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Introduction to Semi-static Hedging

• The recent turmoil has revived interest in hedging, especially for the
few path-dependent claims that remain on the market.

• In the classic Black Scholes model, vanillas and barrier options can
each be hedged by dynamic trading in the two currencies. This
model also allows barrier options to be semi-statically hedged with
vanillas.

• We will introduce options on (maximum) drawdown and drawup
that can be hedged with barrier options (and hence vanillas or the
underlying currencies).

• All of the hedges are either purely static and hence completely
model-free, or else semi-static and hence semi-robust.

• In the semi-robust case, the hedges survive an unknown independent
time change. Under zero carrying costs for the underlying, the
instantaneous volatility is an unknown stochastic process evolving
independently of the shocks to an underlying FX rate.



Related Literature

• Working in the Black Model, Sbuelz (1998) constructs a semi-static
hedge of a double barrier option using single barrier options

• Working in the Black Scholes model, Vecer, (2006/7) and Pospisil
and Vecer(2008/9) value claims paying maximum drawdown using
risk-neutral valuation.

• Douady, Shiryaev, and Yor (2000) give formulas for the expected
value of the range, the maximum drawdown, and other path
statistics of a standard Brownian motion.

• Zhang and Hadjiliadis (2009) extend many of these results to
geometric Brownian motion.
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Limitations of Semi-static Hedging

• The semi-static hedges that we propose only work perfectly if a
symmetry is present somewhere.

• Although this symmetry is usually lacking in real world markets,
simulations on real world data have universally shown that the
hedges nonetheless provide better tracking.

• Instead of relying on symmetry, one can put on the proposed hedge
and fix it up with a classical dynamic hedge of the residual.

• For this reason, we will make restrictive assumptions that lead to
simple hedges.



Standing Assumptions

• Our robust hedges place no dynamical restrictions on the
underlying, but assume that barrier options trade.

• Our semi-robust hedges assume that the underlying is a forward FX
rate F , so that it has zero risk-neutral drift under the forward
measure.

• The hedges further suppose that the process is skip-free, i.e. no
jumps over the barrier(s).

• Finally, we propose a notion of symmetry that need only hold when
the underlying first visits the barrier(s) of a barrier option.



Arithmetic Symmetry

• For simplicity, we first consider a single barrier H, which WLOG we
take to be higher than F0 = 100.

• Let τH denote the first passage time to H (τH =∞ if never hit).

• Assume that if τH < T , then at time τ , the conditional risk-neutral
density governing the terminal price FT is symmetric about
FτH

= H. Hence, a Digital Put (DP) has the same price at hit as a
co-terminal Digital Call (DC) of the same moneyness:

DPτ (K ,T ) = DCτ (2H − K ,T ) for all K ∈ R.

• For example, when a barrier of 110 is first hit, a DP struck at 90
has the same price as a co-terminal DC struck at 130.

• As the 90 vanilla put also has the same price as the 130 vanilla call,
we refer to this result as Arithmetic Put Call Symmetry (APCS).



Implication of APCS for Up-and-In Digital Put

• If Arithmetic Put Call Symmetry holds at the first passage time τH
to a barrier H, then a Digital Put has the same price at τH as the
co-terminal Digital Call of the same moneyness:

DPτH
(K ,T ) = DCτH

(2H − K ,T ) for all K ∈ R.

• Suppose we sell an Up-and-In Digital Put (UIDP) with barrier
H = 110 and strike K = 90. To hedge, we can buy a co-terminal
Digital Call with strike 2H − K = 130.

• If the underlying forward rate never hits 110, the DC expires
worthless and if F does hit 110, the DC can be costlessly swapped
for the DP.

• As a result, for t ∈ [0,T ∧ τH ], no arbitrage implies:

UIDPt(K ,T ; H) = DCt(2H − K ,T ).



Implications of APCS for a Double One Touch

• With the underlying forward FX rate starting at F0 = 100, consider
a Double One Touch with barriers at L = 90 and H = 110 and
payment at expiry. Define d = 20 as the distance between barriers.

• To hedge the sale of a DOT, buy a rectangular wave (RW) whose
heights alternate between 0 and 2. This RW pays 0 if FT ∈ (L,H),
$2 if FT ∈ (L− d , L) or FT ∈ (H,H + d), 0 if FT ∈ (L− 2d , L− d)
or FT ∈ (H + d ,H + 2d), etc.

