COMPLEX HYPERBOLIC GEOMETRY: 1. Introduction

John R Parker Durham University, UK

j.r.parker@durham.ac.uk http://maths.dur.ac.uk/~dma0jrp

Durham

The castle (centre) was begun in 1070. In 1832 Durham University was founded, and the castle became a college. The cathedral (on the right) was begun around 1090. It was recently voted the most beautiful building in the UK.

Hermitian linear algebra

Let $A = (a_{ij})$ be a $k \times l$ complex matrix. The Hermitian transpose of A is the $l \times k$ complex matrix $A^* = (\overline{a}_{ji})$. Take transpose, then complex conjugate.

Hermitian linear algebra

Let $A = (a_{ij})$ be a $k \times l$ complex matrix. The Hermitian transpose of A is the $l \times k$ complex matrix $A^* = (\overline{a}_{ji})$. Take transpose, then complex conjugate.

A $k \times k$ matrix H is Hermitian if $H = H^*$. Eigenvalues of Hermitian matrices are real.

A non-singular Hermitian matrix has signature (p, q) where p + q = k if it has p positive eigenvalues and q negative eigenvalues.

If *H* is $k \times k$ Hermitian, define a Hermitian form $\langle \cdot, \cdot \rangle$ on \mathbb{C}^k by $\langle z, w \rangle = w^* H z$. Note $\langle \lambda z + \mu z, v \rangle = \lambda \langle z, v \rangle + \mu \langle w, v \rangle$, $\langle w, z \rangle = \overline{\langle z, w \rangle}$ and $\langle z, z \rangle \in \mathbb{R}$.

Hermitian linear algebra

Let $A = (a_{ij})$ be a $k \times l$ complex matrix. The Hermitian transpose of A is the $l \times k$ complex matrix $A^* = (\overline{a}_{ji})$. Take transpose, then complex conjugate.

A $k \times k$ matrix H is Hermitian if $H = H^*$. Eigenvalues of Hermitian matrices are real.

A non-singular Hermitian matrix has signature (p, q) where p + q = k if it has p positive eigenvalues and q negative eigenvalues.

If *H* is $k \times k$ Hermitian, define a Hermitian form $\langle \cdot, \cdot \rangle$ on \mathbb{C}^k by $\langle z, w \rangle = w^* H z$. Note $\langle \lambda z + \mu z, v \rangle = \lambda \langle z, v \rangle + \mu \langle w, v \rangle$, $\langle w, z \rangle = \overline{\langle z, w \rangle}$ and $\langle z, z \rangle \in \mathbb{R}$. A $k \times k$ matrix *A* is unitary with respect to *H* if $\langle Az, Aw \rangle = \langle z, w \rangle \ \forall \ z, w \in \mathbb{C}^k$ Equivalently $A^*HA = H$ so $A^{-1} = H^{-1}A^*H$ if *H* invertible.

The space $\mathbb{C}^{2,1}$

Define $\mathbb{C}^{2,1}$ to be \mathbb{C}^3 with a (non-singular) Hermitian form $\langle \mathbf{z}, \mathbf{w} \rangle$ of signature (2,1) associated to the Hermitian matrix *H*.

Example:
$$H_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 and $\langle \mathbf{z}, \mathbf{w} \rangle_1 = z_1 \overline{w}_1 + z_2 \overline{w}_2 - z_3 \overline{w}_3$
Or $H_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ and $\langle \mathbf{z}, \mathbf{w} \rangle_2 = z_1 \overline{w}_3 + z_2 \overline{w}_2 + z_3 \overline{w}_1$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めへで

The space $\mathbb{C}^{2,1}$

Define $\mathbb{C}^{2,1}$ to be \mathbb{C}^3 with a (non-singular) Hermitian form $\langle \mathbf{z}, \mathbf{w} \rangle$ of signature (2, 1) associated to the Hermitian matrix *H*.

