Trancendental Dynamics Sharing Values and Normality

Gopal Datt

Department of mathematics University of Delhi

December 28, 2012 Group, Geometry and Dynamics CEMS, Kumaun University, Almora

• According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

• According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f and f' share three distinct complex numbers a_1 , a_2 , a_3 then $f \equiv f'$.

• According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f and f' share three distinct complex numbers a_1 , a_2 , a_3 then $f \equiv f'$.

 Let f and g be two meromorphic functions in the domain G, a ∈ C, If f - a and g - a have the same zeros in G ,(Ignoring multiplicity) then we say that f and g share the value a IM.

• According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f and f' share three distinct complex numbers a_1 , a_2 , a_3 then $f \equiv f'$.

- Let f and g be two meromorphic functions in the domain G, a ∈ C, If f - a and g - a have the same zeros in G ,(Ignoring multiplicity) then we say that f and g share the value a IM.
- Wilhelm Schwic seems to have been first to draw a connection between normality and shared values. He proved

• According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f and f' share three distinct complex numbers a_1 , a_2 , a_3 then $f \equiv f'$.

- Let f and g be two meromorphic functions in the domain G, a ∈ C, If f - a and g - a have the same zeros in G ,(Ignoring multiplicity) then we say that f and g share the value a IM.
- Wilhelm Schwic seems to have been first to draw a connection between normality and shared values. He proved

Let \mathfrak{F} be a family of meromorphic functions on a domain G and a_1 , a_2 , a_3 be distinct complex numbers . If f and f' share a_1 , a_2 , a_3 for every $f \in \mathfrak{F}$, then \mathfrak{F} is normal in G

Let \mathfrak{F} be a family of meromorphic functions on a domain G and a_1 , a_2 , a_3 be distinct complex numbers . If f and f' share a_1 , a_2 , a_3 for every $f \in \mathfrak{F}$, then \mathfrak{F} is normal in G

• Chen and Hua proved the following

Theorem

Let \mathfrak{F} be a family of holomorphic functions in the unit disk Δ .Suppose that there exist a non zero finite value a such that for each function $f \in F$; f, f' and f'' share the value a IM in Δ . Then the family \mathfrak{F} is normal in Δ .

• we improved following result of Fang and Xu

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a,b be two distinct finite complex numbers such that $b \neq 0$. If for any $f \in \mathfrak{F}$, f and f' share a IM and f(z)=b whenever f'(z)=b then \mathfrak{F} is normal in Δ .

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a,b be two distinct finite complex numbers such that $b \neq 0$. If for any $f \in \mathfrak{F}$, f and f' share a IM and f(z)=b whenever f'(z)=b then \mathfrak{F} is normal in Δ .

we improved this as

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a,b be two distinct finite complex numbers such that $b \neq 0$. If for any $f \in \mathfrak{F}$, f and f' share a IM and f(z)=b whenever f'(z)=b then \mathfrak{F} is normal in Δ .

we improved this as

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a,b be two distinct finite complex numbers such that $b \neq 0$. If for any $f \in \mathfrak{F}$, f and $f^{(k)}$ share a IM and f(z) = b whenever $f^{(k)}(z) = b$ then \mathfrak{F} is normal in Δ .

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a,b be two distinct finite complex numbers such that $b \neq 0$. If for any $f \in \mathfrak{F}$, f and f' share a IM and f(z)=b whenever f'(z)=b then \mathfrak{F} is normal in Δ .

we improved this as

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a,b be two distinct finite complex numbers such that $b \neq 0.$ If for any $f \in \mathfrak{F}$, f and $f^{(k)}$ share a IM and f(z) = b whenever $f^{(k)}(z) = b$ then \mathfrak{F} is normal in Δ .

• We use Zalcman's lemma to prove the theorem.

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a,b be two distinct finite complex numbers such that $b \neq 0$. If for any $f \in \mathfrak{F}$, f and f' share a IM and f(z)=b whenever f'(z)=b then \mathfrak{F} is normal in Δ .

we improved this as

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a,b be two distinct finite complex numbers such that $b \neq 0.$ If for any $f \in \mathfrak{F}$, f and $f^{(k)}$ share a IM and f(z) = b whenever $f^{(k)}(z) = b$ then \mathfrak{F} is normal in Δ .

