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Durham

The castle (centre) was begun in 1070.
In 1832 Durham University was founded, and the castle became a college.
The cathedral (on the right) was begun around 1090.
It was recently voted the most beautiful building in the UK.



Hermitian linear algebra

Let A = (aij) be a k × l complex matrix.
The Hermitian transpose of A is the l × k complex matrix A∗ = (aji ).
Take transpose, then complex conjugate.

A k × k matrix H is Hermitian if H = H∗.
Eigenvalues of Hermitian matrices are real.

A non-singular Hermitian matrix has signature (p, q) where p + q = k if
it has p positive eigenvalues and q negative eigenvalues.

If H is k × k Hermitian, define a Hermitian form 〈·, ·〉 on Ck by
〈z,w〉 = w∗Hz.
Note 〈λz + µz, v〉 = λ〈z, v〉+ µ〈w, v〉, 〈w, z〉 = 〈z,w〉 and 〈z, z〉 ∈ R.

A k × k matrix A is unitary with respect to H if
〈Az,Aw〉 = 〈z,w〉 ∀ z,w ∈ Ck

Equivalently A∗HA = H so A−1 = H−1A∗H if H invertible.
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The space C2,1

Define C2,1 to be C3 with a (non-singular) Hermitian form 〈z,w〉 of
signature (2, 1) associated to the Hermitian matrix H.

Example: H1 =

1 0 0
0 1 0
0 0 −1

 and 〈z,w〉1 = z1w1 + z2w2−z3w3

Or H2 =

0 0 1
0 1 0
1 0 0

 and 〈z,w〉2 = z1w3 + z2w2 + z3w1.

Let V− =
{
z ∈ C2,1|〈z, z〉 < 0

}
, V0 =

{
z ∈ C2,1 − {0}|〈z, z〉 = 0

}
,

Define P : C2,1 − {0} −→ CP2 to be the canonical projection

P :

z1

z2

z3

 7−→ [z1 : z2 : z3].
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Complex hyperbolic space

Let C2,1, V−, V0, P be as above. Then
complex hyperbolic 2-space is H2

C = PV−
Its boundary is ∂H2

C = PV0.

What does this look like more concretely?

Consider C2,1 with the first Hermitian form H1.
So 〈z, z〉1 = |z1|2 + |z2|2 − |z3|2.
If z ∈ V− then |z1|2 + |z2|2 − |z3|2 < 0 so z3 6= 0.
In H2

C = PV− we may take z3 = 1, so points satisfy |z1|2 + |z2|2 < 1.
Thus H2

C is the unit ball in C2.
Likewise ∂H2

C is the unit sphere in C2.

Consider C2,1 with the second Hermitian form H2.
So 〈z, z〉2 = z1z3 + z3z1 + |z2|2.
If z ∈ V− then z1z3 + z3z1 + |z2|2 < 0 so z3 6= 0.
In H2

C = PV− we may take z3 = 1, so points satisfy 2Re (z1) + |z2|2 < 0.
This is a paraboloid in C2 called the Siegel domain model of H2

C.
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The light cone for H1
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The set V0 for the first Hermitian form H1, sometimes called the light
cone.
The (complex) hyperplane z3 = 1 intersects V− in a ball which is H2

C.



The Bergman metric, distance function and volume form

We define a metric, called the Bergman metric, on H2 = PV− by

ds2 =
−4

〈z, z〉2
det

(
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)
.

It gives a distance function ρ.
Let z , w be points in H2

C corresponding to z, w in C2,1. Then

cosh2

(
ρ(z ,w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

.

This gives a volume form and Kähler form ω on H2
C.

Lift z = (z1, z2) ∈ H2
C ⊂ C2 to z =

z1

z2

1

 ∈ C2,1. For forms H1 or H2

dVol =
16

−〈z, z〉3
dvol, ω = 4i∂∂ log〈z, z〉

where d vol is the volume element
(1/2i)2d z1 ∧ d z1 ∧ d z2 ∧ d z2 = d x1d y1d x2d y2.

The Bergman metric, distance function, volume form and Kähler form
are only defined in terms of the Hermitian form.
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The group PU(H)

Let H be the Hermitian form of signature (2, 1) on C2,1.
Let the unitary group of H be U(H) =

{
A ∈ GL(3,C) | A∗HA = H

}
Equivalently 〈Az,Aw〉 = 〈z,w〉 for all z, w in C2,1.
If signature (2, 1) specified, not particular form then we write PU(2, 1).

Then A acts on H2
C as follows. If z ∈ H2

C corresponds to z ∈ C2,1 then:
A(z) = PAz.

Concretely: if z = (z1, z2), z =

z1

z2

1

 and A =

a b c
d e f
g h j

. Then

A(z) = P

az1 + bz2 + c
dz2 + ez2 + f
gz1 + hz2 + j

 =

(
az1 + bz2 + c

gz1 + hz2 + j
,

dz1 + ez2 + f

gz1 + hz2 + j

)
.

Note that the action of A is the same as the action of λA for any scalar λ.
So we define PU(2, 1) = U(2, 1)/{λI}.

We also define SU(2, 1) =
{
A ∈ U(2, 1) | det(A) = 1

}
.

Then PU(2, 1) = SU(2, 1)/{I , ωI , ωI} where ω = e2iπ/3.
So SU(2, 1) is a triple cover of SU(2, 1).
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Complex hyperbolic isometries

Since ds2, dVol and ρ are all only defined in terms of the Hermitian
form, we see that if A ∈ PU(2, 1) then A preserves all three of them.
So PU(2, 1) ⊂ Isom(H2

C) the group of complex hyperbolic isometries.