Example:
$$H_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 and $\langle \mathbf{z}, \mathbf{w} \rangle_1 = z_1 \overline{w}_1 + z_2 \overline{w}_2 - z_3 \overline{w}_3$
Or $H_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ and $\langle \mathbf{z}, \mathbf{w} \rangle_2 = z_1 \overline{w}_3 + z_2 \overline{w}_2 + z_3 \overline{w}_1$.
Let $V_- = \{ \mathbf{z} \in \mathbb{C}^{2,1} | \langle \mathbf{z}, \mathbf{z} \rangle < 0 \}$, $V_0 = \{ \mathbf{z} \in \mathbb{C}^{2,1} - \{0\} | \langle \mathbf{z}, \mathbf{z} \rangle = 0 \}$,
Define $\mathbb{P} : \mathbb{C}^{2,1} - \{\mathbf{0}\} \longrightarrow \mathbb{CP}^2$ to be the canonical projection
 $\mathbb{P} : \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \longmapsto [z_1 : z_2 : z_3].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Complex hyperbolic space

Let $\mathbb{C}^{2,1}$, V_- , V_0 , \mathbb{P} be as above. Then complex hyperbolic 2-space is $\mathbf{H}_{\mathbb{C}}^2 = \mathbb{P}V_-$ Its boundary is $\partial \mathbf{H}_{\mathbb{C}}^2 = \mathbb{P}V_0$.

Complex hyperbolic space

Let $\mathbb{C}^{2,1}$, V_- , V_0 , \mathbb{P} be as above. Then complex hyperbolic 2-space is $\mathbf{H}_{\mathbb{C}}^2 = \mathbb{P}V_-$ Its boundary is $\partial \mathbf{H}_{\mathbb{C}}^2 = \mathbb{P}V_0$.

What does this look like more concretely?

Consider $\mathbb{C}^{2,1}$ with the first Hermitian form H_1 . So $\langle \mathbf{z}, \mathbf{z} \rangle_1 = |z_1|^2 + |z_2|^2 - |z_3|^2$. If $\mathbf{z} \in V_-$ then $|z_1|^2 + |z_2|^2 - |z_3|^2 < 0$ so $z_3 \neq 0$. In $\mathbf{H}^2_{\mathbb{C}} = \mathbb{P}V_-$ we may take $z_3 = 1$, so points satisfy $|z_1|^2 + |z_2|^2 < 1$. Thus $\mathbf{H}^2_{\mathbb{C}}$ is the unit ball in \mathbb{C}^2 . Likewise $\partial \mathbf{H}^2_{\mathbb{C}}$ is the unit sphere in \mathbb{C}^2 .

Complex hyperbolic space

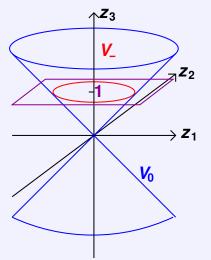
Let $\mathbb{C}^{2,1}$, V_- , V_0 , \mathbb{P} be as above. Then complex hyperbolic 2-space is $\mathbf{H}_{\mathbb{C}}^2 = \mathbb{P}V_-$ Its boundary is $\partial \mathbf{H}_{\mathbb{C}}^2 = \mathbb{P}V_0$.

What does this look like more concretely?

Consider $\mathbb{C}^{2,1}$ with the first Hermitian form H_1 . So $\langle \mathbf{z}, \mathbf{z} \rangle_1 = |z_1|^2 + |z_2|^2 - |z_3|^2$. If $\mathbf{z} \in V_-$ then $|z_1|^2 + |z_2|^2 - |z_3|^2 < 0$ so $z_3 \neq 0$. In $\mathbf{H}_{\mathbb{C}}^2 = \mathbb{P}V_-$ we may take $z_3 = 1$, so points satisfy $|z_1|^2 + |z_2|^2 < 1$. Thus $\mathbf{H}_{\mathbb{C}}^2$ is the unit ball in \mathbb{C}^2 . Likewise $\partial \mathbf{H}_{\mathbb{C}}^2$ is the unit sphere in \mathbb{C}^2 .