• We use Zalcman's lemma to prove the theorem.

Lemma

Let \mathfrak{F} be a family of holomorphic functions in a domain Δ with the property that for every function $f \in \mathfrak{F}$, the zeros of f are of multiplicity at least k. If \mathfrak{F} is not normal at $z_0=0$, then for $0 \le \alpha \le k$. there exist (a) a sequennce of complex numbers $z_n \rightarrow 0$, $|z_n| < r < 1$ (b) a sequence of functions $f_n \in \mathfrak{F}$ and (c) a sequence of positive numbers $\rho_n \rightarrow 0$ such that $g_n(\zeta) = \rho^{-\alpha} f_n(z_n + \rho_n \zeta)$ converges to a nonconstant entire function g on \mathbb{C} . Moreover g is of order at most one . If \mathfrak{F} possesses the additional property that there exists M > 0 such that $|f^{(k)}(z)| \le M$ whenever f(z) = 0 for any $f \in \mathfrak{F}$, then we can take $\alpha = k$

æ

⊡ ► < ≣

• suppose \mathfrak{F} is not normal in Δ ; without loss of generality we assume that \mathfrak{F} is not normal at the point z=0 then by Zalcman's lemma

 $g_n(\zeta) = \rho^{-k}[f_n(z_n + \rho_n\zeta) - a]$ converges locally uniformly to a nonconstant entire function g. moreover g is of order atmost one where $z_n \to 0$, $|z_n| < r < 1$ $f_n \in \mathbb{F}$, and $\rho_n \to 0$, $\rho > 0$

• suppose \mathfrak{F} is not normal in Δ ; without loss of generality we assume that \mathfrak{F} is not normal at the point z=0 then by Zalcman's lemma

$$\begin{split} g_n(\zeta) &= \rho^{-k} [f_n(z_n + \rho_n \zeta) - a] \\ \text{converges locally uniformly to a nonconstant entire function} \\ g. \text{ moreover } g \text{ is of order atmost one} \\ \text{where } z_n \to 0, |z_n| < r < 1 \ f_n \in \mathbb{F}, \text{and } \rho_n \to 0, \rho > 0 \end{split}$$

• Now we claim that g = 0 iff $g^{(k)} = a$ and $g^{(k)} \neq b$ Suppose $g(\zeta_0) = 0$. then by Hurwitz's theorem there exist $\zeta_n; \zeta_n \to \zeta_0$ such that $g_n(\zeta_n) = \rho_n^{-k}[f_n(z_n + \rho_n\zeta_n) - a] = 0$, since $f_n(z_n + \rho_n\zeta_n) = a$ since f_n and $f_n^{(k)}$ share a , we have $g_n^k(\zeta_n) = f_n^{(k)}(z_n\rho_n) = a$ hence

$$g^{(k)}(\zeta_0) = \lim_{n \to \infty} g_n^{(k)}(\zeta_n) = a$$

• suppose \mathfrak{F} is not normal in Δ ; without loss of generality we assume that \mathfrak{F} is not normal at the point z=0 then by Zalcman's lemma

$$\begin{split} g_n(\zeta) &= \rho^{-k} [f_n(z_n + \rho_n \zeta) - a] \\ \text{converges locally uniformly to a nonconstant entire function} \\ g. \text{ moreover } g \text{ is of order atmost one} \\ \text{where } z_n \to 0, |z_n| < r < 1 \ f_n \in \mathbb{F}, \text{and } \rho_n \to 0, \rho > 0 \end{split}$$

• Now we claim that g = 0 iff $g^{(k)} = a$ and $g^{(k)} \neq b$ Suppose $g(\zeta_0) = 0$. then by Hurwitz's theorem there exist $\zeta_n; \zeta_n \to \zeta_0$ such that $g_n(\zeta_n) = \rho_n^{-k}[f_n(z_n + \rho_n\zeta_n) - a] = 0$, since $f_n(z_n + \rho_n\zeta_n) = a$ since f_n and $f_n^{(k)}$ share a , we have $g_n^k(\zeta_n) = f_n^{(k)}(z_n\rho_n) = a$ hence

$$g^{(k)}(\zeta_0) = \lim_{n \to \infty} g_n^{(k)}(\zeta_n) = a$$

• Thus we have proved that $g^{(k)} = a$ whenever g = 0.

