langle \mathbf{v}, \mathbf{w} \rangle + \lambda \langle \mathbf{v}, \mathbf{v} \rangle$. As $|\lambda| = 1$ we see that $\mathbf{v} \in V_0$ and $\mathbf{v} = \mathbb{P}\mathbf{v} \in \partial \mathbb{H}^2_{\mathbb{C}}$.

It is not hard to show v is the only fixed point of A in $\overline{\mathbf{H}}_{\mathbb{C}}^2$. Thus A is non-diagonalizable if and only if A is parabolic.

There are three possibilities

- λ has multiplicity 2.
- λ has multiplicity 3 and A has minimal polynomial $(t \lambda)^2$.

• λ has multiplicity 3 and A has minimal polynomial $(t - \lambda)^3$. In the first case $\lambda = e^{i\phi}$ and the third eigenvalue is $e^{-2i\phi} \neq e^{i\phi}$. Then A is screw-parabolic.

In the second and third case $\lambda^3 = 1$. Then (projectively) A is conjugate to a Heisenberg translation.

Diagonalizable maps with unit eigenvalues

The one remaining case to consider is:

Diagonalizable $A \in SU(2, 1)$ with all eigenvalues λ of A have $|\lambda| = 1$. As A diagonalizable, there exists a basis of eigenvectors for SU(2, 1). Since eigenvectors with distinct eigenvalues are Hermitian orthogonal: There exists an eigenvector \mathbf{v} of A in V_{-} corresponding to a fixed point $v = \mathbb{P}\mathbf{v} \in \mathbf{H}^{2}$.

A diagonalizable with unit modulus eigenvalues if and only if A is elliptic.

Diagonalizable maps with unit eigenvalues

The one remaining case to consider is:

Diagonalizable $A \in SU(2, 1)$ with all eigenvalues λ of A have $|\lambda| = 1$. As A diagonalizable, there exists a basis of eigenvectors for SU(2, 1). Since eigenvectors with distinct eigenvalues are Hermitian orthogonal: There exists an eigenvector \mathbf{v} of A in V_{-} corresponding to a fixed point $v = \mathbb{P}\mathbf{v} \in \mathbf{H}^{2}$.

A diagonalizable with unit modulus eigenvalues if and only if A is elliptic.

The possibilities are

- ► A has three distinct eigenvalues. There are three conjugacy classes depending on which eigenvector lies in V_. A is regular elliptic.
- A has an eigenvector λ of multiplicity 2. A is a complex reflection.
 - If the 2-dimensional eigenspace V_λ intersects V_−. A is complex reflection in the complex line PV_λ.
 - If the 2-dimensional eigenspace V_λ lies in V₊. A is complex reflection in a point (comes from ℙV_{λ-2}).

► A has an eigenvector of multiplicity 3. A is projectively the identity.

Goldman's discriminant function

Let $A \in SU(2, 1)$ and write $\tau = tr(A)$. Characteristic polynomial is $\chi_A(x) = x^3 - \tau x^2 + \overline{\tau} x - 1$. Define Goldman's discriminant function $f(\tau)$ by $f(\tau) = |\tau|^4 - 4\tau^3 - 4\overline{\tau}^3 + 18|\tau|^2 - 27$. Then $f(\tau) = 0$ if and only if $\chi_A(x)$ and $\chi'_A(x)$ have a common root, so if and only if A has a repeated eigenvalue.

Goldman's discriminant function

Let $A \in SU(2, 1)$ and write $\tau = tr(A)$. Characteristic polynomial is $\chi_A(x) = x^3 - \tau x^2 + \overline{\tau}x - 1$. Define Goldman's discriminant function $f(\tau)$ by $f(\tau) = |\tau|^4 - 4\tau^3 - 4\overline{\tau}^3 + 18|\tau|^2 - 27$. Then $f(\tau) = 0$ if and only if $\chi_A(x)$ and $\chi'_A(x)$ have a common root, so if and only if A has a repeated eigenvalue.

We can use $f(\tau)$ to characterise isometries:

- $f(\tau) > 0$ if and only if A is loxodromic
- $f(\tau) = 0$ if and only if A is parabolic or a complex reflection

▶ f(τ) < 0 if and only if A is regular elliptic</p>

The curve $f(\tau) = 0$ is a classical curve called a deltoid.

- au outside deltoid if and only if f(au) > 0
- τ on deltoid if and only if $f(\tau) = 0$
- au inside deltoid if and only if f(au) < 0

The deltoid $f(\tau) = 0$ $f(\tau) = |\tau|^4 - 4\tau^3 - 4\overline{\tau}^3 + 18|\tau|^2 - 27 = 0.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Two generator subgroups of SU(2, 1)

We want to parametrise subgroups $\langle A, B \rangle < SU(2, 1)$ up to conjugation. Traces give a convenient way to do this.

Theorem. Wen

Let $A, B \in SL(3, \mathbb{C})$. Suppose $\Gamma = \langle A, B \rangle$ is Zariski dense. Then Γ is determined up to conjugation by the nine traces tr(A), $tr(A^{-1})$, tr(B), $tr(B^{-1})$, tr(AB), $tr(B^{-1}A^{-1})$, $tr(A^{-1}B)$, $tr(B^{-1}A)$, $tr[A, B] = tr(ABA^{-1}B^{-1})$.

Note that |tr[A, B]| and Re(tr[A, B]) are determined by the other traces. We only need to know the sign of Im(tr[A, B]).

This is consistent with the fact that $SL(3, \mathbb{C})$ has *complex* dimension 8.

