COMPLEX HYPERBOLIC GEOMETRY: 1. Introduction

Durham

The castle (centre) was begun in 1070.
In 1832 Durham University was founded, and the castle became a college.
The cathedral (on the right) was begun around 1090.
It was recently voted the most beautiful building in the UK.

Hermitian linear algebra

Let $A=\left(a_{i j}\right)$ be a $k \times /$ complex matrix.
The Hermitian transpose of A is the $I \times k$ complex matrix $A^{*}=\left(\bar{a}_{j i}\right)$.
Take transpose, then complex conjugate.

Hermitian linear algebra

Let $A=\left(a_{i j}\right)$ be a $k \times /$ complex matrix.
The Hermitian transpose of A is the $I \times k$ complex matrix $A^{*}=\left(\bar{a}_{j i}\right)$.
Take transpose, then complex conjugate.
A $k \times k$ matrix H is Hermitian if $H=H^{*}$.
Eigenvalues of Hermitian matrices are real.
A non-singular Hermitian matrix has signature (p, q) where $p+q=k$ if it has p positive eigenvalues and q negative eigenvalues.
If H is $k \times k$ Hermitian, define a Hermitian form $\langle\cdot, \cdot\rangle$ on \mathbb{C}^{k} by $\langle\mathbf{z}, \mathbf{w}\rangle=\mathbf{w}^{*} \mathrm{~Hz}$.
Note $\langle\lambda \mathbf{z}+\mu \mathbf{z}, \mathbf{v}\rangle=\lambda\langle\mathbf{z}, \mathbf{v}\rangle+\mu\langle\mathbf{w}, \mathbf{v}\rangle,\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle}$ and $\langle\mathbf{z}, \mathbf{z}\rangle \in \mathbb{R}$.

Hermitian linear algebra

Let $A=\left(a_{i j}\right)$ be a $k \times I$ complex matrix.
The Hermitian transpose of A is the $I \times k$ complex matrix $A^{*}=\left(\bar{a}_{j i}\right)$.
Take transpose, then complex conjugate.
A $k \times k$ matrix H is Hermitian if $H=H^{*}$.
Eigenvalues of Hermitian matrices are real.
A non-singular Hermitian matrix has signature (p, q) where $p+q=k$ if it has p positive eigenvalues and q negative eigenvalues.

If H is $k \times k$ Hermitian, define a Hermitian form $\langle\cdot, \cdot\rangle$ on \mathbb{C}^{k} by $\langle\mathbf{z}, \mathbf{w}\rangle=\mathbf{w}^{*} \mathrm{~Hz}$.
Note $\langle\lambda \mathbf{z}+\mu \mathbf{z}, \mathbf{v}\rangle=\lambda\langle\mathbf{z}, \mathbf{v}\rangle+\mu\langle\mathbf{w}, \mathbf{v}\rangle,\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle}$ and $\langle\mathbf{z}, \mathbf{z}\rangle \in \mathbb{R}$.
A $k \times k$ matrix A is unitary with respect to H if $\langle A \mathbf{z}, A \mathbf{w}\rangle=\langle\mathbf{z}, \mathbf{w}\rangle \forall \mathbf{z}, \mathbf{w} \in \mathbb{C}^{k}$
Equivalently $A^{*} H A=H$ so $A^{-1}=H^{-1} A^{*} H$ if H invertible.

The space $\mathbb{C}^{2,1}$

Define $\mathbb{C}^{2,1}$ to be \mathbb{C}^{3} with a (non-singular) Hermitian form $\langle\mathbf{z}, \mathbf{w}\rangle$ of signature $(2,1)$ associated to the Hermitian matrix H.
Example: $H_{1}=\left(\begin{array}{llc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ and $\langle\mathbf{z}, \mathbf{w}\rangle_{1}=z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}-z_{3} \bar{w}_{3}$
Or $H_{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ and $\langle\mathbf{z}, \mathbf{w}\rangle_{2}=z_{1} \bar{w}_{3}+z_{2} \bar{w}_{2}+z_{3} \bar{w}_{1}$.