• On the other hand, if $g^{(k)}(\zeta_0) = a$ then there exist $\zeta_n, \zeta_n \to \zeta_0$ such that $g_n^{(k)}(\zeta_n) = f_n^{()k}(z_n + \rho_n\zeta_n) = a, n = 1, 2, ...$ hence $f_n(z_n = \rho_n\zeta_n) = a$ and $g_n(\zeta_n) = 0$ for n=1,2,... thus $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = 0$

this shows that g = 0 whenever $g^{(k)} = a$

• On the other hand, if $g^{(k)}(\zeta_0) = a$ then there exist $\zeta_n, \zeta_n \to \zeta_0$ such that $g_n^{(k)}(\zeta_n) = f_n^{()k}(z_n + \rho_n\zeta_n) = a, n = 1, 2, ...$ hence $f_n(z_n = \rho_n\zeta_n) = a$ and $g_n(\zeta_n) = 0$ for n=1,2,... thus $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = 0$

this shows that g = 0 whenever $g^{(k)} = a$

• Next, we prove $g^{(k)}(\zeta) \neq b$. suppose that there exist ζ_0 satisfying $g^{(k)}(\zeta_0) = b$, by Hurwitz's theorem there exsit a sequence $\zeta_n \to \zeta_0$ and $g_n^{(k)}(\zeta_n) = b$; n = 1, 2, ... • On the other hand, if $g^{(k)}(\zeta_0) = a$ then there exist $\zeta_n, \zeta_n \to \zeta_0$ such that $g_n^{(k)}(\zeta_n) = f_n^{()k}(z_n + \rho_n\zeta_n) = a, n = 1, 2, \dots$ hence $f_n(z_n = \rho_n\zeta_n) = a$ and $g_n(\zeta_n) = 0$ for $n=1,2,\dots$ thus $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = 0$

this shows that g = 0 whenever $g^{(k)} = a$

- Next, we prove $g^{(k)}(\zeta) \neq b$. suppose that there exist ζ_0 satisfying $g^{(k)}(\zeta_0) = b$, by Hurwitz's theorem there exsit a sequence $\zeta_n \to \zeta_0$ and $g_n^{(k)}(\zeta_n) = b$; n = 1, 2, ...
- since $f_n(z) = b$ whenever $f_n^{(k)}(z) = b \Rightarrow f_n(z_n + \rho_n\zeta_n) = b$ and $g_n(\zeta_n) = \rho_n^{-k}[f_n(z_n + \rho_n\zeta_n) - a] = \rho_n^{(k)}[b - a] \to \infty$ this contradicts $\lim_{n\to\infty} g_n(\zeta_n) = g(\zeta_0) \neq \infty$ So $g^{(k)}(k) \neq b$.

• On the other hand, if $g^{(k)}(\zeta_0) = a$ then there exist $\zeta_n, \zeta_n \to \zeta_0$ such that $g_n^{(k)}(\zeta_n) = f_n^{()k}(z_n + \rho_n\zeta_n) = a, n = 1, 2, \dots$ hence $f_n(z_n = \rho_n\zeta_n) = a$ and $g_n(\zeta_n) = 0$ for $n=1,2,\dots$ thus $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = 0$

this shows that g = 0 whenever $g^{(k)} = a$

- Next, we prove $g^{(k)}(\zeta) \neq b$. suppose that there exist ζ_0 satisfying $g^{(k)}(\zeta_0) = b$, by Hurwitz's theorem there exsit a sequence $\zeta_n \to \zeta_0$ and $g_n^{(k)}(\zeta_n) = b$; n = 1, 2, ...
- since $f_n(z) = b$ whenever $f_n^{(k)}(z) = b \Rightarrow f_n(z_n + \rho_n\zeta_n) = b$ and $g_n(\zeta_n) = \rho_n^{-k}[f_n(z_n + \rho_n\zeta_n) - a] = \rho_n^{(k)}[b - a] \to \infty$ this contradicts $\lim_{n\to\infty} g_n(\zeta_n) = g(\zeta_0) \neq \infty$ So $g^{(k)}(k) \neq b$.
- Hence we get $g^{(k)}(\zeta) = b + e^{A\zeta + B}$

