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Credit risk

• The distribution of financial loss due to a broken financial

agreement, for example

– Failure to pay according to schedule

– Chapter 11 bankruptcy filing

• Pervades virtually all financial transactions

• A credit derivative is a security that facilitates the distribution of

credit risk among market participants
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Outline

1. Motivating example: Credit Default Swap (CDS)

2. Point processes

(a) Transform calculation

(b) Simulation methods

(c) Likelihood estimation and fitness testing

3. Applications

(a) Corporate bonds and CDS

(b) Index swaps and tranches

(c) Portfolio credit risk

Kay Giesecke
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Credit default swap
Mechanics
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Credit default swap

A CDS is a bilateral over-the-counter transaction

• Default leg

The protection seller compensates the protection buyer for the loss

if the reference entity experiences a credit event before the

maturity of the contract

• Premium leg

The protection buyer pays either

– An upfront fee at inception of the contract, or

– A quarterly fee, called the CDS spread and stated as a fraction

of the notional per annum, until the credit event or maturity,

whichever is earlier

Kay Giesecke
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Credit default swap

Discussion

• Position of parties

– The protection buyer shorts the reference credit without the

risk of short squeezes or repo specials

– The protection seller longs the reference credit

• Similar to an insurance contract, with the difference that the

protection buyer often has no relation to the reference entity

– Ban on naked positions in some markets (e.g. Europe)

• No exchange of notional takes place; the transaction is unfunded

and therefore off-balance sheet

• Regulation being discussed: exchange trading, central clearing

Kay Giesecke
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Credit default swap

Applications

• Hedging

– A bank may obtain regulatory capital relief by buying

protection on a corporate loan it has made

• Trading (“speculation”)

– A fixed-income investor (e.g. insurance firm, hedge fund) can

assume credit exposure by selling protection without having to

fund a cash bond purchase; also liquidity is less of an issue

– Express view on the behavior of the reference credit

∗ Protection buyer (seller) can realize a mark-to-market profit

if the reference credit deteriorates (improves)

Kay Giesecke
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Credit default swap

Credit event or default

• Events that trigger a payment are defined in the ISDA Master

Agreement along with general terms and conditions governing a

transaction, such as provisions relating to payment netting

• They include

– Bankruptcy (Chapter 11, Chapter 7 etc.)

– Obligation acceleration

– Obligation default

– Failure to pay

– Repudiation/moratorium

– Restructuring

Kay Giesecke
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Credit default swap

Alternative settlements at default

• Physical delivery

– The protection buyer can choose to deliver to the seller any

asset in a fixed pool of delivery assets, in exchange for the

notional (cheapest-to-deliver option)

• Cash settlement

– Unless the contract specifies a fixed recovery, market

participants are polled to estimate the recovery value of the

defaulted asset

– The protection seller pays the protection buyer the notional

minus the recovery

Kay Giesecke



Credit Risk With Point Processes: An Introduction 10

Credit default swap

Example

• A protection buyer purchases 5yr protection on a corporate name

with notional $10m at an annual spread of 300bp

• After 3 months, the protection buyer makes the first payment,

roughly equal to $10m× 0.03× 0.25 = $75, 000

• The reference name defaults 1 month after the first payment and

the reference obligation has a recovery rate of 45%

– The seller pays $10m× (100%− 45%) = $5.5m at default

– The buyer pays the accrued premium, roughly equal to

$10m× 0.03× 1/12 = $25, 000, at default

• The contract expires

Kay Giesecke
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Credit default swap

Cash flows to the protection buyer

Kay Giesecke
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Credit default swap

Reverse engineering

• Credit swap spreads for various maturities between 0.5 and 10

years are quoted for a universe of reference names

• From market spreads we can infer a name’s risk-neutral probability

of default over future horizons

– Mark-to-market of credit swap positions

– Construction of forward CDS spread curve

– Construction of intrinsic index swap spread

– Design of credit trading strategies

• Need a model for default timing and the loss at default

Kay Giesecke
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Point process

Basic setting

• Fix a probability space (Ω,F ,P) with filtration F = (Ft)t≥0 that

is right-continuous and complete

• Consider a sequence of default stopping times (T k)k≥0

– 0 = T 0 < T 1 < T 2 < · · ·
– limk→∞ T k =∞

• The stopping times generate the default process N by

Nt =
∑
k≥1

1{Tk≤t}

– N is non-explosive: Nt <∞
– N has the same information as (T k)

Kay Giesecke
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Point process

The sample paths of N are right continuous with left limits

Kay Giesecke
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Point process
Compensator

• Since it is increasing, N is a submartingale:

Nt ≤ E(Ns | Ft), t ≤ s

• The Doob-Meyer theorem guarantees that N = A+M , where A

is an increasing, right continuous predictable process starting at 0

called the compensator, and M is a local martingale

• Theorem. The compensator A has continuous paths if and only if

the T k are totally inaccessible.

– A stopping time τ is called predictable if there exists stopping

times τn that increase to τ almost surely

– A stopping time τ is called totally inaccessible if

P(τ = T <∞) = 0 for all predictable stopping times T

Kay Giesecke
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Point process

Intensity

• If A has paths that are absolutely continuous wrt. to the Lebesgue

measure, i.e., if A takes the form

At =
∫ t

0

λs ds,

then the density λ is called the intensity of N

• The intensity represents the mean arrival rate: for “small” ∆

λt∆ ≈ E(Nt+∆ −Nt | Ft)

• The existence of an intensity is convenient but not essential; for

the analysis below we require A to have continuous paths only

(i.e., we assume the T k to be totally inaccessible)

Kay Giesecke
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Point process

Characteristic martingale

• Let ψ(u) = 1− e−u and define

Zt(u) = exp(ψ(u)At − uNt), u ≥ 0

• Since the paths of N and A are right-continuous functions of

finite variation, Stieltjes integration by parts (see Appendix) yields

Zt(u) = 1− ψ(u)
∫ t

0

Zs−(u)dMs

• We see that Z(u) is a local martingale, since M = N −A is one

• If E(exp(AT )) <∞, then (Zt(u))t≤T is a martingale

Kay Giesecke
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Point process

Poisson process

• Suppose A is deterministic

• By the martingale property of Z, we have

E(e−u(NT−Nt) | Ft) = e−ψ(u)(AT−At)

• We see that N has independent increments and that the

increment NT −Nt ∼ Poi(AT −At), so N is a Poisson process

– If At = t, then N is called a standard Poisson process

• Watanabe’s theorem. A counting process is a Poisson process if

and only if it has a deterministic compensator.