• If the underlying avoids both barriers, then the RW pays 0. If either
barrier is touched, then the symmetry of the FT distribution about
the hit barrier implies that the RW is worth the PV of $1.

• From no arb., DOTt(T ; L,H) = RWt(T ; L,H), t ∈ [0,T ∧ τL ∧ τH ].

RWt(T ; L,H) = 2
∞∑

n=1

[DCt(T ; L + nd)− DCt(T ; L + (n + 1)d)]

+ 2
∞∑

n=1

[DPt(T ; H − nd)− DPt(T ; H − (n + 1)d)].



Drawdown

• Let St denote the spot FX rate which we assume can be monitored
continuously over a fixed time interval [0,T ].

• Let MT ≡
max

t∈[0,T ] St be the continuously-monitored maximum of this
spot FX rate over [0,T ].

• Let DT ≡ MT − ST be the terminal drawdown or just “drawdown”
for brevity.

• A call on the drawdown with payoff (DT − Kd)+ provides insurance
for the call buyer against large drawdown realizations, with the
maximum loss limited to the initial premium.

• Assuming only frictionless markets and no arbitrage, a new
model-free exact hedge for a drawdown call is presented on the next
page.



Robust Hedge of Drawdown Call

• Let Bt(T ) > 0 be the price at t ∈ [0,T ] of a Bond paying $1 at T .
Let Q be the associated risk-neutral probability measure.

• Let Pt(K ,T ) = Bt(T )EQ
t (K − ST )+ be the vanilla put price at

time t ∈ [0,T ].

• Let τH be the first passage time of the process S to a barrier
H > S0. Let UIDPt(Ku,T ; H) = Bt(T )EQ

t 1(MT > H,ST < Ku) be
the value at time t ∈ [0, τH ] of an Up-and-In Digital Put with strike
Ku, maturity T ≥ t, and barrier H ≥ S0.

• In frictionless markets, the drawdown call value
C d

t (Kd ,T ) ≡ Bt(T )EQ
t (DT − Kd)+ =

Pt(Mt−Kd ,T )+

∫ ∞
Mt

UIDPt(H−Kd ,T ; H)dH, t ∈ [0,T ],Kd ≥ 0.

• The next slide explains why.



Interpreting the Drawdown Call Hedge

• Recall that in frictionless markets, the drawdown call value
C d

t (Kd ,T ) ≡ Bt(T )EQ
t (DT − Kd)+ =

Pt(Mt−Kd ,T )+

∫ ∞
Mt

UIDPt(H−Kd ,T ; H)dH, t ∈ [0,T ],Kd ≥ 0.

• In words, a drawdown call with strike Kd is robustly replicated by
keeping a put struck Kd dollars below Mt and also holding dH
Up-and-In Digital Puts struck Kd dollars below H for each in-barrier
H > Mt .

• If MT = Mt , then the put provides the desired payoff, while if
MT > Mt , then the Up-and-In Digital Puts which knock in at each
rise in M are used to roll up the put strike.



Hedging with Vanillas

• While the proposed hedge is robust, it requires Up-and-In Digital
Puts as hedging instruments.

• The needed barrier options may not trade or the bid offer spread
may be too wide.

• However under some conditions, principally skip-freedom and
symmetry at the barrier, we saw that an Up-and-In Digital Put can
be replicated with a Digital Call:

UIDPt(K ,T ; H) = DCt(2H − K ,T ).

• The next slide indicates the consequences.



Drawdown Call on Forward Under APCS

• A call on the drawdown of a forward FX rate pays off (DT − Kd)+

at its expiry T , where Dt ≡ Mt − Ft is the running drawdown and

Mt ≡
max

s∈[0,t] Fs is the running maximum over [0, t].

• We will replicate by rolling up strangles of constant width. For
Ft ∈ (Kp,Kc), define the center of the strangle as the average of
the two strikes and define the width of the strangle as the difference
between Kc and this center.

• We now define: Assumption set A1: The forward FX rate F is a
Q martingale whose running maximum is continuous and for which
APCS holds at all times τ when dMτ > 0.

• Under frictionless markets &A1, no arbitrage implies that:

C d
t (Kd ,T ) = Pt(Mt−Kd ,T )+Ct(Mt+Kd ,T ), t ∈ [0,T ],Kd ≥ 0.