æ

・聞き ・ ほき・ ・ ほき

we claim that A = 0.
 suppose A ≠ 0; then

•
$$g(\zeta) = \frac{b\zeta^k}{k!} + \frac{e^{A\zeta+B}}{A^k} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_{k-1}\zeta + c_k$$

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

•
$$g(\zeta) = \frac{b\zeta^k}{k!} + \frac{e^{A\zeta+B}}{A^k} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_{k-1}\zeta + c_k$$

• Let
$$g^{(k)} = a$$
 and
since $g^{(k)}(\zeta) = a \Rightarrow g(\zeta) = 0$

æ

▲圖▶ ▲屋▶ ▲屋▶

- we claim that A = 0. suppose A ≠ 0; then
 g(ζ) = bζ^k/k! + e^{Aζ+B}/A^k + c₁ζ^{k-1}/(k-1)! + ... + c_{k-1}ζ + c_k
- Let $g^{(k)} = a$ and since $g^{(k)}(\zeta) = a \Rightarrow g(\zeta) = 0$
- we have $\frac{b\zeta^k}{k!} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_k + \frac{b-a}{A^k} = 0$

э

•
$$g(\zeta) = \frac{b\zeta^{\kappa}}{k!} + \frac{e^{A\zeta+B}}{A^{k}} + \frac{c_{1}\zeta^{\kappa-1}}{(k-1)!} + \ldots + c_{k-1}\zeta + c_{k}$$

- Let $g^{(k)} = a$ and since $g^{(k)}(\zeta) = a \Rightarrow g(\zeta) = 0$
- we have $\frac{b\zeta^k}{k!} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_k + \frac{b-a}{A^k} = 0$
- this is a polynomial of degree k in ζ this polynomial has k solutions.

•
$$g(\zeta) = \frac{b\zeta^k}{k!} + \frac{e^{A\zeta+B}}{A^k} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_{k-1}\zeta + c_k$$

- Let $g^{(k)} = a$ and since $g^{(k)}(\zeta) = a \Rightarrow g(\zeta) = 0$
- we have $\frac{b\zeta^k}{k!} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_k + \frac{b-a}{A^k} = 0$
- this is a polynomial of degree k in ζ this polynomial has k solutions.
- which contradicts the fact that $g^{(k)}$ has infiniteky many solutions, then we have $g^{(k)}(\zeta) = b + e^B$ $\Rightarrow g(\zeta) = (b + e^B)\frac{\zeta^k}{k!} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_k$ g is nonconstant. This contradicts $g(\zeta) = 0 \Leftrightarrow g^{(k)}(\zeta) = a$. thus \mathfrak{F} is normal.

•
$$g(\zeta) = \frac{b\zeta^k}{k!} + \frac{e^{A\zeta+B}}{A^k} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_{k-1}\zeta + c_k$$

- Let $g^{(k)} = a$ and since $g^{(k)}(\zeta) = a \Rightarrow g(\zeta) = 0$
- we have $\frac{b\zeta^k}{k!} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_k + \frac{b-a}{A^k} = 0$
- this is a polynomial of degree k in ζ this polynomial has k solutions.
- which contradicts the fact that $g^{(k)}$ has infiniteky many solutions, then we have $g^{(k)}(\zeta) = b + e^B$ $\Rightarrow g(\zeta) = (b + e^B)\frac{\zeta^k}{k!} + \frac{c_1\zeta^{k-1}}{(k-1)!} + \ldots + c_k$ g is nonconstant. This contradicts $g(\zeta) = 0 \Leftrightarrow g^{(k)}(\zeta) = a$. thus \mathfrak{F} is normal.
- We improved one more result of Fang and Xu as

let \mathfrak{F} be a family of holomorphic functions in the unit disc Δ and let \mathbf{a} be a non zero finite complex number. If for any $f \in \mathfrak{F}$ f and $f^{(k)}$ share \mathbf{a} IM and $f^{(k+1)}(z) = a$ whenever f(z) = a. Then \mathfrak{F} is normal in Δ .

let \mathfrak{F} be a family of holomorphic functions in the unit disc Δ and let **a** be a non zero finite complex number. If for any $f \in \mathfrak{F}$ f and $f^{(k)}$ share a IM and $f^{(k+1)}(z) = a$ whenever f(z) = a. Then \mathfrak{F} is normal in Δ .