– Analogous to Lévy’s theorem for Brownian motion

Kay Giesecke
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Point process

Doubly-stochastic Poisson process (or Cox process)

• Suppose A is allowed to be random, but such that conditional on

a path of A, N is a Poisson process with compensator A

– The two-step randomization motivates the terminology

doubly-stochastic Poisson process

• With G = (Gt)t≥0 ⊂ F the filtration generated by A, we have

E(e−u(NT−Nt) | Ft) = E(E{e−u(NT−Nt) | Ft ∨ GT } |Ft)

= E(e−ψ(u)(AT−At) | Ft)

• While generating tractability, the formulation is also restrictive: it

does not permit feedback from N to A (for example, none of the

T k can be a G-stopping time)

Kay Giesecke
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Point process transform
Measure change

• Since Z0(u) = 1, can use ZT (u) to define Pu ≈ P on FT via

Pu(B) = E(ZT (u)1B), B ∈ FT

• Each Pu corresponds to a Laplace transform of A:

Lu(v, t, T ) = Eu(e−v(AT−At) | Ft), u, v ≥ 0

• We compute the P-Laplace transform of N as

E(e−u(NT−Nt) | Ft) = E(e−ψ(u)(AT−At)e−u(NT−Nt)eψ(u)(AT−At) | Ft)

= E(e−ψ(u)(AT−At)ZT (u)/Zt(u) | Ft)

= Eu(e−ψ(u)(AT−At) | Ft)
= Lu(ψ(u), t, T )

Kay Giesecke
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Point process transform

Discussion

• The transform of N at u is given by the Pu-transform of A

evaluated at the characteristic exponent ψ(u) of a Poisson process

– Holds for any point process N with continuous compensator A

satisfying E(exp(AT )) <∞
– Pu absorbs any feedback from N to λ

– Measure change is redundant in the doubly-stochastic case,

where Lu = L0 for all 0 ≥ 0

• Alternative derivation using Carr & Wu’s (2004) complex-valued

measure change for time-changed Lévy processes

– By Meyer’s (1971) theorem, N can be represented as a

time-changed Poisson process N0
A (see below)

Kay Giesecke
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Point process transform

Discussion

• Transform formula can be extended, see Giesecke & Zhu (2010)

– Vector of interacting point processes

– Random jump sizes

– Include a stochastic discount factor and a random future cash

flow (each possibly correlated with event times)

Kay Giesecke
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Point process transform

Transform of compensator

• The transform of A is analogous to the price at time t of a

security that pays 1 at T when the risk-free interest rate is vλ:

Lu(v, t, T ) = Eu(e−
R T
t
vλsds | Ft)

• Adopt models for λ from default-free security valuation

– Affine models, Duffie, Pan & Singleton (2000)

– Quadratic models, Leippold & Wu (2002)

– Linear-quadratic models, Cheng & Scaillet (2007)

Kay Giesecke
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Point process transform

Girsanov’s theorem

• To calculate Lu(v, t, T ), we need to understand how the dynamics

of A are adjusted when the measure is changed to Pu

– Recall that A is initially specified under P

• Let V be a local P-martingale and 〈V,N〉 is the P-conditional

covariation, i.e. the P-compensator of the quadratic variation

[V,N ]; by Girsanov’s theorem the process

V + ψ(u)〈V,N〉

is a Pu-local martingale on [0, T ]

Kay Giesecke
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Point process transform

Implications of Girsanov’s theorem

• If V does not have jumps in common with N , then [V,N ] = 0
and 〈V,N〉 = 0. Thus, V remains a local martingale under Pu.

– A P-Brownian motion is also a Pu-Brownian motion

• The jumps of V = N −A coincide with those of N , and

[V,N ] = [N,N ] = N , whose compensator is 〈V,N〉 = A. Thus,

V + ψ(u)〈V,N〉 = V + ψ(u)A = N − e−uA

is a local martingale under Pu on [0, T ]

• If N has P-intensity λ, then it has Pu-intensity e−uλ on [0, T ]:
The measure change calls for a deterministic scaling of the

intensity that depends on the variable u.

Kay Giesecke
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Example: Affine point process

• Take λ = Λ(X) for an affine function Λ

• Under P, the risk factor X solves the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt + δ dLt

where µ and σ2 are affine functions

• Lt = L1 + · · ·+ LNt is a (loss) point process whose jump times

T k are those of N ; jump sizes Lk are iid with transform θ

– Self-exciting model if δ > 0

• From Duffie et al. (2000), know that for R affine

E(e−
R T
t
R(Xs)ds+zXT | Ft) = ea(t)+b(t)Xt

where b(t) = b(z, t, T ) and a(t) = a(z, t, T ) satisfy ODEs

Kay Giesecke
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Example: Affine point process

• Under Pu, the intensity is Λe−u and W is a Brownian motion

• Applying the previous formula under Pu, we get

Lu(v, t, T ) = Eu(e−v
R T
t

Λ(Xs)ds | Ft) = eα(t)+β(t)Xt

where β(t) = β(u, v, t, T ) and α(t) = α(u, v, t, T ) satisfy

∂tβ(t) = vΛ1 −K1β(t)− 1
2
H1β(t)2 − e−uΛ1(θ(δβ(t))− 1)

∂tα(t) = vΛ0 −K0β(t)− 1
2
H0β(t)2 − e−uΛ0(θ(δβ(t))− 1)