Consider $\mathbb{C}^{2,1}$ with the second Hermitian form H_2 . So $\langle \mathbf{z}, \mathbf{z} \rangle_2 = z_1 \overline{z}_3 + z_3 \overline{z}_1 + |z_2|^2$. If $\mathbf{z} \in V_-$ then $z_1 \overline{z}_3 + z_3 \overline{z}_1 + |z_2|^2 < 0$ so $z_3 \neq 0$. In $\mathbf{H}^2_{\mathbb{C}} = \mathbb{P}V_-$ we may take $z_3 = 1$, so points satisfy $2\text{Re}(z_1) + |z_2|^2 < 0$. This is a paraboloid in \mathbb{C}^2 called the Siegel domain model of $\mathbf{H}^2_{\mathbb{C}}$.

The light cone for H_1



The set V_0 for the first Hermitian form H_1 , sometimes called the light cone.

The (complex) hyperplane $z_3 = 1$ intersects V_- in a ball which is $H^2_{\mathbb{C}}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

We define a metric, called the Bergman metric, on $\mathbf{H}^2 = \mathbb{P}V_-$ by $ds^2 = \frac{-4}{\langle \mathbf{z}, \mathbf{z} \rangle^2} \det \begin{pmatrix} \langle \mathbf{z}, \mathbf{z} \rangle & \langle d\mathbf{z}, \mathbf{z} \rangle \\ \langle \mathbf{z}, d\mathbf{z} \rangle & \langle d\mathbf{z}, d\mathbf{z} \rangle \end{pmatrix}.$

We define a metric, called the Bergman metric, on $\mathbf{H}^2 = \mathbb{P}V_-$ by $ds^2 = \frac{-4}{\langle \mathbf{z}, \mathbf{z} \rangle^2} \det \begin{pmatrix} \langle \mathbf{z}, \mathbf{z} \rangle & \langle d\mathbf{z}, \mathbf{z} \rangle \\ \langle \mathbf{z}, d\mathbf{z} \rangle & \langle d\mathbf{z}, d\mathbf{z} \rangle \end{pmatrix}.$

It gives a distance function ρ . Let z, w be points in $\mathbf{H}^2_{\mathbb{C}}$ corresponding to z, w in $\mathbb{C}^{2,1}$. Then $\cosh^2\left(\frac{\rho(z,w)}{2}\right) = \frac{\langle z,w \rangle \langle w,z \rangle}{\langle z,z \rangle \langle w,w \rangle}.$

We define a metric, called the Bergman metric, on $\mathbf{H}^2 = \mathbb{P}V_-$ by $ds^2 = \frac{-4}{\langle \mathbf{z}, \mathbf{z} \rangle^2} \det \begin{pmatrix} \langle \mathbf{z}, \mathbf{z} \rangle & \langle d\mathbf{z}, \mathbf{z} \rangle \\ \langle \mathbf{z}, d\mathbf{z} \rangle & \langle d\mathbf{z}, d\mathbf{z} \rangle \end{pmatrix}$.

It gives a distance function ρ . Let z, w be points in $\mathbf{H}^2_{\mathbb{C}}$ corresponding to z, w in $\mathbb{C}^{2,1}$. Then $\cosh^2\left(\frac{\rho(z,w)}{2}\right) = \frac{\langle z,w \rangle \langle w,z \rangle}{\langle z,z \rangle \langle w,w \rangle}.$

This gives a volume form and Kähler form ω on $\mathbf{H}^2_{\mathbb{C}}$.