The space $\mathbb{C}^{2,1}$

Define $\mathbb{C}^{2,1}$ to be \mathbb{C}^{3} with a (non-singular) Hermitian form $\langle\mathbf{z}, \mathbf{w}\rangle$ of signature $(2,1)$ associated to the Hermitian matrix H.
Example: $H_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ and $\langle\mathbf{z}, \mathbf{w}\rangle_{1}=z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}-z_{3} \bar{w}_{3}$
Or $H_{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ and $\langle\mathbf{z}, \mathbf{w}\rangle_{2}=z_{1} \bar{w}_{3}+z_{2} \bar{w}_{2}+z_{3} \bar{w}_{1}$.
Let $V_{-}=\left\{\mathbf{z} \in \mathbb{C}^{2,1} \mid\langle\mathbf{z}, \mathbf{z}\rangle<0\right\}, V_{0}=\left\{\mathbf{z} \in \mathbb{C}^{2,1}-\{0\} \mid\langle\mathbf{z}, \mathbf{z}\rangle=0\right\}$,
Define $\mathbb{P}: \mathbb{C}^{2,1}-\{\mathbf{0}\} \longrightarrow \mathbb{C P}^{2}$ to be the canonical projection
$\mathbb{P}:\left(\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right) \longmapsto\left[z_{1}: z_{2}: z_{3}\right]$.

Complex hyperbolic space

Let $\mathbb{C}^{2,1}, V_{-}, V_{0}, \mathbb{P}$ be as above. Then complex hyperbolic 2-space is $\mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{-}$ Its boundary is $\partial \mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{0}$.

Complex hyperbolic space

Let $\mathbb{C}^{2,1}, V_{-}, V_{0}, \mathbb{P}$ be as above. Then complex hyperbolic 2-space is $\mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{-}$ Its boundary is $\partial \mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{0}$.
What does this look like more concretely?
Consider $\mathbb{C}^{2,1}$ with the first Hermitian form H_{1}. So $\langle\mathbf{z}, \mathbf{z}\rangle_{1}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}$.
If $\mathbf{z} \in V_{-}$then $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}<0$ so $z_{3} \neq 0$.
In $\mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{-}$we may take $z_{3}=1$, so points satisfy $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1$.
Thus $\mathbf{H}_{\mathbb{C}}^{2}$ is the unit ball in \mathbb{C}^{2}.
Likewise $\partial \mathbf{H}_{\mathbb{C}}^{2}$ is the unit sphere in \mathbb{C}^{2}.

Complex hyperbolic space

Let $\mathbb{C}^{2,1}, V_{-}, V_{0}, \mathbb{P}$ be as above. Then complex hyperbolic 2-space is $\mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{-}$
Its boundary is $\partial \mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{0}$.
What does this look like more concretely?
Consider $\mathbb{C}^{2,1}$ with the first Hermitian form H_{1}.
So $\langle\mathbf{z}, \mathbf{z}\rangle_{1}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}$.
If $\mathbf{z} \in V_{-}$then $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}<0$ so $z_{3} \neq 0$.
In $\mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{-}$we may take $z_{3}=1$, so points satisfy $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1$.
Thus $\mathbf{H}_{\mathbb{C}}^{2}$ is the unit ball in \mathbb{C}^{2}.
Likewise $\partial \mathbf{H}_{\mathbb{C}}^{2}$ is the unit sphere in \mathbb{C}^{2}.
Consider $\mathbb{C}^{2,1}$ with the second Hermitian form H_{2}.
So $\langle\mathbf{z}, \mathbf{z}\rangle_{2}=z_{1} \bar{z}_{3}+z_{3} \bar{z}_{1}+\left|z_{2}\right|^{2}$.
If $\mathbf{z} \in V_{-}$then $z_{1} \bar{z}_{3}+z_{3} \bar{z}_{1}+\left|z_{2}\right|^{2}<0$ so $z_{3} \neq 0$.
In $\mathbf{H}_{\mathbb{C}}^{2}=\mathbb{P} V_{-}$we may take $z_{3}=1$, so points satisfy $2 \operatorname{Re}\left(z_{1}\right)+\left|z_{2}\right|^{2}<0$.
This is a paraboloid in \mathbb{C}^{2} called the Siegel domain model of $\mathbf{H}_{\mathbb{C}}^{2}$.

The light cone for H_{1}

The set V_{0} for the first Hermitian form H_{1}, sometimes called the light cone.
The (complex) hyperplane $z_{3}=1$ intersects V_{-}in a ball which is $\mathbf{H}_{\mathbb{C}}^{2}$.