• The transform of N is given by

E(e−u(NT−Nt) | Ft) = Lu(ψ(u), t, T )

= exp(α(u, ψ(u), t, T ) + β(u, ψ(u), t, T )Xt)

Kay Giesecke
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Example: Affine point process

A specific affine model

• The intensity has dynamics

dλt = κ(c− λt) dt+ σ
√
λtdWt + δ dLt, λ0 > 0 (1)

• Intensity responds to events; if δ = σ = 0: Poisson process

• Intensity decays after an event; if κ = σ = 0: birth process

• Intensity diffuses between events; if σ = 0: Hawkes process

• Positive correlation between λ and the Lks (position losses)

Kay Giesecke
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Example: Affine point process
Lk is uniform on {0.4, 0.6, 0.8, 1}, c = λ0 = 0.7, δ = 1, κ = 5
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Example: Affine point process
Smoothed distribution of L5, obtained by Fourier inversion
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Point process simulation

Time change

• Theorem. (Meyer (1971)) If At →∞, then the variables

Sk = ATk =
∫ Tk

0

λsds

are the arrival times of a standard Poisson process in the

time-scaled filtration defined by the stopping-time σ-fields FAt

• Thus, any point process N can be represented as N0
A, where N0

is a standard Poisson process

• Analogous to the theorem of Dambis-Dubins-Schwartz, which

states that any continuous local martingale V can be represented

as W[V,V ], where W is a standard Brownian motion

Kay Giesecke
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Point process simulation

Time change

• Thus, T k is the hitting time of A to the random level

Sk = E1 + · · ·+ Ek, where En ∼ Exp(1):

T k = A−1
Sk

= inf
{
t :
∫ t

0

λsds ≥ Sk
}

• To generate T k using this representation, we need to approximate

A on a discrete-time grid

– Approximate λ on discrete-time grid, and then integrate

– Exact sampling of λ at grid points is often possible (see Beskos

& Roberts (2005), Chen (2009), Giesecke & Smelov (2010))

Kay Giesecke
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Point process simulation
Paths of λt, At =

∫ t
0
λsds and arrivals for the affine model (1). The

values of λt are sampled exactly from the non-central chi-squared law.
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Point process simulation
• Due to approximation of A, simulation estimators are biased

– Magnitude of bias is hard to quantify (work in progress)

– Difficult to obtain valid confidence intervals

– Difficult to determine optimal allocation of comp. budget

• Exact methods eliminate the need to discretize λ

– Thinning scheme: Lewis & Shedler (1979), Glasserman &

Merener (2003) for bounded λ and Giesecke, Kim & Zhu

(2011) for general case

– Inverse transform scheme: Giesecke & Kim (2007)

– Mimicking Markov chain method: Giesecke, Kakavand,

Mousavi & Takada (2010)

– Projection method: Giesecke, Kakavand & Mousavi (2010)

– Rejection method: Giesecke & Smelov (2010)

Kay Giesecke
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Point process simulation
Distribution of L5 (smoothed) for the affine model (1), 1m paths,

discretization 1 day, κ = c = σ = δ = λ0 = 1, Lk ∼ U{0.4, 0.8}
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Point process simulation
Log-distribution of L5 (smoothed) for the affine model (1), 1m paths,

discretization 1 day, κ = c = σ = δ = λ0 = 1, Lk ∼ U{0.4, 0.8}
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Point process simulation

Thinning

• Proposition. Let H be a predictable process with values in [0, 1].
Select an event time T k of N with probability HTk . If N has

intensity λ, then the counting process of the selected times (the

thinned process) has intensity Hλ.

• Justifies a scheme for generating N from a counting process N

with intensity λ satisfying λt ≥ λt almost surely

– Sample event times of N

– Select an event time τk with probability λτk−/λτk−

Kay Giesecke
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Point process simulation

Thinning

• Exact sampling of intensity values often feasible (see Beskos &

Roberts (2005), Chen (2009))

• Tightness of bond determines efficiency

• Deterministic bound most convenient: then the dominating

process N is a Poisson process which is easy to generate

– Piece-wise deterministic bounds

• However, most standard models of λ are not almost surely

bounded

Kay Giesecke
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Point process simulation
Mimicking Markov chain

• Proposition. Let π be a Markov chain on [0,∞) that takes values

in N, starts at 0, and has transition rate

λ(t, n) = E(λt |Nt = n)

at time t from state n to n+ 1 and 0 for other transitions. Then

πt = Nt in distribution, for each t ≥ 0.

• Analogous to a result of Gyöngy (1986) for a continuous process

with a general diffusion coefficient (Dupire’s formula)

• Proposition. λ(t, n) = ∂tP(Nt > n)/P(Nt = n)

• If λ can be computed and is bounded, can simulate π by thinning,

and obtain unbiased estimator of E(f(πt)) = E(f(Nt)) for any

integrable function f on N

Kay Giesecke
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Point process simulation
Projection onto a sub-filtration

• We project N onto its own filtration G = (Gt)t≥0, the smallest

sub-filtration of F that is compatible with N

• The G-intensity h of N is given by the optional projection of λ

onto G; this is a unique G-adapted process such that

E(λT 1{T<∞} |FT ) = hT 1{T<∞} for every stopping time T

• Can show that h takes the form

ht = E(λt | Gt) =
∑
n≥0

hn(t)1{Nt=n}

almost surely, where hn is the GTn-measurable function defined by

hn(t) =
E(λt1{Nt=n} | GTn)

P(Nt = n | GTn)
, t ≥ Tn

Kay Giesecke
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Point process simulation

Projection onto a sub-filtration

• Proposition. If the intensity λ satisfies E(
∫ t

0
λsds) <∞ for all

t ≥ 0, then, for t ≥ Tn,

P(Tn+1 > t | GTn) = exp
(
−
∫ t

Tn

hn(s)ds
)
.