• For proving this theorem we use tools from **Nevanlinna theory of meromorphic functions**.

let \mathfrak{F} be a family of holomorphic functions in the unit disc Δ and let **a** be a non zero finite complex number. If for any $f \in \mathfrak{F}$ f and $f^{(k)}$ share a IM and $f^{(k+1)}(z) = a$ whenever f(z) = a. Then \mathfrak{F} is normal in Δ .

• For proving this theorem we use tools from **Nevanlinna theory of meromorphic functions**.

Lemma

let f be a nonconstant meromophic function. Then for $k \ge 1, b \ne 0, \infty,$ $T(r, f) \le \overline{N}(r, f) + N(r, \frac{1}{f}) + N(r, \frac{1}{f^{(k)}-b}) - N(r, \frac{1}{f^{(k+1)}}) + S(r, f)$

• Suppose \mathfrak{F} is not normal in Δ ; without loss of generality we assume that \mathfrak{F} is not normal at the point z = 0.

- ∢ ≣ ▶

- Suppose \mathfrak{F} is not normal in Δ ; without loss of generality we assume that \mathfrak{F} is not normal at the point z = 0.
- Then by **Zalcman's lemma** $g_n(\zeta) = \rho^{-k}[f_n(z_n + \rho_n\zeta) - a]$ converges locally uniformly to a nonconstant entire function g.

- Suppose \mathfrak{F} is not normal in Δ ; without loss of generality we assume that \mathfrak{F} is not normal at the point z = 0.
- Then by **Zalcman's lemma** $g_n(\zeta) = \rho^{-k}[f_n(z_n + \rho_n\zeta) - a]$ converges locally uniformly to a nonconstant entire function g.
- moreover g is of order atmost one where $z_n \rightarrow 0, |z_n| < r < 1$ $f_n \in \mathfrak{F}$,and $\rho_n \rightarrow 0, \rho > 0$

- Suppose \mathfrak{F} is not normal in Δ ; without loss of generality we assume that \mathfrak{F} is not normal at the point z = 0.
- Then by **Zalcman's lemma** $g_n(\zeta) = \rho^{-k}[f_n(z_n + \rho_n\zeta) - a]$ converges locally uniformly to a nonconstant entire function g.
- moreover g is of order atmost one where $z_n \rightarrow 0, |z_n| < r < 1$ $f_n \in \mathfrak{F}$,and $\rho_n \rightarrow 0, \rho > 0$
- Using the same reasoning as in the previous proof we can prove that g = 0 ⇔ g' = a and g^(k) = g^(k+1) = 0

SKETCH OF PROOF

- Suppose \mathfrak{F} is not normal in Δ ; without loss of generality we assume that \mathfrak{F} is not normal at the point z = 0.
- Then by **Zalcman's lemma** $g_n(\zeta) = \rho^{-k}[f_n(z_n + \rho_n\zeta) - a]$ converges locally uniformly to a nonconstant entire function g.
- moreover g is of order atmost one where $z_n \rightarrow 0, |z_n| < r < 1$ $f_n \in \mathfrak{F}$,and $\rho_n \rightarrow 0, \rho > 0$
- Using the same reasoning as in the previous proof we can prove that $g = 0 \Leftrightarrow g' = a$ and $g^{(k)} = g^{(k+1)} = 0$
- Now using **lemma and Nevanlinna's first fundamental theorem**, we have

▶ ▲ 聖 ▶ ▲ 聖 ▶ …

•
$$T(r,g) \leq \overline{N}(r,g) + N(r,\frac{1}{g}) + N(r,\frac{1}{g^{(k)}-a}) - N(r,\frac{1}{g^{(k+1)}}) + S(r,g)$$

 $= N(r,\frac{1}{g}) + N(r,\frac{1}{g^{(k)}-a} - N(r,\frac{1}{g^{(k+1)}}) + S(r,g)$
 $\leq N(r,\frac{1}{g^{k}-a}) - \overline{N}(r,\frac{1}{g^{(k+1)}}) + S(r,g)$
 $\leq T(r,g^{(k)}-a) - \overline{N}(r,\frac{1}{g^{(k+1)}}) + S(r,g) \leq$
 $T(r,g) - \overline{N}(r,\frac{1}{g^{(k+1)}}) + S(r,g)$
Thus we get
 $\overline{N}(r,\frac{1}{g^{(k+1)}}) = S(r,g)$
by this and the
 $\operatorname{claim}(g = 0 \Leftrightarrow g' = a, g^{(k)} = g^{(k+1)} = 0 \text{ whenever } g = 0)$
we get a contradiction: $T(r,g) = S(r,g)$.
Hence the theorem.