The Bergman metric, distance function and volume form

We define a metric, called the Bergman metric, on $\mathbf{H}^{2}=\mathbb{P} V_{-}$by $d s^{2}=\frac{-4}{\langle\mathbf{z}, \mathbf{z}\rangle^{2}} \operatorname{det}\left(\begin{array}{cc}\langle\mathbf{z}, \mathbf{z}\rangle & \langle d \mathbf{z}, \mathbf{z}\rangle \\ \langle\mathbf{z}, d \mathbf{z}\rangle & \langle d \mathbf{z}, d \mathbf{z}\rangle\end{array}\right)$.

The Bergman metric, distance function and volume form

We define a metric, called the Bergman metric, on $\mathbf{H}^{2}=\mathbb{P} V_{-}$by $d s^{2}=\frac{-4}{\langle\mathbf{z}, \mathbf{z}\rangle^{2}} \operatorname{det}\left(\begin{array}{cc}\langle\mathbf{z}, \mathbf{z}\rangle & \langle d \mathbf{z}, \mathbf{z}\rangle \\ \langle\mathbf{z}, d \mathbf{z}\rangle & \langle d \mathbf{z}, d \mathbf{z}\rangle\end{array}\right)$.
It gives a distance function ρ.
Let z, w be points in $\mathbf{H}_{\mathbb{C}}^{2}$ corresponding to \mathbf{z}, \mathbf{w} in $\mathbb{C}^{2,1}$. Then
$\cosh ^{2}\left(\frac{\rho(z, w)}{2}\right)=\frac{\langle\mathbf{z}, \mathbf{w}\rangle\langle\mathbf{w}, \mathbf{z}\rangle}{\langle\mathbf{z}, \mathbf{z}\rangle\langle\mathbf{w}, \mathbf{w}\rangle}$.

The Bergman metric, distance function and volume form

We define a metric, called the Bergman metric, on $\mathbf{H}^{2}=\mathbb{P} V_{-}$by $d s^{2}=\frac{-4}{\langle\mathbf{z}, \mathbf{z}\rangle^{2}} \operatorname{det}\left(\begin{array}{cc}\langle\mathbf{z}, \mathbf{z}\rangle & \langle d \mathbf{z}, \mathbf{z}\rangle \\ \langle\mathbf{z}, d \mathbf{z}\rangle & \langle d \mathbf{z}, d \mathbf{z}\rangle\end{array}\right)$.
It gives a distance function ρ.
Let z, w be points in $\mathbf{H}_{\mathbb{C}}^{2}$ corresponding to \mathbf{z}, \mathbf{w} in $\mathbb{C}^{2,1}$. Then $\cosh ^{2}\left(\frac{\rho(z, w)}{2}\right)=\frac{\langle\mathbf{z}, \mathbf{w}\rangle\langle\mathbf{w}, \mathbf{z}\rangle}{\langle\mathbf{z}, \mathbf{z}\rangle\langle\mathbf{w}, \mathbf{w}\rangle}$.
This gives a volume form and Kähler form ω on $\mathbf{H}_{\mathbb{C}}^{2}$.
Lift $z=\left(z_{1}, z_{2}\right) \in \mathbf{H}_{\mathbb{C}}^{2} \subset \mathbb{C}^{2}$ to $\mathbf{z}=\left(\begin{array}{c}z_{1} \\ z_{2} \\ 1\end{array}\right) \in \mathbb{C}^{2,1}$. For forms H_{1} or H_{2}
$d \mathrm{Vol}=\frac{16}{-\langle\mathbf{z}, \mathbf{z}\rangle^{3}} d \mathrm{vol}, \quad \omega=4 i \partial \bar{\partial} \log \langle\mathbf{z}, \mathbf{z}\rangle$
where d vol is the volume element
$(1 / 2 i)^{2} d z_{1} \wedge d \bar{z}_{1} \wedge d z_{2} \wedge d \bar{z}_{2}=d x_{1} d y_{1} d x_{2} d y_{2}$.