• Given GTn , the waiting time to next event time Tn+1 is equal in

distribution to the first jump time of a G-Poisson process started

at Tn with intensity hn

• The Tn can be generated sequentially in the filtration G, using

the thinning scheme or inverse transform method

– The hn can be computed for may standard models using

filtering methods, see Kliemann, Koch & Marchetti (1990)

Kay Giesecke
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Point process simulation

Path of affine model (1): dλt = κ(c− λt)dt+ σ
√
λtdWt + δdLt
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Point process simulation

Path of projected intensity h
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Parameter estimation

Setting

• Suppose λ = Λ(N,X;α) for some explanatory factor X and a

parameter α ∈ ΘN ⊂ Rp to be estimated

• Suppose X has transition density pt(·; γ) for a parameter

γ ∈ ΘX ⊂ Rq to be estimated

• The data available for the estimation of (α, γ) are a realization of

the random variable R = (RX ,RN ) where

RN = (Nτ , T1, . . . , TNτ ) ∈ RN
RX = (Xt1 , . . . , Xtm) ∈ RX

for τ > 0 and 0 ≤ t1 < t2 < · · · tm ≤ τ

Kay Giesecke



Credit Risk With Point Processes: An Introduction 45

Parameter estimation

Point process likelihood

• PR is the law of R on (Rm ×RN , Bm × σ(RN ))

• P∗N is the law on (RN , σ(RN )) of a std. Poisson process on [0, τ ]

• Lm is the Lebesgue measure on (Rm,Bm)

• The likelihood function L(α, γ |R) is the Radon-Nikodym

density of PR with respect to P∗N × L, evaluated at the data R:

L(α, γ |R) =
dPR

dLm × P∗N

• The maximum likelihood estimator of (α, γ) is given by

(α̂, γ̂) = arg max
α∈ΘN ,γ∈ΘX

L(α, γ |R)

Kay Giesecke
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Parameter estimation

Point process likelihood

• Under technical conditions, (α̂, γ̂) is consistent and asymptotically

normal as τ →∞, see Giesecke & Schwenkler (2011)

• To compute L(α, γ |R), we introduce an auxiliary probability

measure P∗ on Fτ with density (see Appendix)

dP∗

dP
= Zτ = exp

(
−
∫ τ

0

log(λs−)dNs −
∫ τ

0

(1− λs)ds
)

N is a standard Poisson process on [0, τ ] under P∗ with law P∗N

• Proposition. Letting L∗X(γ |RN ) be the conditional P∗-likelihood

of RX given RN , we have that

L(α, γ |R) = E∗(1/Zτ |R)(α, γ)× L∗X(γ |RN )

Kay Giesecke
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Parameter estimation

Discussion

• The ML problem can be decomposed into separate subproblems

for α and γ only in special cases

– If X is constant between observations (a std. assumption) or Λ
does not depend on X, then Zτ is measurable relative to σ(R)
and E∗(1/Zτ |R)(α, γ) = 1/Zτ depends on α only

• In general, E∗(1/Zτ |R) is a point process filter

– Filter is governed by Kushner-Stratonovic equation, see

Kliemann et al. (1990)

– Numerical methods: Giesecke & Schwenkler (2011)

• Extension to completely unobserved explanatory factors

(“frailties”), and observation of mark variables

Kay Giesecke
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Goodness-of-fit testing
Time-scaling tests

• Theorem. (Meyer (1971)) If At →∞, then the variables

Sk = ATk =
∫ Tk

0

λsds

are the arrival times of a standard Poisson process in the

time-scaled filtration defined by the stopping-time σ-fields FAt
• Test whether the fitted intensity λ̂ generates a time change that

correctly transforms the observed T k

– Properties of time-scaled inter-arrival times

– Properties of time-scaled event count

• In the presence of frailty, need fitted filtered intensity with respect

to sub-filtration representing the observable information

Kay Giesecke
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Goodness-of-fit testing
Fitted compensator (time change)
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Applications

• Valuation of securities exposed to (correlated) default risk

– Corporate bonds, CDS, forwards and options on CDS

– Index and tranche swaps (“CDOs”)

• Counterparty valuation adjustment (CVA)

• Risk premia extraction

• Estimation of portfolio credit risk
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Valuation

Alternative formulations of the valuation problem

• Model N under the actual measure that represents the empirical

likelihood of events, and then specify an equivalent change of

measure to a risk-neutral measure (see Appendix)

– Pricing and empirical time series applications that require risk

premia specifications (as in Berndt, Douglas, Duffie, Ferguson

& Schranz (2005), Eckner (2007), Azizpour, Giesecke & Kim

(2011), and others)

• Model the point process N under a risk-neutral measure

– Pricing applications
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Single-name valuation

• Let P be a pricing measure relative to a constant risk-free rate r

• The issuer’s default time is the first jump time T 1 of N ; the

corresponding default process is N1 = min(N, 1)

• The financial loss at default is modeled by an FT 1-measurable

random variable `1, which is independent of T 1 and has ` = E(`1)

– Independence assumption can be relaxed

• At any time t < min(T, T 1), the firm’s risk-neutral conditional

survival probability satisfies

P(T 1 > T | Ft) = P(NT = 0 | Ft)

= lim
u↑∞
Lu(ψ(u), t, T )

= E∞(e−(AT−At))
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Single-name valuation

The limiting measure P∞

• Since limu→∞ ψ(u) = 1, we have for the limiting density

Z∞T = lim
u→∞

ZT (u) = 1{NT=0} exp(AT )

• It follows that P(Z∞T = 0) = P(NT > 0) > 0, and therefore, the

limiting measure P∞ defined by Z∞T is only absolutely continuous

with respect to P, but not equivalent

• Under P∞, the compensator of N is null on [0, T ], so

P∞(T 1 > T ) = 1;

P∞ puts 0 measure on the event of default by T
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Single-name valuation
The limiting measure P∞