Lift
$$z = (z_1, z_2) \in \mathbf{H}^2_{\mathbb{C}} \subset \mathbb{C}^2$$
 to $\mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ 1 \end{pmatrix} \in \mathbb{C}^{2,1}$. For forms H_1 or H_2
$$d\operatorname{Vol} = \frac{16}{-\langle \mathbf{z}, \mathbf{z} \rangle^3} d\operatorname{vol}, \qquad \omega = 4i\partial\overline{\partial} \log\langle \mathbf{z}, \mathbf{z} \rangle$$
where d vol is the volume element
 $(1/2i)^2 dz_1 \wedge d\overline{z}_1 \wedge dz_2 \wedge d\overline{z}_2 = dx_1 dy_1 dx_2 dy_2$.

We define a metric, called the Bergman metric, on $\mathbf{H}^2 = \mathbb{P}V_-$ by $ds^2 = \frac{-4}{\langle \mathbf{z}, \mathbf{z} \rangle^2} \det \begin{pmatrix} \langle \mathbf{z}, \mathbf{z} \rangle & \langle d\mathbf{z}, \mathbf{z} \rangle \\ \langle \mathbf{z}, d\mathbf{z} \rangle & \langle d\mathbf{z}, d\mathbf{z} \rangle \end{pmatrix}.$

It gives a distance function ρ . Let z, w be points in $\mathbf{H}^2_{\mathbb{C}}$ corresponding to z, w in $\mathbb{C}^{2,1}$. Then $\cosh^2\left(\frac{\rho(z,w)}{2}\right) = \frac{\langle z,w \rangle \langle w,z \rangle}{\langle z,z \rangle \langle w,w \rangle}.$

This gives a volume form and Kähler form ω on $\mathbf{H}^2_{\mathbb{C}}$.

Lift
$$z = (z_1, z_2) \in \mathbf{H}^2_{\mathbb{C}} \subset \mathbb{C}^2$$
 to $\mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ 1 \end{pmatrix} \in \mathbb{C}^{2,1}$. For forms H_1 or H_2

 $d\operatorname{Vol} = \frac{1}{-\langle \mathbf{z}, \mathbf{z} \rangle^3} d\operatorname{Vol}, \qquad \omega = 4i\partial\partial \log\langle \mathbf{z}, \mathbf{z} \rangle$ where *d* vol is the volume element $(1/2i)^2 d z_1 \wedge d \overline{z}_1 \wedge d z_2 \wedge d \overline{z}_2 = d x_1 d y_1 d x_2 d y_2.$

The Bergman metric, distance function, volume form and Kähler form are only defined in terms of the Hermitian form.

The group PU(H)

Let *H* be the Hermitian form of signature (2,1) on $\mathbb{C}^{2,1}$. Let the unitary group of *H* be $U(H) = \{A \in GL(3, \mathbb{C}) \mid A^*HA = H\}$ Equivalently $\langle Az, Aw \rangle = \langle z, w \rangle$ for all *z*, *w* in $\mathbb{C}^{2,1}$. If signature (2,1) specified, not particular form then we write PU(2,1).

Then A acts on $\mathbf{H}^2_{\mathbb{C}}$ as follows. If $z \in \mathbf{H}^2_{\mathbb{C}}$ corresponds to $\mathbf{z} \in \mathbb{C}^{2,1}$ then: $A(z) = \mathbb{P}A\mathbf{z}$.

Concretely: if
$$z = (z_1, z_2)$$
, $\mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ 1 \end{pmatrix}$ and $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix}$. Then

$$A(z) = \mathbb{P} \begin{pmatrix} az_1 + bz_2 + c \\ dz_2 + ez_2 + f \\ gz_1 + hz_2 + j \end{pmatrix} = \begin{pmatrix} az_1 + bz_2 + c \\ gz_1 + hz_2 + j \end{pmatrix}, \quad \frac{dz_1 + ez_2 + f}{gz_1 + hz_2 + j} \end{pmatrix}.$$

Note that the action of A is the same as the action of λA for any scalar λ . So we define $PU(2,1) = U(2,1)/{\{\lambda I\}}$.