Also complex conjugation (z1, z2) 7−→ (z1, z2) preserves ds2, dVol and ρ.

Theorem.
Every isometry of H2

C is either holomorphic or anti-holomorphic.
Every holomorphic isometry of H2

C is given by some A ∈ PU(2, 1).
Every anti-holomorphic isometry of H2

C is given by complex conjugation
followed by some A ∈ PU(2, 1).

PU(2, 1) acts transitively on H2
C

If z , z ′ ∈ H2
C there is A ∈ PU(2, 1) with z ′ = A(z).

PU(2, 1) acts transitively on pairs of points in H2
C the same distance

apart
If z , z ′, w , w ′ ∈ H2

C with ρ(z ′,w ′) = ρ(z ,w)
there is A ∈ PU(2, 1) with z ′ = A(z) and w ′ = A(z).
PU(2, 1) acts transitively on pairs of points in ∂H2

C
If z , z ′, w , w ′ ∈ ∂H2

C there is A ∈ PU(2, 1) with z ′ = A(z), w ′ = A(z).
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Subspaces of H2
C – complex lines

The ball model and Siegel domain models of H2
C are embedded in C2.

Let L be a complex line in C2.
So L is the image under P of a complex hyperplane in C2,1 through 0.

If L ∩H2
C is nonempty, then the intersection is a disc (or halfplane).

We say this is a complex line in H2
C. We also refer to this as L.

The restriction of the Bergman metric to L is the Poincaré metric on the
hyperbolic plane with curvature −1.

Example. Let L0 = {0} × C. Then L0 intersects the unit ball in a disc
{(0, z2) ∈ C2 | |z2|2 < 1}.
On L0 the Hermitian form H1 has signature (1, 1). Then

ds2 =
4

(1− |z2|2)2
dz2dz2.

L0 is preserved by block diagonal matrices in P
(
U(1)×U(1, 1)

)
.

Any complex line in H2
C is the image of L0 under some A ∈ PU(2, 1).

The stabiliser is conjugate via A to P
(
U(1)×U(1, 1)

)
.

We sometimes think of the triple cover S
(
U(1)×U(1, 1)

)
.
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Subspaces of H2
C – Lagrangian planes

The ball model and Siegel domain models of H2
C are embedded in C2.

Let R be a totally real Lagrangian plane in C2.

If R ∩H2
C is nonempty, then the intersection is a topological disc.

We say this is a Lagrangian plane in H2
C. We also refer to this as R.

The restriction of the Bergman metric to R is the Klein-Beltrami metric
on the hyperbolic plane with curvature −1/4.

Example. Let R0 = R2 ⊂ C2. Then R0 intersects the unit ball in a disc
{(x1, x2) ∈ R2 | x2

1 + x2
2 < 1}.

On R0 the Hermitian form H1 is a quadratic form of signature (2, 1).

Then ds2 =
4

(1− x2
1 − x2

2 )2
(dx2

1 + dx2
2 − (x1dx2 − x2dx1)2).

R0 is preserved by matrices with real entries in PO(2, 1).

Any Lagrangian plane in H2
C is the image of R0 under some A ∈ PU(2, 1).

The stabiliser is conjugate via A to PO(2, 1)
We sometimes think of the cover SO(2, 1).
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We say this is a Lagrangian plane in H2
C. We also refer to this as R.

The restriction of the Bergman metric to R is the Klein-Beltrami metric
on the hyperbolic plane with curvature −1/4.

Example. Let R0 = R2 ⊂ C2. Then R0 intersects the unit ball in a disc
{(x1, x2) ∈ R2 | x2

1 + x2
2 < 1}.

On R0 the Hermitian form H1 is a quadratic form of signature (2, 1).

Then ds2 =
4

(1− x2
1 − x2

2 )2
(dx2

1 + dx2
2 − (x1dx2 − x2dx1)2).

R0 is preserved by matrices with real entries in PO(2, 1).

Any Lagrangian plane in H2
C is the image of R0 under some A ∈ PU(2, 1).

The stabiliser is conjugate via A to PO(2, 1)
We sometimes think of the cover SO(2, 1).
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Cartan’s angular invariant

Let z1, z2, z3 be three points in ∂H2
C.

Let z1, z2, z3 be the corresponding points in C2,1.
Define the Cartan angular invariant of these points to be
A(z1, z2, z3) = arg

(
−〈z1, z2〉〈z2, z3〉〈z3, z1〉

)
∈ [−π/2, π/2].

A(w1,w2,w3) = A(z1, z2, z3) ⇐⇒ ∃A ∈ PU(2, 1) with wj = A(zj).
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Geometrical interpretation.
z1 and z2 lie on a unique complex line L12.
Let Π12 be orthogonal projection onto L12.
Let T be the triangle in L12 with vertices z1, z2, Π12(z3).
Then A(z1, z2, z3) is half the (signed) Poincaré area of T .
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Cartan on complex lines and Lagrangian planes
If z1, z2, z3 all lie on a complex line then A(z1, z2, z3) = ±π/2.
(Sign depends on order of points round the triangle.)
z3 on L12 so Π12(z3) = z3. Then T is an ideal triangle.
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If z1, z2, z3 all lie on a Lagrangian plane then A(z1, z2, z3) = 0.
In this case Π12(z3) lies on geodesic with endpoints z1 and z2.
So T has degenerated and has area 0.
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