• To provide an example, suppose N is an affine point process

driven by the SDE (1) for X, as introduced above

• Taking the limit, for t < T 1 ∧ T we get the formula

P(T 1 > T | Ft) = exp(a(t, T ) + b(t, T )Xt)

where b(t) = b(t, T ) and a(t) = a(t, T ) satisfy the ODEs

∂tb(t) = Λ1 −K1b(t)−
1
2
H1b(t)2

∂ta(t) = Λ0 −K0b(t)−
1
2
H0b(t)2

with boundary conditions b(T ) = a(T ) = 0

• The feedback from N to λ, which comes from the jump term L in

(1), is irrelevant for the survival probability
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Corporate zero bond
A zero coupon bond with unit face value and maturity T pays

• The face value 1 at T < T 1

This has value F (t, T )P(T 1 > T | Ft), where F (t, T ) is the price

of a unit face value, T -maturity zero coupon government bond

• The recovery (1− `1) of face value at T 1 ≤ T
This has value

E(F (t, T 1)(1− `1)N1
T | Ft) = (1− `)Rt(T )

where Rt(T ) is the pre-default value of a unit recovery payment at

T 1 ≤ T . By Stieltjes integration by parts

Rt(T ) = E
(∫ T

t

F (t, s)dN1
s

∣∣∣Ft)
= F (t, T )P(T 1 ≤ T | Ft) + r

∫ T

t

F (t, s)P(T 1 ≤ s | Ft)ds
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Corporate coupon bond
A corporate coupon bond with unit face value, annualized coupon rate

c, coupon dates (tm) and maturity T pays

• The coupon cCm at each tm < T 1 where Cm is the day count

fraction for period m (= portfolio of zero-recovery zero bonds)

• The face value 1 at T < T 1 (= zero-recovery zero bond)

• The recovery (1− `1) of face value at T 1 ≤ T

• The accrued coupon T 1−tm−1
∆m

cCm at T 1 if tm−1 < T 1 ≤ tm,

where ∆m = tm − tm−1

Its pre-default value is given by

F (t, T )P(T 1 > T | Ft) + cVt(T ) + (1− `)Rt(T )

where Vt(T ) is the risky DV01, the pre-default value of a unit stream

at coupon times (tm) until min(T 1, T ) plus any accruals
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Credit swap

A credit swap with unit notional, annualized swap spread S, premium

payment dates (tm) and maturity T is a bilateral contract in which

• The protection seller pays the default loss `1 at T 1 ≤ T
This has pre-default value Dt = `Rt(T )

• The protection buyer pays the swap spread SCm at each

tm < T 1 plus any accruals (assuming 0 points upfront)

This has pre-default value Pt(S) = SVt(T )

The fair spread S equates the values of the default and premium legs.

Since there is no cash flow at inception, the fair swap spread at

inception date t is the solution S = St(T ) to the equation Dt = Pt(S):

St(T ) = `Rt(T )/Vt(T )
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Credit swap

Discussion

• St(T ) can be expressed in terms of P(T 1 > s | Ft) for various

s ≤ T , and the expected loss `

• The formula for St(T ) ignores counterparty risk, the risk that

the protection seller fails with the reference entity

– Need model for correlated default to address this issue

• The formula can be extended to incorporate a stochastic interest

rate, and a loss at default correlated with the default time
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Credit swap

Market spreads on 9/8/2008 for Comcast and Lehman Brothers
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Credit swap

Market-implied, piece-wise constant intensity λ, assuming ` = 0.6
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Credit swap
Market-implied survival probability P(T 1 > T ), assuming a piece-wise

constant intensity λ and ` = 0.6
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Credit swap
Bloomberg CDSW
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Credit swap

CDS mark-to-market

• Consider an investor who buys protection at t = 0 for the period

[0, T ] at a swap spread of S0(T ). The mark-to-market value of

the position at time t ≥ 0, when the market spread is St(T ), is

Vt(T )(St(T )− S0(T )) = Dt − Pt(S0(T ))

• Important for CDS trading strategies

• To estimate the distribution of future mark-to-market of a swap

position, we need a model of the evolution of spreads

– Maximum likelihood estimation of λ using spread time series

– Need to change the measure

• Forward and option on CDS: contracts on the mark-to-market
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Forward credit swap

CDS forward

• In a forward CDS with maturity T , a party agrees to buy

protection at a future time U < T at the forward spread Sf

• The forward spread equals the spot spread S for U = 0

• The contract is knocked out at a default before U
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Forward credit swap

CDS forward

• For a unit notional, the premium leg consists of a spread stream

Sf during [min(τ, U),min(τ, T )] plus any accruals so this leg has

value

Pf (Sf ) = Sf
(
V (T )− V (U)

)
• The default leg covers the loss during [U, T ]

– It is equal to the difference between the default leg of a spot

CDS for T and the default leg of a spot CDS for U

– Its value must be equal to the difference between the values of

the corresponding premium legs:

Df = S(T )V (T )− S(U)V (U)
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Forward credit swap

CDS forward

• The fair forward spread is the solution Sf = Sf (U, T ) to the

equation

Df = Pf (Sf )

so

Sf (U, T ) =
S(T )V (T )− S(U)V (U)

V (T )− V (U)

• We can estimate the forward CDS curve from the market spot

CDS curve and the risky DV01s implied by that curve

– Note that estimates depend on default timing model used
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CDS option

CDS option

• A CDS option or swaption with maturity T imparts the right to

enter into a CDS at a future time U < T at a strike spread S

• A payer swaption gives the right to buy protection for S

– Can include a knock-out provision: if the reference name

defaults between the trade date and the expiry date U the

option is canceled

– Targets widening spreads: exercise if SU (T ) > S

• A receiver swaption gives the right to sell protection for S

– Targets tightening spreads: exercise if SU (T ) < S
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CDS option

Cancelable CDS

• This is a CDS with an embedded receiver swaption

• The protection buyer

– Buys regular spot protection with maturity T

– Buys a receiver swaption expiring at U < T on the reference

name, imparting the right to sell protection over [U, T ] at U

for a fixed strike spread S (often equal to spot spread for T )