The Bergman metric, distance function and volume form

We define a metric, called the Bergman metric, on $\mathbf{H}^{2}=\mathbb{P} V_{-}$by $d s^{2}=\frac{-4}{\langle\mathbf{z}, \mathbf{z}\rangle^{2}} \operatorname{det}\left(\begin{array}{cc}\langle\mathbf{z}, \mathbf{z}\rangle & \langle d \mathbf{z}, \mathbf{z}\rangle \\ \langle\mathbf{z}, d \mathbf{z}\rangle & \langle d \mathbf{z}, d \mathbf{z}\rangle\end{array}\right)$.
It gives a distance function ρ.
Let z, w be points in $\mathbf{H}_{\mathbb{C}}^{2}$ corresponding to \mathbf{z}, \mathbf{w} in $\mathbb{C}^{2,1}$. Then
$\cosh ^{2}\left(\frac{\rho(z, w)}{2}\right)=\frac{\langle\mathbf{z}, \mathbf{w}\rangle\langle\mathbf{w}, \mathbf{z}\rangle}{\langle\mathbf{z}, \mathbf{z}\rangle\langle\mathbf{w}, \mathbf{w}\rangle}$.
This gives a volume form and Kähler form ω on $\mathbf{H}_{\mathbb{C}}^{2}$.
Lift $z=\left(z_{1}, z_{2}\right) \in \mathbf{H}_{\mathbb{C}}^{2} \subset \mathbb{C}^{2}$ to $\mathbf{z}=\left(\begin{array}{c}z_{1} \\ z_{2} \\ 1\end{array}\right) \in \mathbb{C}^{2,1}$. For forms H_{1} or H_{2}
$d \mathrm{Vol}=\frac{16}{-\langle\mathbf{z}, \mathbf{z}\rangle^{3}} d \mathrm{vol}, \quad \omega=4 i \partial \bar{\partial} \log \langle\mathbf{z}, \mathbf{z}\rangle$
where d vol is the volume element
$(1 / 2 i)^{2} d z_{1} \wedge d \bar{z}_{1} \wedge d z_{2} \wedge d \bar{z}_{2}=d x_{1} d y_{1} d x_{2} d y_{2}$.
The Bergman metric, distance function, volume form and Kähler form are only defined in terms of the Hermitian form.

The group $\mathrm{PU}(H)$

Let H be the Hermitian form of signature $(2,1)$ on $\mathbb{C}^{2,1}$.
Let the unitary group of H be $\mathrm{U}(H)=\left\{A \in \mathrm{GL}(3, \mathbb{C}) \mid A^{*} H A=H\right\}$
Equivalently $\langle\boldsymbol{A z}, A \mathbf{w}\rangle=\langle\mathbf{z}, \mathbf{w}\rangle$ for all \mathbf{z}, \mathbf{w} in $\mathbb{C}^{2,1}$.
If signature $(2,1)$ specified, not particular form then we write $\mathrm{PU}(2,1)$.
Then A acts on $\mathbf{H}_{\mathbb{C}}^{2}$ as follows. If $z \in \mathbf{H}_{\mathbb{C}}^{2}$ corresponds to $\mathbf{z} \in \mathbb{C}^{2,1}$ then: $A(z)=\mathbb{P} A z$.
Concretely: if $z=\left(z_{1}, z_{2}\right), \mathbf{z}=\left(\begin{array}{c}z_{1} \\ z_{2} \\ 1\end{array}\right)$ and $A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & j\end{array}\right)$. Then

$$
A(z)=\mathbb{P}\left(\begin{array}{l}
a z_{1}+b z_{2}+c \\
d z_{2}+e z_{2}+f \\
g z_{1}+h z_{2}+j
\end{array}\right)=\left(\frac{a z_{1}+b z_{2}+c}{g z_{1}+h z_{2}+j}, \frac{d z_{1}+e z_{2}+f}{g z_{1}+h z_{2}+j}\right) .
$$

Note that the action of A is the same as the action of λA for any scalar λ. So we define $\mathrm{PU}(2,1)=\mathrm{U}(2,1) /\{\lambda /\}$.

The group $\mathrm{PU}(H)$

Let H be the Hermitian form of signature $(2,1)$ on $\mathbb{C}^{2,1}$.
Let the unitary group of H be $\mathrm{U}(H)=\left\{A \in \mathrm{GL}(3, \mathbb{C}) \mid A^{*} H A=H\right\}$
Equivalently $\langle\boldsymbol{A z}, A \mathbf{w}\rangle=\langle\mathbf{z}, \mathbf{w}\rangle$ for all \mathbf{z}, \mathbf{w} in $\mathbb{C}^{2,1}$.
If signature $(2,1)$ specified, not particular form then we write $\mathrm{PU}(2,1)$.
Then A acts on $\mathbf{H}_{\mathbb{C}}^{2}$ as follows. If $z \in \mathbf{H}_{\mathbb{C}}^{2}$ corresponds to $\mathbf{z} \in \mathbb{C}^{2,1}$ then: $A(z)=\mathbb{P} A z$.
Concretely: if $z=\left(z_{1}, z_{2}\right), \mathbf{z}=\left(\begin{array}{c}z_{1} \\ z_{2} \\ 1\end{array}\right)$ and $A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & j\end{array}\right)$. Then