Corollary. Lawton, Will Let $A, B \in SU(2, 1)$. Suppose $\Gamma = \langle A, B \rangle$ is Zariski dense. Then Γ is determined up to conjugation by the five traces tr(A), tr(B), tr(AB), $tr(A^{-1}B)$, tr[A, B].

Again we only need to know the sign of Im(tr[A, B]). This is consistent with the fact that SU(2, 1) has *complex* dimension 4.

The three holed sphere

Let Y be a three holed sphere (sometimes called pair of pants). If the three boundary curves are denoted α , β , γ then The fundamental group of Y is $\pi_1(Y) = \langle [\alpha], [\beta], [\gamma] : [\alpha\beta\gamma] = id \rangle$.

The three holed sphere

Let Y be a three holed sphere (sometimes called pair of pants). If the three boundary curves are denoted α , β , γ then The fundamental group of Y is $\pi_1(Y) = \langle [\alpha], [\beta], [\gamma] : [\alpha\beta\gamma] = id \rangle$.

We want to study representations (conjugacy class of homomorphisms) $\rho: \pi_1(Y) \longrightarrow \Gamma_Y < SU(2,1)$ Let $\rho([\alpha]) = A, \rho([\beta]) = B, \rho([\gamma]) = C$ Then $\rho(\pi_1(Y)) = \Gamma_Y$ is a subgroup of SU(2,1) generated by A, B, C with ABC = I. In other words, $C = (AB)^{-1} = B^{-1}A^{-1}$.

Representations of Γ_Y

Let $\rho(\pi_1(Y)) = \Gamma_Y < SU(2, 1)$. By Lawton-Will Γ_Y determined by tr(A), tr(B), tr(C), $tr(A^{-1}B)$, tr[A, B]. How do we make the last two symmetric in A, B, C?

Representations of Γ_Y

Let $\rho(\pi_1(Y)) = \Gamma_Y < SU(2, 1)$. By Lawton-Will Γ_Y determined by tr(A), tr(B), tr(C), $tr(A^{-1}B)$, tr[A, B]. How do we make the last two symmetric in A, B, C?

Using $C = (AB)^{-1} = B^{-1}A^{-1}$ $[B, C] = BCB^{-1}C^{-1} = BB^{-1}A^{-1}B^{-1}AB = C[A, B]C^{-1}$ $[C, A] = CAC^{-1}A^{-1} = B^{-1}A^{-1}AABA^{-1} = B^{-1}[A, B]B$ So tr[A, B] = tr[B, C] = tr[C, A].

Representations of Γ_Y

Let $\rho(\pi_1(Y)) = \Gamma_Y < SU(2, 1)$. By Lawton-Will Γ_Y determined by tr(A), tr(B), tr(C), $tr(A^{-1}B)$, tr[A, B]. How do we make the last two symmetric in A, B, C?

Using $C = (AB)^{-1} = B^{-1}A^{-1}$ $[B, C] = BCB^{-1}C^{-1} = BB^{-1}A^{-1}B^{-1}AB = C[A, B]C^{-1}$ $[C, A] = CAC^{-1}A^{-1} = B^{-1}A^{-1}AABA^{-1} = B^{-1}[A, B]B$ So tr[A, B] = tr[B, C] = tr[C, A].

I claim $\operatorname{tr}(A^{-1}B) - \operatorname{tr}(A^{-1})\operatorname{tr}(B) = \operatorname{tr}(B^{-1}C) - \operatorname{tr}(B^{-1})\operatorname{tr}(C)$ $= \operatorname{tr}(C^{-1}A) - \operatorname{tr}(C^{-1})\operatorname{tr}(A).$

By the Cayley-Hamilton Theorem: $\chi_A(A) = A^3 - \operatorname{tr}(A)A^2 + \operatorname{tr}(A^{-1})A - I = O.$ Multiply on the right by $A^{-1}B$ and rearrange to get $AC^{-1} - \operatorname{tr}(A)C^{-1} = A^2B - \operatorname{tr}(A)AB = A^{-1}B - \operatorname{tr}(A^{-1})B.$ Take traces to get $\operatorname{tr}(C^{-1}A) - \operatorname{tr}(C^{-1})\operatorname{tr}(A) = \operatorname{tr}(A^{-1}B) - \operatorname{tr}(A^{-1})\operatorname{tr}(B).$

Geometric structure on Y

We suppose that $A = \rho([\alpha])$, $B = \rho([\beta])$, $C = \rho([\gamma])$ are all loxodromic. Let a_{α} , a_{β} , a_{γ} be the axes of A, B, C (geodesic joining fixed points). Let c_{α} , c_{β} , c_{γ} be geodesics in homotopy classes $[\alpha]$, $[\beta]$, $[\gamma]$. Then $c_{\alpha} = a_{\alpha}/\langle A \rangle$, $c_{\beta} = a_{\beta}/\langle B \rangle$, $c_{\gamma} = a_{\gamma}/\langle C \rangle$. Let ℓ_{α} , ℓ_{β} , ℓ_{γ} be the (Bergman) lengths of c_{α} , c_{β} , c_{γ} . Let ϕ_{α} , ϕ_{β} , ϕ_{γ} be the holonomy angles around c_{α} , c_{β} , c_{γ} . Then $\operatorname{tr}(A) = 2 \cosh(\ell_{\alpha}/2)e^{-i\phi_{\alpha}/3} + e^{2i\phi_{\alpha}/3}$, $\operatorname{tr}(C) = 2 \cosh(\ell_{\gamma}/2)e^{-i\phi_{\gamma}/3} + e^{2i\phi_{\gamma}/3}$.

The invariants $tr(A^{-1}B) - tr(A^{-1})tr(B)$ and tr[A, B] are harder to interpret geometrically.