AN EXTENSION OF SLODKOWSKI'S HOLOMORPHIC EXTENSION THEOREM

FREDERICK P. GARDINER AND YUNPING JIANG

ABSTRACT

December 2012

Assume *n* points move holomorphically in a hyperbolic Riemann surface *Y* parameterized by a time parameter *t* that varies in a Riemann suface *X* with base point x_0 . Let $E_t = \{p_1(t), \ldots, p_n(t)\} \subset Y$ be the positions of the n points at any time *t* in a pointed Riemann surface (X, x_0) and assume each point $p_j(t)$ moves holomorphically and no two points of E_t occupy the same position at the same time.

Given a new point p in Y and not in E_0 describe a recipe for a motion p(t) that starts at $p = p(x_0)$, depends holomorphically on $t \in X$ and so that set $\{E_t \cup \{p(t)\}\}$ always consists of n + 1 distinct points.

Theorem 1. Suppose E_t is moving holomorphically and no two points $p_j(t)$ and $p_k(t)$ of E_t occupy the same position at any moment of time $t \in X$. Then if there is a continuous motion of Y that restricts to the given motion of E_t , there is also a holomorphic motion of $\{E_t \cup \{p(t)\}\}$ that begins at the same point points $E_0 \cup \{p(y_0)\}$ and for which $\{E_t \cup \{p(t)\}\}$ always consists of n + 1 points.

²⁰⁰⁰ Mathematics Subject Classification. Primary 58F23, Secondary 30C62.