$$
A(z)=\mathbb{P}\left(\begin{array}{l}
a z_{1}+b z_{2}+c \\
d z_{2}+e z_{2}+f \\
g z_{1}+h z_{2}+j
\end{array}\right)=\left(\frac{a z_{1}+b z_{2}+c}{g z_{1}+h z_{2}+j}, \frac{d z_{1}+e z_{2}+f}{g z_{1}+h z_{2}+j}\right) .
$$

Note that the action of A is the same as the action of λA for any scalar λ.
So we define $\mathrm{PU}(2,1)=\mathrm{U}(2,1) /\{\lambda /\}$.
We also define $\mathrm{SU}(2,1)=\{A \in \mathrm{U}(2,1) \mid \operatorname{det}(A)=1\}$.
Then $\operatorname{PU}(2,1)=\operatorname{SU}(2,1) /\{I, \omega I, \bar{\omega} /\}$ where $\omega=e^{2 i \pi / 3}$.
So $\operatorname{SU}(2,1)$ is a triple cover of $\operatorname{SU}(2,1)$.

Complex hyperbolic isometries

Since $d s^{2}, d \mathrm{Vol}$ and ρ are all only defined in terms of the Hermitian form, we see that if $A \in \mathrm{PU}(2,1)$ then A preserves all three of them. So $\mathrm{PU}(2,1) \subset \operatorname{Isom}\left(\mathbf{H}_{\mathbb{C}}^{2}\right)$ the group of complex hyperbolic isometries.

Complex hyperbolic isometries

Since $d s^{2}, d \mathrm{Vol}$ and ρ are all only defined in terms of the Hermitian form, we see that if $A \in \mathrm{PU}(2,1)$ then A preserves all three of them. So $\mathrm{PU}(2,1) \subset \operatorname{Isom}\left(\mathbf{H}_{\mathbb{C}}^{2}\right)$ the group of complex hyperbolic isometries. Also complex conjugation $\left(z_{1}, z_{2}\right) \longmapsto\left(\bar{z}_{1}, \bar{z}_{2}\right)$ preserves $d s^{2}, d V \mathrm{Vol}$ and ρ.

Complex hyperbolic isometries

Since $d s^{2}, d \mathrm{Vol}$ and ρ are all only defined in terms of the Hermitian form, we see that if $A \in \mathrm{PU}(2,1)$ then A preserves all three of them. So $\mathrm{PU}(2,1) \subset \operatorname{Isom}\left(\mathbf{H}_{\mathbb{C}}^{2}\right)$ the group of complex hyperbolic isometries.

Also complex conjugation $\left(z_{1}, z_{2}\right) \longmapsto\left(\bar{z}_{1}, \bar{z}_{2}\right)$ preserves $d s^{2}, d V \operatorname{Vol}$ and ρ.

Theorem.

Every isometry of $\mathbf{H}_{\mathbb{C}}^{2}$ is either holomorphic or anti-holomorphic. Every holomorphic isometry of $\mathbf{H}_{\mathbb{C}}^{2}$ is given by some $A \in \mathrm{PU}(2,1)$. Every anti-holomorphic isometry of $\mathbf{H}_{\mathbb{C}}^{2}$ is given by complex conjugation followed by some $A \in \mathrm{PU}(2,1)$.

Complex hyperbolic isometries

Since $d s^{2}, d \mathrm{Vol}$ and ρ are all only defined in terms of the Hermitian form, we see that if $A \in \mathrm{PU}(2,1)$ then A preserves all three of them. So $\operatorname{PU}(2,1) \subset \operatorname{Isom}\left(\mathbf{H}_{\mathbb{C}}^{2}\right)$ the group of complex hyperbolic isometries.

Also complex conjugation $\left(z_{1}, z_{2}\right) \longmapsto\left(\bar{z}_{1}, \bar{z}_{2}\right)$ preserves $d s^{2}, d$ Vol and ρ.