Interpreting the Drawdown Call Hedge

• Recall that if the running maximum of an underlying forward
increases only continuously and if APCS holds when it does, then no
arbitrage and frictionless markets imply:

C d
t (Kd ,T ) = Pt(Mt−Kd ,T )+Ct(Mt+Kd ,T ), t ∈ [0,T ],Kd ≥ 0.

• In words, a drawdown call is replicated by alway holding a strangle
centered at the running maximum Mt , and whose width is the strike
Kd of the drawdown call.

• The strategy is self-financing because the cash outflow required to
move the put strike up when the running maximum increases
infinitessimally is financed by the cash inflow received from moving
the call strike up (given that APCS is in fact holding at such times).



Maximum Drawdown

• Recall Ft denotes the forward FX rate which we assume can be
monitored continuously over a fixed time interval [0,T ].

• Now let Mt ≡
max

s∈[0,t] Fs be the continuously-monitored running
maximum of this forward FX rate over [0, t].

• Now let Dt ≡ Mt − Ft be the running drawdown for t ∈ [0,T ].

• Let MDT ≡
max

t∈[0,T ] Dt be the Maximum Drawdown experienced over
[0,T ].

• Maximum Drawdown is a widely used risk measure, as it captures
an inability to time, when doing say the carry trade.



Digital Call on Maximum Drawdown

• Recall that Dt ≡ Mt − Ft denotes the running drawdown for

t ∈ [0,T ], while MDT ≡
max

t∈[0,T ] Dt denotes the Maximum Drawdown
experienced over [0,T ].

• A Digital Call on the Maximum Drawdown has terminal payoff
DCmd

T = 1(MDT > Kmd). It provides insurance for the buyer
against large realizations of Maximum Drawdown, with the
maximum loss limited to the initial premium.

• Using the same conditions that lead to a call on drawdown being
replicated by rolling up a strangle, a new semi-static exact hedge for
a Digital Call on Maximum Drawdown is presented on the next
page.



Hedging a DC on MD Under APCS

• Recall that MDT ≡
max

t∈[0,T ] (Mt − Ft) denotes the Maximum
Drawdown experienced over [0,T ]. and that a Digital Call on
Maximum Drawdown pays off DCmd

T = 1(MDT > Kmd) at its expiry
T .

• We will replicate by rolling up Double One Touches. For
Ft ∈ (L,H), a Double One Touch with price
DOTt(L,H,T ), t ∈ [0,T ] pays $1 at T if either barrier is hit before
T and it pays zero otherwise.

• Recall Assumption set A1: The forward FX rate F is a Q
martingale whose running maximum is continuous and for which
APCS holds at all times τ when dMτ > 0.

• Under frictionless markets &A1, no arbitrage implies that:

DCmd
t (Kmd ,T ) = DOTt(Mt−Kmd ,Mt+Kmd ,T ), t ∈ [0,T ],Kmd ≥ 0.



Interpreting the DC on MD Hedge

• Recall that if the running maximum of an underlying forward
increases only continuously and if APCS holds when it does, then no
arbitrage and frictionless markets imply:

DCmd
t (Kmd ,T ) = DOTt(Mt−Kmd ,Mt+Kmd ,T ), t ∈ [0,T ],Kmd ≥ 0.

• In words, a Digital Call on the Maximum Drawdown is replicated by
alway holding a Double One Touch centered at the running
maximum Mt , and whose width is the strike Kmd of the Digital Call.

• The strategy is self-financing because the cash outflow required to
bring the lower barrier nearer by dM when the running maximum
increases infinitessimally is financed by the cash inflow received from
pushing the upper barrier away by dM (given that APCS is in fact
holding at such times).



Using Vanillas Instead of DOT’s

• The proposed hedge for the sale of a Digital Call on Maximum
Drawdown involves rolling up centered Double One Touches
whenever the running maximum creeps up.

• For some underlyings, Double No Touches (DNT’s) trade liquidly
and since DOT = B - DNT, so do DOT’s.

• For other underlyings, neither DNT’s nor DOT’s trade. Fortunately,
we saw that a DOT has a semi-static hedge in terms of a
Rectangular Wave.

• As a consequence, the sale of a Digital Call on Maximum
Drawdown can also be hedged by rolling up centered Rectangular
Waves whenever the running maximum creeps up.

• Hedges are also available using single touches.



Maximum Drawup

• Let St denote the spot FX rate which we assume can be monitored
continuously over a fixed time interval [0,T ].