The group PU(H)

Let *H* be the Hermitian form of signature (2,1) on $\mathbb{C}^{2,1}$. Let the unitary group of *H* be $U(H) = \{A \in GL(3, \mathbb{C}) \mid A^*HA = H\}$ Equivalently $\langle Az, Aw \rangle = \langle z, w \rangle$ for all *z*, *w* in $\mathbb{C}^{2,1}$. If signature (2,1) specified, not particular form then we write PU(2,1).

Then A acts on $\mathbf{H}^2_{\mathbb{C}}$ as follows. If $z \in \mathbf{H}^2_{\mathbb{C}}$ corresponds to $\mathbf{z} \in \mathbb{C}^{2,1}$ then: $A(z) = \mathbb{P}A\mathbf{z}$.

Concretely: if
$$z = (z_1, z_2)$$
, $\mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ 1 \end{pmatrix}$ and $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix}$. Then
$$A(z) = \mathbb{P} \begin{pmatrix} az_1 + bz_2 + c \\ dz_2 + ez_2 + f \\ gz_1 + hz_2 + j \end{pmatrix} = \begin{pmatrix} az_1 + bz_2 + c \\ gz_1 + hz_2 + j \end{pmatrix}, \quad \frac{dz_1 + ez_2 + f}{gz_1 + hz_2 + j} \end{pmatrix}.$$

Note that the action of A is the same as the action of λA for any scalar λ . So we define $PU(2,1) = U(2,1)/{\{\lambda I\}}$.

We also define $\mathrm{SU}(2,1) = \{A \in \mathrm{U}(2,1) \mid \det(A) = 1\}$. Then $\mathrm{PU}(2,1) = \mathrm{SU}(2,1)/\{I, \omega I, \overline{\omega}I\}$ where $\omega = e^{2i\pi/3}$. So $\mathrm{SU}(2,1)$ is a triple cover of $\mathrm{SU}(2,1)$.

Since ds^2 , dVol and ρ are all only defined in terms of the Hermitian form, we see that if $A \in PU(2, 1)$ then A preserves all three of them. So $PU(2, 1) \subset Isom(\mathbf{H}^2_{\mathbb{C}})$ the group of complex hyperbolic isometries.

Since ds^2 , dVol and ρ are all only defined in terms of the Hermitian form, we see that if $A \in PU(2, 1)$ then A preserves all three of them. So $PU(2, 1) \subset Isom(\mathbb{H}^2_{\mathbb{C}})$ the group of complex hyperbolic isometries.

Also complex conjugation $(z_1, z_2) \mapsto (\overline{z}_1, \overline{z}_2)$ preserves ds^2 , dVol and ρ .

Since ds^2 , dVol and ρ are all only defined in terms of the Hermitian form, we see that if $A \in PU(2, 1)$ then A preserves all three of them. So $PU(2, 1) \subset Isom(\mathbf{H}^2_{\mathbb{C}})$ the group of complex hyperbolic isometries.

Also complex conjugation $(z_1, z_2) \mapsto (\overline{z}_1, \overline{z}_2)$ preserves ds^2 , dVol and ρ .

Theorem.

Every isometry of $\mathbf{H}^2_{\mathbb{C}}$ is either holomorphic or anti-holomorphic. Every holomorphic isometry of $\mathbf{H}^2_{\mathbb{C}}$ is given by some $A \in \mathrm{PU}(2, 1)$. Every anti-holomorphic isometry of $\mathbf{H}^2_{\mathbb{C}}$ is given by complex conjugation followed by some $A \in \mathrm{PU}(2, 1)$.

Since ds^2 , dVol and ρ are all only defined in terms of the Hermitian form, we see that if $A \in PU(2, 1)$ then A preserves all three of them. So $PU(2, 1) \subset Isom(\mathbb{H}^2_{\mathbb{C}})$ the group of complex hyperbolic isometries.

Also complex conjugation $(z_1, z_2) \mapsto (\overline{z}_1, \overline{z}_2)$ preserves ds^2 , dVol and ρ .

Theorem.