Gopal Datt (DU) Trancendental Dynamics

Definition

1. Fatou set of f. The set

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is normal in some neighborhood of } z\} \text{ is called the Fatou set of } f \text{ or the set of normality of } f.$

Definition

1. **Fatou set** of f. The set $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is normal in some neighborhood of } z\}$ is called the Fatou set of f or the set of normality of f.

2. its complement J(f) is the **Julia set** of f.

Definition

1. **Fatou set** of f. The set $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is normal in some neighborhood of } z\}$ is called the Fatou set of f or the set of normality of f.

- 2. its complement J(f) is the **Julia set** of f.
- 3. The Fatou set is open and completely invariant: $z \in F(f)$ if and only if $f(z) \in F(f)$ and consequently J(f) is completely invariant.

Definition

1. **Fatou set** of f. The set $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is normal in some neighborhood of } z\}$ is called the Fatou set of f or the set of normality of f.

2. its complement J(f) is the **Julia set** of f.

3. The Fatou set is open and completely invariant: $z \in F(f)$ if and only if $f(z) \in F(f)$ and consequently J(f) is completely invariant.

4. A component U of the Fatou set is called a **wandering** domain if $U_k \cap U_l = \emptyset$ for $k \neq l$, where U_k denotes the component of F(f) containing $f^k(U)$, otherwise U is called a **preperiodic component** of F(f) $f^k(U_l) = U_l$, for some $k, l \geq 0$. If $f^k(U) = U$, for some $k \in \mathbb{N}$, then U is called a **periodic component** of F(f). **Theorem** [berg.,poon] – If f and g are two non-linear entire functions, then $f \circ g$ has wandering domain if and only if $g \circ f$ has wandering domain.

Theorem [berg.,poon] – If f and g are two non-linear entire functions, then $f \circ g$ has wandering domain if and only if $g \circ f$ has wandering domain.

Singh A.P. constructed several examples where the dynamics of f and g vary largely from the dynamics of the composite entire functions. In fact he proved:

Let f and g be transcendental entire functions, then

Let f and g be transcendental entire functions, then

• There exists a domain which lies in the wandering component of f and wandering component of g and lies in the periodic component of $g \circ f$.

э

(人間) ト く ヨ ト く ヨ ト

Let f and g be transcendental entire functions, then

- There exists a domain which lies in the wandering component of f and wandering component of g and lies in the periodic component of g ∘ f.
- There exists a domain which lies in the wandering component of f and wandering component of g and also lies in the wandering component of f ∘ g and the wandering component of g ∘ f.

< 🗇 > < 🖃 >

3.5

Let f and g be transcendental entire functions, then

- There exists a domain which lies in the wandering component of f and wandering component of g and lies in the periodic component of $g \circ f$.
- There exists a domain which lies in the wandering component of f and wandering component of g and also lies in the wandering component of f ∘ g and the wandering component of g ∘ f.
- There exists a domain which lies in the periodic component of f and periodic component of g, but lies in the wandering component of f o g and the wandering component of g o f.

▲ □ ▶ ▲ □ ▶ ▲

Let f and g be transcendental entire functions, then

- There exists a domain which lies in the wandering component of f and wandering component of g and lies in the periodic component of g ∘ f.
- There exists a domain which lies in the wandering component of f and wandering component of g and also lies in the wandering component of f ∘ g and the wandering component of g ∘ f.
- There exists a domain which lies in the periodic component of f and periodic component of g, but lies in the wandering component of f o g and the wandering component of g o f.
- There exists a domain which lies in the periodic component of f and periodic component of g and also in the periodic component of g ∘ f but lies in the wandering component of f ∘ g.

- 4 同 6 4 日 6 4 日 6

• In the construction of the proof SINGH has exhibited entire functions *f* and *g* with one domain *G*₁ satisfying the conditions of Theorem . In this connection, one would also be interested in knowing whether it is possible to have entire functions *f* and *g* having more than one domain satisfying the conditions of Theorem . This is possible. We have shown the existence of entire functions having infinitely many domains satisfying the conditions of Theorem .