Theorem.

Every isometry of $\mathbf{H}_{\mathbb{C}}^{2}$ is either holomorphic or anti-holomorphic. Every holomorphic isometry of $\mathbf{H}_{\mathbb{C}}^{2}$ is given by some $A \in \mathrm{PU}(2,1)$.
Every anti-holomorphic isometry of $\mathbf{H}_{\mathbb{C}}^{2}$ is given by complex conjugation followed by some $A \in \operatorname{PU}(2,1)$.
$\mathrm{PU}(2,1)$ acts transitively on $\mathbf{H}_{\mathbb{C}}^{2}$
If $z, z^{\prime} \in \mathbf{H}_{\mathbb{C}}^{2}$ there is $A \in \operatorname{PU}(2,1)$ with $z^{\prime}=A(z)$.
$\operatorname{PU}(2,1)$ acts transitively on pairs of points in $\mathbf{H}_{\mathbb{C}}^{2}$ the same distance apart
If $z, z^{\prime}, w, w^{\prime} \in \mathbf{H}_{\mathbb{C}}^{2}$ with $\rho\left(z^{\prime}, w^{\prime}\right)=\rho(z, w)$
there is $A \in \operatorname{PU}(2,1)$ with $z^{\prime}=A(z)$ and $w^{\prime}=A(z)$.
$\mathrm{PU}(2,1)$ acts transitively on pairs of points in $\partial \mathbf{H}_{\mathbb{C}}^{2}$
If $z, z^{\prime}, w, w^{\prime} \in \partial \mathbf{H}_{\mathbb{C}}^{2}$ there is $A \in \operatorname{PU}(2,1)$ with $z^{\prime}=A(z), w^{\prime}=A(z)$.

Subspaces of $\mathbf{H}_{\mathbb{C}}^{2}$ - complex lines

The ball model and Siegel domain models of $\mathbf{H}_{\mathbb{C}}^{2}$ are embedded in \mathbb{C}^{2}. Let L be a complex line in \mathbb{C}^{2}. So L is the image under \mathbb{P} of a complex hyperplane in $\mathbb{C}^{2,1}$ through $\mathbf{0}$.

If $L \cap \mathbf{H}_{\mathbb{C}}^{2}$ is nonempty, then the intersection is a disc (or halfplane). We say this is a complex line in $\mathbf{H}_{\mathbb{C}}^{2}$. We also refer to this as L.
The restriction of the Bergman metric to L is the Poincaré metric on the hyperbolic plane with curvature -1 .

Subspaces of $\mathbf{H}_{\mathbb{C}}^{2}$ - complex lines

The ball model and Siegel domain models of $\mathbf{H}_{\mathbb{C}}^{2}$ are embedded in \mathbb{C}^{2}. Let L be a complex line in \mathbb{C}^{2}. So L is the image under \mathbb{P} of a complex hyperplane in $\mathbb{C}^{2,1}$ through $\mathbf{0}$.
If $L \cap \mathbf{H}_{\mathbb{C}}^{2}$ is nonempty, then the intersection is a disc (or halfplane). We say this is a complex line in $\mathbf{H}_{\mathbb{C}}^{2}$. We also refer to this as L.
The restriction of the Bergman metric to L is the Poincaré metric on the hyperbolic plane with curvature -1 .
Example. Let $L_{0}=\{0\} \times \mathbb{C}$. Then L_{0} intersects the unit ball in a disc $\left\{\left.\left(0, z_{2}\right) \in \mathbb{C}^{2}| | z_{2}\right|^{2}<1\right\}$.
On L_{0} the Hermitian form H_{1} has signature $(1,1)$. Then $d s^{2}=\frac{4}{\left(1-\left|z_{2}\right|^{2}\right)^{2}} d z_{2} d \bar{z}_{2}$.
L_{0} is preserved by block diagonal matrices in $\mathrm{P}(\mathrm{U}(1) \times \mathrm{U}(1,1))$.

Subspaces of $\mathbf{H}_{\mathbb{C}}^{2}$ - complex lines

The ball model and Siegel domain models of $\mathbf{H}_{\mathbb{C}}^{2}$ are embedded in \mathbb{C}^{2}. Let L be a complex line in \mathbb{C}^{2}. So L is the image under \mathbb{P} of a complex hyperplane in $\mathbb{C}^{2,1}$ through $\mathbf{0}$.