Every isometry of $\mathbf{H}^2_{\mathbb{C}}$ is either holomorphic or anti-holomorphic. Every holomorphic isometry of $\mathbf{H}^2_{\mathbb{C}}$ is given by some $A \in \mathrm{PU}(2, 1)$. Every anti-holomorphic isometry of $\mathbf{H}^2_{\mathbb{C}}$ is given by complex conjugation followed by some $A \in \mathrm{PU}(2, 1)$.

PU(2, 1) acts transitively on $\mathbb{H}^2_{\mathbb{C}}$ If $z, z' \in \mathbb{H}^2_{\mathbb{C}}$ there is $A \in \mathrm{PU}(2, 1)$ with z' = A(z). PU(2, 1) acts transitively on pairs of points in $\mathbb{H}^2_{\mathbb{C}}$ the same distance apart If $z, z', w, w' \in \mathbb{H}^2_{\mathbb{C}}$ with $\rho(z', w') = \rho(z, w)$ there is $A \in \mathrm{PU}(2, 1)$ with z' = A(z) and w' = A(z). PU(2, 1) acts transitively on pairs of points in $\partial \mathbb{H}^2_{\mathbb{C}}$ If $z, z', w, w' \in \partial \mathbb{H}^2_{\mathbb{C}}$ there is $A \in \mathrm{PU}(2, 1)$ with z' = A(z), w' = A(z).

Subspaces of $\mathbf{H}^2_{\mathbb{C}}$ – complex lines

The ball model and Siegel domain models of $\mathbf{H}^2_{\mathbb{C}}$ are embedded in \mathbb{C}^2 . Let L be a complex line in \mathbb{C}^2 .

So L is the image under \mathbb{P} of a complex hyperplane in $\mathbb{C}^{2,1}$ through **0**.

If $L \cap \mathbf{H}^2_{\mathbb{C}}$ is nonempty, then the intersection is a disc (or halfplane). We say this is a complex line in $\mathbf{H}^2_{\mathbb{C}}$. We also refer to this as L. The restriction of the Bergman metric to L is the Poincaré metric on the hyperbolic plane with curvature -1.

Subspaces of $\mathbf{H}_{\mathbb{C}}^2$ – complex lines

The ball model and Siegel domain models of $\mathbf{H}^2_{\mathbb{C}}$ are embedded in \mathbb{C}^2 . Let *L* be a complex line in \mathbb{C}^2 .

So L is the image under \mathbb{P} of a complex hyperplane in $\mathbb{C}^{2,1}$ through **0**.

If $L \cap \mathbf{H}^2_{\mathbb{C}}$ is nonempty, then the intersection is a disc (or halfplane). We say this is a complex line in $H^2_{\mathbb{C}}$. We also refer to this as L. The restriction of the Bergman metric to L is the Poincaré metric on the hyperbolic plane with curvature -1.

Example. Let $L_0 = \{0\} \times \mathbb{C}$. Then L_0 intersects the unit ball in a disc $\{(0, z_2) \in \mathbb{C}^2 \mid |z_2|^2 < 1\}.$ On L_0 the Hermitian form H_1 has signature (1, 1). Then $ds^2 = rac{4}{(1-|z_2|^2)^2} dz_2 d\overline{z}_2.$

 L_0 is preserved by block diagonal matrices in $P(U(1) \times U(1,1))$.

Subspaces of $\mathbf{H}^2_{\mathbb{C}}$ – complex lines

The ball model and Siegel domain models of $\mathbf{H}^2_{\mathbb{C}}$ are embedded in \mathbb{C}^2 . Let L be a complex line in \mathbb{C}^2 .

So L is the image under \mathbb{P} of a complex hyperplane in $\mathbb{C}^{2,1}$ through **0**.

If $L \cap \mathbf{H}^2_{\mathbb{C}}$ is nonempty, then the intersection is a disc (or halfplane). We say this is a complex line in $\mathbf{H}^2_{\mathbb{C}}$. We also refer to this as L. The restriction of the Bergman metric to L is the Poincaré metric on the hyperbolic plane with curvature -1.