• In the construction of the proof SINGH has exhibited entire functions f and g with one domain G_1 satisfying the conditions of Theorem . In this connection, one would also be interested in knowing whether it is possible to have entire functions f and g having more than one domain satisfying the conditions of Theorem . This is possible. We have shown the existence of entire functions having infinitely many domains satisfying the conditions of Theorem .

We (Pant S.K., Kumar D., Datt G.) proved the following

• In the construction of the proof SINGH has exhibited entire functions *f* and *g* with one domain *G*₁ satisfying the conditions of Theorem . In this connection, one would also be interested in knowing whether it is possible to have entire functions *f* and *g* having more than one domain satisfying the conditions of Theorem . This is possible. We have shown the existence of entire functions having infinitely many domains satisfying the conditions of Theorem .

We (Pant S.K., Kumar D., Datt G.) proved the following

Theorem

There exists infinite number of domains which lies in the wandering component of f and wandering component of g and lies in the periodic component of $g \circ f$.

• We will require the following results from Approximation theory of entire functions to prove the theorems

• We will require the following results from Approximation theory of entire functions to prove the theorems

Let S be a closed subset of $\mathbb C$ and

 $C(S) = \{h : S \to \mathbb{C} \mid h \text{ is continuous on } S \text{ and analytic in the interior } \}$

• We will require the following results from Approximation theory of entire functions to prove the theorems

Let S be a closed subset of $\mathbb C$ and

 $C(S) = \{h: S \rightarrow \mathbb{C} \mid h \text{ is continuous on } S \text{ and analytic in the interior } \}$

Then S is called a Carleman set (for \mathbb{C}) if for any $f \in C(S)$

and any positive continuous function ϵ on S, there exists an entire function g such that $|f(z) - g(z)| < \epsilon(z)$ for all $z \in S$.

- Lemma[Gair] . Let S be a closed proper subset of C. Then S is a Carleman set in C if and only if S satisfies:
 - (i) $\widetilde{\mathbb{C}} \setminus S$ is connected;
 - (ii) $\mathbb{C} \setminus S$ is locally connected at ∞ ;
 - (iii) for every compact subset K of \mathbb{C} there exists a neighborhood V of ∞ in $\widetilde{\mathbb{C}}$ such that no component of S° intersects both K and V.

We follow the construction of Carleman set as in Singh's paper.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

We follow the construction of Carleman set as in Singh's paper. Let

$$S = G_0 \cup \{\bigcup_{k=1}^{\infty} (G_k \cup B_k \cup L_k \cup M_k)\}$$

where

- 4 回 > - 4 回 > - 4 回 >

We follow the construction of Carleman set as in Singh's paper. Let

$$S = G_0 \cup \{\bigcup_{k=1}^{\infty} (G_k \cup B_k \cup L_k \cup M_k)\}$$

where $G_0 = \{z : |z-2| \leq 1\}$

▲御▶ ▲理▶ ▲理≯

We follow the construction of Carleman set as in Singh's paper. Let

$$S = G_0 \cup \{\bigcup_{k=1}^{\infty} (G_k \cup B_k \cup L_k \cup M_k)\}$$

where $G_0 = \{z : |z-2| \leq 1\}$

 $G_k = \{z : |z - (4k + 2)| \le 1\} \cup \{z : Re \ z = 4k + 2 \text{ and } Im \ z \ge 1\} \cup \{z : Re \ z = 4k + 2 \text{ and } Im \ z \le -1\}, \ k = 1, 2, \dots$

▲ □ ▶ ▲ □ ▶ ▲

We follow the construction of Carleman set as in Singh's paper. Let

$$S = G_0 \cup \{\bigcup_{k=1}^{\infty} (G_k \cup B_k \cup L_k \cup M_k)\}$$

where $G_0 = \{z : |z-2| \leq 1\}$

 $G_k = \{z : |z - (4k + 2)| \le 1\} \cup \{z : Re \ z = 4k + 2 \text{ and } Im \ z \ge 1\} \cup \{z : Re \ z = 4k + 2 \text{ and } Im \ z \le -1\}, \ k = 1, 2, \dots$ $M_k = \{z : Re \ z = -4k\}, \ k = 1, 2, \dots$