• The protection buyer exercises the option and thereby effectively

closes out the spot CDS position at U if SU (T ) < S

– Can then buy protection for SU (T ) for the term [U, T ]

• The protection seller receives the option premium in addition to

the spot CDS spread
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CDS option
Valuation

• In any knock-out forward transaction with maturity T , conditional

on survival to time U , the payoff YU (T ) to a party at U is a

function of the mark-to-market (??) of the position to the party

• In a forward CDS, the survival payoff to the protection buyer is

YU (T ) = VU (T )(SU (T )− St(U, T ))

while that to the protection seller is the negative of this value

• In a knock-out payer swaption, the survival payoff to the

protection buyer is the positive part of the mark-to-market

YU (T ) = VU (T )(SU (T )− S)+

while for the protection seller it is VU (T )(S − SU (T ))+
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Corporate defaults cluster
Value-weighted default rate 1865–2008, US nonfinancial (Source:

Giesecke, Longstaff, Strebulaev & Schaefer (2011))
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Corporate defaults cluster

Sources of clustering

• First, firms are exposed to common or correlated risk factors.

The movements of these factors cause correlated changes in firms’

conditional default rates (Duffie, Saita & Wang (2006))

• Second, some of the risk factors may be unobservable frailties.

The uncertainty regarding the values of these factors has an

influence on the conditional default rates of the firms that depend

on the same frailties (Duffie, Eckner, Horel & Saita (2009))

• Third, a default may be contagious, and have a direct impact on

the conditional default rates of other firms (Azizpour, Giesecke &

Schwenkler (2009))
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Portfolio derivatives

• They facilitate the transfer of the correlated default risk in a

portfolio of reference names

– There are multiple families of standard reference portfolios,

called indices, including the CDX family (North American

issuers) and the iTraxx family (European and Asian names)

• They are contingent claims on the portfolio loss point process

L =
∑N
k=1 `

k where `k is the loss at the kth default

• The reference pool often consists of single-name CDS with

common notional that we normalize to 1, common maturity date

T and common premium payment dates (tm).
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Portfolio derivatives are claims on pool loss
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Index swap
In an index swap with swap spread S and maturity T ,

• The protection seller covers portfolio losses as they occur, i.e.

the increments of L; this leg has value

Dt = E
(∫ T

t

F (t, s)dLs
∣∣∣Ft)

= F (t, T )E(LT | Ft)− Lt + r

∫ T

t

F (t, s)E(Ls | Ft) ds

• The protection buyer pays SCm(n−Ntm) at each date tm; this

leg has value

Pt(S) = S
∑
tm≥t

F (t, tm)Cm(n− E(Ntm | Ft))

The spread at t is the solution S = St(T ) to the equation Dt = Pt(S)
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Index swap default leg
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Index swap and single-name swaps

• The index is simply a portfolio of single name swaps with common

maturity, notional 1/n and premium payment dates (tm)

• The index default leg must equal the sum over index constituents

of the single name premium legs 1
nS

i
t(T )V it (T ), where Sit(T ) is

the single name spread and V it (T ) is the single name DV01

• The index premium leg is the sum over constituents of 1
nV

i
t (T ),

i.e. the index DV01, times St(T )

• This gives the intrinsic index spread formula

St(T ) =
∑n
i=1 S

i
t(T )V it (T )∑n

i=1 V
i
t (T )
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Tranche swap default leg
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Tranche loss = call spread on portfolio loss

Kay Giesecke



Credit Risk With Point Processes: An Introduction 79

Tranche swap
In a tranche with lower attachment point K ∈ [0, 1], upper

attachment point K ∈ (K, 1], upfront rate G, and swap spread S,

• The protection seller pays Ut = (Lt −Kn)+ − (Lt −Kn)+ at t;

this has value

Dt(K,K) = F (t, T )E(UT | Ft)− Ut + r

∫ T

t

F (t, s)E(Us | Ft) ds

• The protection buyer pays GKn at inception t and

SCm(Kn− Utm) at each date tm (assuming K < 1)

Pt(K,K,G, S) = GKn+ S
∑
tm≥t

F (t, tm)Cm(Kn− E(Utm | Ft))

For fixed G, the fair spread S is the solution S = St(K,K,G, T ) to

Dt(K,K) = Pt(K,K,G, S). For fixed S, the fair upfront rate G is

the solution G = Gt(K,K, S, T ) to Dt(K,K) = Pt(K,K,G, S).
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Market calibration

• We calibrate the affine point process model (1) to index and

tranche spreads/upfront rates on the CDX.NA.HY index observed

on 5/11/2007, which has attachment points 0, 10, 15, 25, 35, 100%

• We assume the risk-neutral distribution of loss at default is

uniform on {`1, `2} with 0 < `1 < `2 < 1, and we set the expected

loss at default E(`k) =
∫
zdν(z) = 0.6

• The risk-neutral intensity λ is specified by the parameters

λ0, c, κ, σ and δ

• The risk-free rate r = 0.05
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Market calibration

• We fit the parameter vector θ = (λ0, c, κ, σ, δ, `1) by numerically

solving the optimization problem

min
θ∈Θ

∑
i

(
MarketMid(i)−Model(i,θ)

MarketAsk(i)−MarketBid(i)

)2

(2)

where Θ = [0, 5]3 × [0, 1]× [0, 5]× [0.2, 0.6] and the sum ranges

over the spread/upfront rate data points

• We use adaptive simulated annealing

• We analyze two model specifications:

– Mod 1 is unrestricted

– Mod 2 is restricted: the diffusive volatility σ = 0
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Market calibration
5Y maturity: market data and fitting results

• Both models fit the data well; the basic affine model does better

than the Hawkes model

MarketBid MarketAsk Mod 1 Mod 2

0-10 70.50% 70.75% 71.11% 71.48%

10-15 34.25% 34.50% 32.85% 32.74%

15-25 316.00 319.00 316.80 311.43

25-35 79.00 81.00 81.47 77.34

Index 262.85 263.10 263.46 262.97

MinObj 41.63 60.41

AAPE 1.47% 2.24%
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Market calibration

