Elliptic equations: Exercises

Mark Hannam

June 18, 2013

1. Solve the linear one-dimensional elliptic equation

$$
u^{\prime \prime}=-e^{x}\left(-2+2 x+5 x^{2}+x^{3}\right)
$$

on the domain $x \in[0,1]$ with $u(0)=u(1)=0$. Use a cell-centered grid and the tridiagonal method. Verify second-order convergence.
2. Solve the same problem on a staggered grid, with the Nuemann boundary condition $u^{\prime}(0)=1$. (And the same condition at $x=1, u(1)=0$.) Is there a significant difference in accuracy between the two methods, for the same numbers of grid points?
3. Solve the radial elliptic equation

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)=\phi^{\prime \prime}+\frac{2}{r} \phi^{\prime}=-\frac{r^{2}}{1+r^{6}}
$$

with the boundary conditions $\phi^{\prime}(0)=0$ and $\phi(R)=0$, where R is the outer boundary of the domain. Verify second-order convergence. How does the solution change with the location of R ? How much does the solution change with respect to R, compared to changes with respect to spatial resolution?
4. Solve the nonlinear equation

$$
\phi^{\prime \prime}+\frac{1}{\phi^{3}}=0
$$

with $\phi^{\prime}(0)=0$ and $\phi(1)=1$. First linearize the equation, and solve iteratively, with an initial guess of $\bar{\phi}=1$.
5. Solve the Hamiltonian constraint for a maximal trumpet slice of the Schwarzschild spacetime,

$$
\nabla^{2} \psi+\frac{1}{8} \psi^{-7} \frac{6 C^{2}}{r^{6}}=0
$$

where $C^{2}=27 M^{4} / 16$. As an ansatz for the conformal factor, use

$$
\psi=\psi_{0}+u
$$

Near $r=0$ we want $\psi \rightarrow \sqrt{3 M / 2 r}$, and as $r \rightarrow \infty$ we want $\psi \rightarrow 1+M / 2 r$. We can add these two asymptotic contributions in such a way that they do not influence each other's leading-order behaviour. For example,

$$
\psi_{0}=\frac{1}{1+r^{2} / 100} \sqrt{\frac{3 M}{2 r}}+\frac{2 r^{2}}{1+2 r^{2}}\left(1+\frac{M}{2 r}\right)
$$

Linearize the equation with $u=\bar{u}-\delta u$ and solve for δu. You can use the boundary conditions that $\delta u^{\prime}(0)=0$ and either $\delta u\left(r_{\max }\right)=0$ or a Robin boundary condition at $r_{\max }$. You can set $M=1$.
Once you have a solution, locate the horizon at $R=2 M$ in terms of the coordinate r. (You can use the fact that $R=\psi^{2} r$!)
More details on this solution are given in gr-qc/0612097 (where the same problem is solved numerically) and arXiv:0804.0628 (for full details on the trumpet solution). An implicit analytic solution is given in gr-qc/0701037.