Example. Let $L_0 = \{0\} \times \mathbb{C}$. Then L_0 intersects the unit ball in a disc $\{(0, z_2) \in \mathbb{C}^2 \mid |z_2|^2 < 1\}$. On L_0 the Hermitian form H_1 has signature (1, 1). Then $ds^2 = \frac{4}{(1 - |z_2|^2)^2} dz_2 d\overline{z}_2$. L_0 is preserved by block diagonal matrices in $P(U(1) \times U(1, 1))$.

Any complex line in $\mathbf{H}^2_{\mathbb{C}}$ is the image of L_0 under some $A \in \mathrm{PU}(2, 1)$. The stabiliser is conjugate via A to $\mathrm{P}(\mathrm{U}(1) \times \mathrm{U}(1, 1))$. We sometimes think of the triple cover $\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(1, 1))$.

Subspaces of $\mathbf{H}_{\mathbb{C}}^2$ – Lagrangian planes

The ball model and Siegel domain models of $\mathbf{H}^2_{\mathbb{C}}$ are embedded in \mathbb{C}^2 . Let *R* be a totally real Lagrangian plane in \mathbb{C}^2 .

If $R \cap \mathbf{H}^2_{\mathbb{C}}$ is nonempty, then the intersection is a topological disc. We say this is a Lagrangian plane in $\mathbf{H}^2_{\mathbb{C}}$. We also refer to this as R. The restriction of the Bergman metric to R is the Klein-Beltrami metric on the hyperbolic plane with curvature -1/4.

(日) (同) (三) (三) (三) (○) (○)

Subspaces of $\mathbf{H}_{\mathbb{C}}^2$ – Lagrangian planes

The ball model and Siegel domain models of $\mathbf{H}^2_{\mathbb{C}}$ are embedded in \mathbb{C}^2 . Let *R* be a totally real Lagrangian plane in \mathbb{C}^2 .

If $R \cap \mathbf{H}^2_{\mathbb{C}}$ is nonempty, then the intersection is a topological disc. We say this is a Lagrangian plane in $\mathbf{H}^2_{\mathbb{C}}$. We also refer to this as R. The restriction of the Bergman metric to R is the Klein-Beltrami metric on the hyperbolic plane with curvature -1/4.

Example. Let $R_0 = \mathbb{R}^2 \subset \mathbb{C}^2$. Then R_0 intersects the unit ball in a disc $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < 1\}$. On R_0 the Hermitian form H_1 is a quadratic form of signature (2, 1). Then $ds^2 = \frac{4}{(1 - x_1^2 - x_2^2)^2} (dx_1^2 + dx_2^2 - (x_1 dx_2 - x_2 dx_1)^2)$. R_0 is preserved by matrices with real entries in PO(2, 1).

(日) (同) (三) (三) (三) (○) (○)

Subspaces of $\mathbf{H}_{\mathbb{C}}^2$ – Lagrangian planes

The ball model and Siegel domain models of $\mathbf{H}^2_{\mathbb{C}}$ are embedded in \mathbb{C}^2 . Let *R* be a totally real Lagrangian plane in \mathbb{C}^2 .

If $R \cap \mathbf{H}^2_{\mathbb{C}}$ is nonempty, then the intersection is a topological disc. We say this is a Lagrangian plane in $\mathbf{H}^2_{\mathbb{C}}$. We also refer to this as R. The restriction of the Bergman metric to R is the Klein-Beltrami metric on the hyperbolic plane with curvature -1/4.

Example. Let $R_0 = \mathbb{R}^2 \subset \mathbb{C}^2$. Then R_0 intersects the unit ball in a disc $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < 1\}$. On R_0 the Hermitian form H_1 is a quadratic form of signature (2, 1). Then $ds^2 = \frac{4}{(1 - x_1^2 - x_2^2)^2} (dx_1^2 + dx_2^2 - (x_1 dx_2 - x_2 dx_1)^2)$. R_0 is preserved by matrices with real entries in PO(2, 1).