If $L \cap \mathbf{H}_{\mathbb{C}}^{2}$ is nonempty, then the intersection is a disc (or halfplane).
We say this is a complex line in $\mathbf{H}_{\mathbb{C}}^{2}$. We also refer to this as L.
The restriction of the Bergman metric to L is the Poincaré metric on the hyperbolic plane with curvature -1 .
Example. Let $L_{0}=\{0\} \times \mathbb{C}$. Then L_{0} intersects the unit ball in a disc $\left\{\left.\left(0, z_{2}\right) \in \mathbb{C}^{2}| | z_{2}\right|^{2}<1\right\}$.
On L_{0} the Hermitian form H_{1} has signature $(1,1)$. Then
$d s^{2}=\frac{4}{\left(1-\left|z_{2}\right|^{2}\right)^{2}} d z_{2} d \bar{z}_{2}$.
L_{0} is preserved by block diagonal matrices in $\mathrm{P}(\mathrm{U}(1) \times \mathrm{U}(1,1))$.
Any complex line in $\mathbf{H}_{\mathbb{C}}^{2}$ is the image of L_{0} under some $A \in \mathrm{PU}(2,1)$.
The stabiliser is conjugate via A to $\mathrm{P}(\mathrm{U}(1) \times \mathrm{U}(1,1))$.
We sometimes think of the triple cover $\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(1,1))$.

Subspaces of $\mathbf{H}_{\mathbb{C}}^{2}$ - Lagrangian planes

The ball model and Siegel domain models of $\mathbf{H}_{\mathbb{C}}^{2}$ are embedded in \mathbb{C}^{2}. Let R be a totally real Lagrangian plane in \mathbb{C}^{2}.
If $R \cap \mathbf{H}_{\mathbb{C}}^{2}$ is nonempty, then the intersection is a topological disc. We say this is a Lagrangian plane in $\mathbf{H}_{\mathbb{C}}^{2}$. We also refer to this as R. The restriction of the Bergman metric to R is the Klein-Beltrami metric on the hyperbolic plane with curvature $-1 / 4$.

Subspaces of $\mathbf{H}_{\mathbb{C}}^{2}$ - Lagrangian planes

The ball model and Siegel domain models of $\mathbf{H}_{\mathbb{C}}^{2}$ are embedded in \mathbb{C}^{2}. Let R be a totally real Lagrangian plane in \mathbb{C}^{2}.

If $R \cap \mathbf{H}_{\mathbb{C}}^{2}$ is nonempty, then the intersection is a topological disc. We say this is a Lagrangian plane in $\mathbf{H}_{\mathbb{C}}^{2}$. We also refer to this as R. The restriction of the Bergman metric to R is the Klein-Beltrami metric on the hyperbolic plane with curvature $-1 / 4$.
Example. Let $R_{0}=\mathbb{R}^{2} \subset \mathbb{C}^{2}$. Then R_{0} intersects the unit ball in a disc $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2}<1\right\}$.
On R_{0} the Hermitian form H_{1} is a quadratic form of signature $(2,1)$.
Then $d s^{2}=\frac{4}{\left(1-x_{1}^{2}-x_{2}^{2}\right)^{2}}\left(d x_{1}^{2}+d x_{2}^{2}-\left(x_{1} d x_{2}-x_{2} d x_{1}\right)^{2}\right)$.
R_{0} is preserved by matrices with real entries in $\operatorname{PO}(2,1)$.

Subspaces of $\mathbf{H}_{\mathbb{C}}^{2}$ - Lagrangian planes

The ball model and Siegel domain models of $\mathbf{H}_{\mathbb{C}}^{2}$ are embedded in \mathbb{C}^{2}. Let R be a totally real Lagrangian plane in \mathbb{C}^{2}.

If $R \cap \mathbf{H}_{\mathbb{C}}^{2}$ is nonempty, then the intersection is a topological disc. We say this is a Lagrangian plane in $\mathbf{H}_{\mathbb{C}}^{2}$. We also refer to this as R. The restriction of the Bergman metric to R is the Klein-Beltrami metric on the hyperbolic plane with curvature $-1 / 4$.