5Y maturity: initial and calibrated parameter values

• We ran several calibrations with different initial values; the values

reported below generated the lowest objective function value

• The calibrated parameter values are very similar for the two models

λ0 c κ σ δ `1

Initial 2.50 2.50 2.50 0.50 2.50 0.40

Mod 1 0.70 1.61 2.62 0.62 2.99 0.24

Mod 2 0.75 1.60 2.58 0.00 2.94 0.24
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Market calibration
5Y maturity: loss distribution implied by the calibrated basic affine

model Mod 1
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Market calibration
5Y maturity: parameter stability

• We re-calibrate each model specification at different dates starting

with 5/11/07

• The initial values at a date after 5/11 are set to the optimal

values from the previous date

Mod 1 Date 05/11 05/14 05/15 05/16 05/17

MinObj 41.63 58.66 46.78 46.24 58.24

AAPE 1.47% 1.70% 1.26% 1.32% 1.35%

Mod 2 Date 05/11 05/14 05/15 05/16 05/17

MinObj 60.41 73.43 54.29 43.88 65.23

AAPE 2.24% 2.04% 1.57% 1.45% 1.92%
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Market calibration

5Y maturity: parameter stability Mod 1 (left) better than Mod 2
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Market calibration
5 and 7Y maturities: market data and fitting results

MarketBid MarketAsk Mod 1 Mod 2

5Y 0-10 70.50% 70.75% 71.69% 72.00%

10-15 34.25% 34.50% 33.44% 33.47%

15-25 316.00 319.00 316.13 309.93

25-35 79.00 81.00 78.45 72.79

Index 262.85 263.10 263.94 262.75

7Y 0-10 80.13% 80.38% 81.23% 81.49%

10-15 55.50% 55.75% 55.17% 55.40%

15-25 582.00 587.00 580.25 584.63

25-35 180.00 183.00 206.41 207.98

Index 307.50 307.75 307.53 308.91

MinObj 136.12 192.82

AAPE 2.35% 3.30%
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Market calibration
5Y maturity: Mod 1 out-of-sample forecast for 7Y

MarketBid MarketAsk 5+7Y 5Y

5Y 0-10 70.50% 70.75% 71.69% 71.11%

10-15 34.25% 34.50% 33.44% 32.85%

15-25 316.00 319.00 316.13 316.80

25-35 79.00 81.00 78.45 81.47

Index 262.85 263.10 263.94 263.46

7Y 0-10 80.13% 80.38% 81.23% 81.79%

10-15 55.50% 55.75% 55.17% 52.49%

15-25 582.00 587.00 580.25 531.61

25-35 180.00 183.00 206.41 186.26

Index 307.50 307.75 307.53 296.00

MinObj 136.12

AAPE 2.35% 3.04%
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Market calibration

3, 5 and 7Y maturities: Mod 1

MarketBid MarketAsk Mod 1

3Y 0-10 45.63% 45.88% 45.03%

10-15 7.75% 8.00% 7.51%

15-25 51.00 55.00 54.94

25-35 12.00 14.00 7.77

Index 184.70 184.95 189.21

5Y 0-10 70.50% 70.75% 70.25%

10-15 34.25% 34.50% 32.10%

15-25 316.00 319.00 310.74

25-35 79.00 81.00 79.26

Index 262.85 263.10 258.69

7Y 0-10 80.13% 80.38% 80.25%

10-15 55.50% 55.75% 53.56%

15-25 582.00 587.00 580.92

25-35 180.00 183.00 218.18

Index 307.50 307.75 308.04

MinObj 930.19

AAPE 5.93%
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Market calibration

Calibrating through September 2008
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Market calibration

AAPE for September 2008
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Market calibration

Discussion

• The parsimonious model (1) fits the entire index/tranche market

across attachment points and maturities

– The calibrated parameter values remain remarkably stable over

different calibration dates

– If required, a perfect fit can be achieved by introducing

time-dependent parameters

• Maximum likelihood estimation from time series of tranche and

index swap spreads to extract premia for correlated default risk,

see Azizpour et al. (2011)

– Requires specification of measure change (see Appendix)
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Portfolio credit risk

Overview

• We estimate a parametric model for the actual measure

intensity from historical default experience (i.e., a path of N)

using maximum likelihood (see above)

– For notational simplicity, we let P denote the actual measure

• We test the goodness-of-fit using the time-scaling test

• We compute the conditional distribution of N at future times, and

the associated risk statistics such as VaR
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Portfolio credit risk

Data and intensity model

• Our sample period is 1/1/1970 to 1/1/2010

• Data on economy-wide industrial and financial default timing are

from Moody’s Default Risk Service

• The data is a realization of a marked point process (Tn, Dn)1109
n=1

– Tn represents a date with at least one default incidence

– Dn is the number of defaults at Tn, and
∑1109
n=1 Dn = 1667

• Our intensity model is

λt = exp(β ·Xt) + δ
∑
n≤Nt

exp(−η(t− Tn))(Dn + wD2
n)

where X is a vector of observable explanatory covariates
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Portfolio credit risk

Number of defaults per year
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Portfolio credit risk

Number of defaults per day
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Portfolio credit risk

Vector X of observable covariates

• A constant

• The trailing 1-year return on the S&P 500

• The 3-month Treasury bill rate

• The spread between the 10 and 1-year Treasury rates

• The 1-year percentage growth of the US industrial production

• In different econometric settings, Duffie et al. (2006), Duffie et al.