Any Lagrangian plane in $\mathbf{H}^2_{\mathbb{C}}$ is the image of R_0 under some $A \in \mathrm{PU}(2, 1)$. The stabiliser is conjugate via A to $\mathrm{PO}(2, 1)$ We sometimes think of the cover $\mathrm{SO}(2, 1)$.

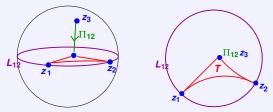
Cartan's angular invariant

Let z_1 , z_2 , z_3 be three points in $\partial \mathbf{H}^2_{\mathbb{C}}$. Let \mathbf{z}_1 , \mathbf{z}_2 , \mathbf{z}_3 be the corresponding points in $\mathbb{C}^{2,1}$. Define the Cartan angular invariant of these points to be $\mathbb{A}(z_1, z_2, z_3) = \arg(-\langle \mathbf{z}_1, \mathbf{z}_2 \rangle \langle \mathbf{z}_2, \mathbf{z}_3 \rangle \langle \mathbf{z}_3, \mathbf{z}_1 \rangle) \in [-\pi/2, \pi/2].$ $\mathbb{A}(w_1, w_2, w_3) = \mathbb{A}(z_1, z_2, z_3) \iff \exists A \in \mathrm{PU}(2, 1) \text{ with } w_j = A(z_j).$

Cartan's angular invariant

Let z_1 , z_2 , z_3 be three points in $\partial \mathbf{H}^2_{\mathbb{C}}$. Let \mathbf{z}_1 , \mathbf{z}_2 , \mathbf{z}_3 be the corresponding points in $\mathbb{C}^{2,1}$. Define the Cartan angular invariant of these points to be $\mathbb{A}(z_1, z_2, z_3) = \arg(-\langle \mathbf{z}_1, \mathbf{z}_2 \rangle \langle \mathbf{z}_2, \mathbf{z}_3 \rangle \langle \mathbf{z}_3, \mathbf{z}_1 \rangle) \in [-\pi/2, \pi/2].$

 $\mathbb{A}(w_1, w_2, w_3) = \mathbb{A}(z_1, z_2, z_3) \iff \exists A \in \mathrm{PU}(2, 1) \text{ with } w_j = A(z_j).$

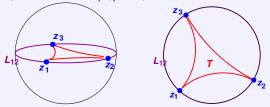


Geometrical interpretation.

 z_1 and z_2 lie on a unique complex line L_{12} . Let Π_{12} be orthogonal projection onto L_{12} . Let T be the triangle in L_{12} with vertices z_1 , z_2 , $\Pi_{12}(z_3)$. Then $\mathbb{A}(z_1, z_2, z_3)$ is half the (signed) Poincaré area of T.

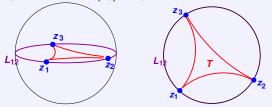
Cartan on complex lines and Lagrangian planes

If z_1 , z_2 , z_3 all lie on a complex line then $\mathbb{A}(z_1, z_2, z_3) = \pm \pi/2$. (Sign depends on order of points round the triangle.) z_3 on L_{12} so $\Pi_{12}(z_3) = z_3$. Then T is an ideal triangle.



Cartan on complex lines and Lagrangian planes

If z_1 , z_2 , z_3 all lie on a complex line then $\mathbb{A}(z_1, z_2, z_3) = \pm \pi/2$. (Sign depends on order of points round the triangle.) z_3 on L_{12} so $\Pi_{12}(z_3) = z_3$. Then T is an ideal triangle.



If z_1 , z_2 , z_3 all lie on a Lagrangian plane then $\mathbb{A}(z_1, z_2, z_3) = 0$. In this case $\Pi_{12}(z_3)$ lies on geodesic with endpoints z_1 and z_2 . So T has degenerated and has area 0.