Example. Let $R_{0}=\mathbb{R}^{2} \subset \mathbb{C}^{2}$. Then R_{0} intersects the unit ball in a disc $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2}<1\right\}$.
On R_{0} the Hermitian form H_{1} is a quadratic form of signature $(2,1)$.
Then $d s^{2}=\frac{4}{\left(1-x_{1}^{2}-x_{2}^{2}\right)^{2}}\left(d x_{1}^{2}+d x_{2}^{2}-\left(x_{1} d x_{2}-x_{2} d x_{1}\right)^{2}\right)$.
R_{0} is preserved by matrices with real entries in $\operatorname{PO}(2,1)$.
Any Lagrangian plane in $\mathbf{H}_{\mathbb{C}}^{2}$ is the image of R_{0} under some $A \in \mathrm{PU}(2,1)$. The stabiliser is conjugate via A to $\operatorname{PO}(2,1)$
We sometimes think of the cover $\operatorname{SO}(2,1)$.

Cartan's angular invariant

Let z_{1}, z_{2}, z_{3} be three points in $\partial \mathbf{H}_{\mathbb{C}}^{2}$.
Let $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}$ be the corresponding points in $\mathbb{C}^{2,1}$.
Define the Cartan angular invariant of these points to be $\mathbb{A}\left(z_{1}, z_{2}, z_{3}\right)=\arg \left(-\left\langle\mathbf{z}_{1}, \mathbf{z}_{2}\right\rangle\left\langle\mathbf{z}_{2}, \mathbf{z}_{3}\right\rangle\left\langle\mathbf{z}_{3}, \mathbf{z}_{1}\right\rangle\right) \in[-\pi / 2, \pi / 2]$. $\mathbb{A}\left(w_{1}, w_{2}, w_{3}\right)=\mathbb{A}\left(z_{1}, z_{2}, z_{3}\right) \Longleftrightarrow \exists A \in \mathrm{PU}(2,1)$ with $w_{j}=A\left(z_{j}\right)$.

Cartan's angular invariant

Let z_{1}, z_{2}, z_{3} be three points in $\partial \mathbf{H}_{\mathbb{C}}^{2}$.
Let $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}$ be the corresponding points in $\mathbb{C}^{2,1}$.
Define the Cartan angular invariant of these points to be $\mathbb{A}\left(z_{1}, z_{2}, z_{3}\right)=\arg \left(-\left\langle\mathbf{z}_{1}, \mathbf{z}_{2}\right\rangle\left\langle\mathbf{z}_{2}, \mathbf{z}_{3}\right\rangle\left\langle\mathbf{z}_{3}, \mathbf{z}_{1}\right\rangle\right) \in[-\pi / 2, \pi / 2]$. $\mathbb{A}\left(w_{1}, w_{2}, w_{3}\right)=\mathbb{A}\left(z_{1}, z_{2}, z_{3}\right) \Longleftrightarrow \exists A \in \mathrm{PU}(2,1)$ with $w_{j}=A\left(z_{j}\right)$.

Geometrical interpretation.
z_{1} and z_{2} lie on a unique complex line L_{12}.
Let Π_{12} be orthogonal projection onto L_{12}.
Let T be the triangle in L_{12} with vertices $z_{1}, z_{2}, \Pi_{12}\left(z_{3}\right)$.
Then $\mathbb{A}\left(z_{1}, z_{2}, z_{3}\right)$ is half the (signed) Poincaré area of T.

Cartan on complex lines and Lagrangian planes

If z_{1}, z_{2}, z_{3} all lie on a complex line then $\mathbb{A}\left(z_{1}, z_{2}, z_{3}\right)= \pm \pi / 2$.
(Sign depends on order of points round the triangle.)
z_{3} on L_{12} so $\Pi_{12}\left(z_{3}\right)=z_{3}$. Then T is an ideal triangle.

Cartan on complex lines and Lagrangian planes

If z_{1}, z_{2}, z_{3} all lie on a complex line then $\mathbb{A}\left(z_{1}, z_{2}, z_{3}\right)= \pm \pi / 2$.
(Sign depends on order of points round the triangle.)
z_{3} on L_{12} so $\Pi_{12}\left(z_{3}\right)=z_{3}$. Then T is an ideal triangle.

If z_{1}, z_{2}, z_{3} all lie on a Lagrangian plane then $\mathbb{A}\left(z_{1}, z_{2}, z_{3}\right)=0$. In this case $\Pi_{12}\left(z_{3}\right)$ lies on geodesic with endpoints z_{1} and z_{2}.
So T has degenerated and has area 0 .