(2009), and others found these variables to be significant

predictors of US industrial defaults
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Portfolio credit risk

Fitted intensity vs. default times
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Portfolio credit risk

Time change tests

• We test whether the time-changed event counting process

NA−1 , At =
∫ t

0

λ̂sds

generated by the fitted filtered intensity λ̂ is a realization of a

standard Poisson process relative to its own filtration

• If λ is correctly specified, then

– The inter-arrival times Wn = ATn −ATn−1 of NA−1 are

independent samples from a standard exponential distribution

– The binned event counts P bi =
∑Nτ
n=1 1(b(i−1), bi](ATn), defined

for bins of size b > 0, are independent samples from a Poisson

distribution with parameter b
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QQ-plot of time-changed inter-arrival times Wn
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Portfolio credit risk

Out-of-sample forecasts vs. realized events
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Portfolio credit risk

Discussion

• With two default correlation channels addressed in our model, the

forecast performance is quite reasonable

– Dependence of λ on common covariate vector X

– Feedback (contagion)

• In- and out-of-sample fit can be improved somewhat by including

an unobserved frailty process to address the third channel of

default correlation

– Computationally challenging filtering problem must be

addressed, see Giesecke & Schwenkler (2011)
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Portfolio credit risk

Out-of-sample forecasts when including an OU frailty
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Conclusion

• Casting credit risk applications as point process problems is

natural and effective

• Many other important topics we did not treat, e.g.

– Structural models of default (Merton (1974), Black & Cox

(1976), and many others)

– Counterparty valuation adjustment (CVA)

– Bottom-up models of correlated default (Duffie & Garleanu

(2001), Eckner (2009), and many others)
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Appendix
Stieltjes integrals

• Consider a real-valued, right continuous function Y on [0,∞)

– For fixed ω ∈ Ω, the paths Nt(ω) and At(ω) are real-valued,

right continuous, non-decreasing and finite on [0, t]

• The variation Vt of Y on [0, t] is defined as

Vt = sup
∆

∑
i

|Yti+1 − Yti |

where ∆ is a subdivision of [0, t] with 0 = t0 < t1 < . . . < tn = t

• The function Y is of finite variation if Vt <∞ for every t

• Monotone finite functions such as the paths Nt(ω) and At(ω) are

of finite variation on any finite interval, and so is the path of the

compensated point process martingale Nt(ω)−At(ω)
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Appendix

Stieltjes integrals

• A right continuous function Yt of finite variation corresponds to a

measure µ on [0,∞) via

Yt = µ([0, t])

• If Xt is a locally bounded Borel function on R+, then its Stieltjes

integral with respect to Y , denoted

It =
∫ t

0

XsdYs

is the Lebesgue integral of X with respect to µ on (0, t]

• The function I is again right continuous and of finite variation
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Appendix

Change of variables for Stieltjes integrals

• Let X be a right continuous function of finite variation

• Let f : R→ R be continuously differentiable

• We have the change of variables formula for Stieltjes integrals

f(Xt)− f(X0)

=
∫ t

0

f ′(Xs−)dXs +
∑

0<s≤t

(
f(Xs)− f(Xs−)− f ′(Xs−)∆Xs

)
• Here, ∆Xs = Xs −Xs− is the jump of X at s and

Xs− = lim
u↑s

Xu, X0− = X0
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Appendix
Compare with Itô’s formula

• Let X be a semimartingale, not necessarily of finite variation

• Let f : R× R+ → R be twice continuously differentiable

• We have the change of variables formula

f(Xt, t)− f(X0, 0) =
∫ t

0

fx(Xs−, s−)dXs +
∫ t

0

ft(Xs, s)ds

+
1
2

∫ t

0

fxx(Xs−, s−)d[X,X]cs

+
∑

0<s≤t

(
f(Xs, s)− f(Xs−, s−)− fx(Xs−, s−)∆Xs

)
with [X,X]t = [X,X]ct +

∑
0≤s≤t(∆Xs)2

• If X is right continuous and of finite variation, then [X,X]c = 0
and we get the change of variables formula for Stieltjes integrals
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Appendix
Stieltjes integration by parts

• Let X and Y be right continuous functions of finite variation

• We have the integration by parts formula

XtYt = X0Y0 +
∫ t

0

Xs−dYs +
∫ t

0

YsdXs

• We can write this formula equivalently as

XtYt = X0Y0 +
∫ t

0

Xs−dYs +
∫ t

0

Ys−dXs +
∑
s≤t

∆Xs∆Ys

since, using the decomposition Xt = Xc
t +

∑
s≤t ∆Xs and the

fact that Y has only a countable number of jumps,∫ t

0

∆YsdXs =
∫ t

0

∆YsdXc
s +

∑
s≤t

∆Xs∆Ys =
∑
s≤t

∆Xs∆Ys
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Appendix

Equivalent change of measure

• Consider a probability measure Q on FT equivalent to P, meaning

that P and Q have the same events of measure 0

• The Radon-Nikodym theorem asserts that there exists a random

variable Z = dQ
dP > 0 with E(Z) = 1 such that

Q(U) = E(Z1U ) =
∫
U

Z(ω)dP(ω), U ∈ FT

• The P-martingale Z defined by Zt = E(Z | Ft) for t ≤ T is called

the density process
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Appendix

Form of density

• Suppose we start with a Brownian motion W and a point process

N on (Ω,F ,P); W may influence the intensity of N

• The martingale representation theorem implies that there are

predictable processes a and b > 0 such that

Zt = exp
(
−
∫ t

0

asdWs −
1
2

∫ t

0

a2
sds

+
∫ t

0

log(bs)dNs −
∫ t

0

(bs − 1)dAs
)
, t ≤ T

• Conditions are required
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Appendix

Girsanov’s theorem

• If N has an intensity λ under P, then it also admits an intensity

λQ under Q (see Artzner & Delbaen (1995))

• The Q-intensity is given by

λQ
t = λtbt, t ≤ T

• A Q-Brownian motion WQ is given by

WQ
t = Wt +

∫ t

0

asds, t ≤ T
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Appendix

Example

• Suppose N has P-intensity λ > 0 and we want to transform N

into a standard Poisson process under Q

• We choose b = 1/λ so N has Q-intensity 1, and therefore is

standard Poisson under Q, by Watanabe’s theorem

• Note that N and WQ are Q-independent (even though W may

influence λ, and hence not be P-independent of N)
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