• Let mt ≡
min

s∈[0,t] Ss be the continuously-monitored maximum of this
spot FX rate over [0, t].

• Let Ut ≡ St −mt be the running drawup or just “drawup” for
brevity.

• Let MUT ≡
max

t∈[0,T ] Ut be the maximum drawup over [0,T ].

• Just as Maximum Drawdown is a risk measure, Maximum Drawup
is a reward measure.



Cheapening Premium

• Consider a digital call paying $1 at its maturity date T <∞ if and
only if S draws down by at least K > 0 before it draws up by K .

• An investor who buys this claim and borrows the cost is clearly
betting that S will draw down by at least $K before T , and before it
draws up by $K.

• The cost of insuring against a Maximum Drawdown of at least K $
over [0,T ] via this digital call is cheaper than just buying Maximum
Drawdown protection outright since:

1(τD
K < τU

K ∧ T ) = 1(MDT > K )− 1(τU
K < τD

K ∧ T ).



One Touch Knockouts

• We will show that there exists a robust static hedge of the digital
call on the K−drawdown preceding a K−drawup which uses
positions in one-touch knockouts (henceforth OTKO’s).

• An OTKO is issued with a lower barrier L < S0, a higher barrier
H ≥ S0, and a fixed maturity date T .

• Let τS
H ≡ {

max
t∈[0,T ] St > H} be the first passage time (FPT) of the

spot process S to the higher barrier H ≥ S0. Let

τS
L ≡ {

max
t∈[0,T ] St ≤ L} be the FPT of the spot process S to the

lower barrier L < S0.

• The terminal payoff of an OTKO is:

OTKOT (L,H,T ) = 1(τS
L < τS

H ∧ T ).

In words, the OTKO pays one dollar at its expiry date T if and only
if the spot price S hits the lower barrier L before hitting the upper
barrier H and this first passage time to L occurs before T .



Pricing the Digital Call Using OTKO’s

• Let τD
K be the first passage time of running drawdown to K > 0.

Similarly, let τU
K be the first passage time of running drawup to K .

• We seek to replicate a claim paying $1 if τD
K ≤ τU

K ∧ T & 0 o.w.

• The theorem below is a consequence of a model-free static hedge of
this digital call in terms of one-touch knockouts.

Theorem: Robust Pricing of Digital Call Under frictionless
markets, no arbitrage implies:

EQ
t 1(τD

K ≤ τU
K ∧ T ) = 1(τD

K ≤ t ∧ τU
K ∧ T )Bt(T )

+1(t < τD
K ∧ τU

K ∧ T ) [OTKOt(Mt − K ,Mt ,T )

+

∫ mt−

(Mt−K)+

∂

∂K
OTKOt(L, L + K ,T )dL

]
.



Does APCS Hold?

• The conditions that generate semi-static hedges are sufficient but
not necessary.

• An example of a model that meets all of the sufficient conditions is
the Bachelier model, i.e. constant normal volatility.

• As is well known, this model produces a negative skew when the
latter is expressed in terms of the usual Black implied vol.

• The semi-static hedges all succeed if the normal instantaneous
volatility follows an unspecified stochastic process that evolves
independently of the noise driving FX rates.

• As is well known, this stochastic volatility effect produces curvature
in the usual Black implied vol.



Geometric Symmetry and Beyond

• A drawback of Arithmetic Put Call Symmetry is that positive
probability of arbitrarily high FX rates implies positive probability of
arbitrarily low FX rates, including negative FX rates.

• Fortunately, all of the results have their geometric counterpart.

• In fact, all of the claims have semi-static hedges for a mixed SV/LV
framework, dFt =

√
Vta(Ft)dWt , whenever a is affine in F and

when V evolves independently of F and W .

• If these sufficient conditions are still considered too restrictive, then
as mentioned in the introduction, nothing prevents putting on the
semi-static hedge and then delta and vega hedging the residual.



Summary

• We showed that single and double barrier options could be used as
robust hedges for new exotics whose payoff depends on drawdown,
maximum drawdown, and/or maximum drawup.

• We gave sufficient conditions under which the payoff from single
and double barrier options could be replicated by semi-static
positions in vanilla options.

• It follows that by restricting the dynamics of the underlying, the
new exotics can be semi-statically hedged with vanillas.

• Besides improved hedging, these results also have implications for
software architecture and for symbolic solvers, in particular
understanding why some exotics can be priced in closed form and
others can’t.