э

We follow the construction of Carleman set as in Singh's paper. Let

$$S = G_0 \cup \{\bigcup_{k=1}^{\infty} (G_k \cup B_k \cup L_k \cup M_k)\}$$

where $G_0 = \{z : |z - 2| \leq 1\}$

$$G_{k} = \{z : |z - (4k + 2)| \le 1\} \cup \{z : Re \ z = 4k + 2 \text{ and } Im \ z \ge 1\} \cup \{z : Re \ z = 4k + 2 \text{ and } Im \ z \le -1\}, \ k = 1, 2, \dots$$
$$M_{k} = \{z : Re \ z = -4k\}, \ k = 1, 2, \dots$$
$$L_{k} = \{z : Re \ z = 4k\}, \ k = 1, 2, \dots$$

æ

We follow the construction of Carleman set as in Singh's paper. Let

$$S = G_0 \cup \{\bigcup_{k=1}^{\infty} (G_k \cup B_k \cup L_k \cup M_k)\}$$

where $G_0 = \{z : |z - 2| \le 1\}$

 $G_{k} = \{z : |z - (4k + 2)| \le 1\} \cup \{z : Re \ z = 4k + 2 \text{ and } Im \ z \ge 1\} \cup \{z : Re \ z = 4k + 2 \text{ and } Im \ z \le -1\}, \ k = 1, 2, \dots$ $M_{k} = \{z : Re \ z = -4k\}, \ k = 1, 2, \dots$ $L_{k} = \{z : Re \ z = 4k\}, \ k = 1, 2, \dots$ $B_{k} = \{z : |z + (4k + 2)| \le 1\} \cup \{z : Re \ z = -(4k + 2) \text{ and } Im \ z \ge 1\} \cup \{z : Re \ z = -(4k + 2) \text{ and } Im \ z \le -1\}, \ k = 1, 2, \dots$

We follow the construction of Carleman set as in Singh's paper. Let

$$S = G_0 \cup \{\bigcup_{k=1}^{\infty} (G_k \cup B_k \cup L_k \cup M_k)\}$$

where $G_0 = \{z : |z - 2| \le 1\}$

 $\begin{array}{l} G_k = \{z : |z - (4k + 2)| \leq 1\} \cup \{z : \text{Re } z = 4k + 2 \text{ and } \text{Im } z \geq 1\} \cup \{z : \text{Re } z = 4k + 2 \text{ and } \text{Im } z \leq -1\}, \ k = 1, 2, \dots \\ M_k = \{z : \text{Re } z = -4k\}, \ k = 1, 2, \dots \\ L_k = \{z : \text{Re } z = 4k\}, \ k = 1, 2, \dots \\ B_k = \{z : |z + (4k + 2)| \leq 1\} \cup \{z : \text{Re } z = -(4k + 2) \text{ and } \text{Im } z \geq 1\} \cup \{z : \text{Re } z = -(4k + 2) \text{ and } \text{Im } z \leq -1\}, \ k = 1, 2, \dots \\ \end{array}$ Then using Lemma, we get S is a Carleman set.

- 4 同 6 4 日 6 4 日 6

 It is known that the set of all natural numbers N can be expressed in an infinite array of numbers as

$$\{\frac{q(q-1)}{2}+1+pq+\frac{p(p+1)}{2}: p=0,1,\ldots, q=1,2,\ldots\}$$

Infact a natural number lying in row p and column q(p = 0, 1, ..., q = 1, 2, ...) would be $\frac{q(q-1)}{2} + 1 + pq + \frac{p(p+1)}{2}$. Next if $n \in \mathbb{N}$, let r be the least positive integer such that $\frac{r(r+1)}{2} \ge n$ and $s = \frac{r(r+1)}{2} - n$. Then n lies in row $n_r = r - s - 1$ and column $n_c = s + 1$. Thus without any loss of generality we may denote the set G_n by its place position G_{n_r,n_c} say, or more simply by $G_{i,j}$ for suitable i, j and $G_{i,j}$ may be denoted by G_n for suitable n, and similarly for other terms.

伺 ト く ヨ ト く ヨ ト

continued...

• We can write $G_k = G_{p,q}$ for suitable p, q. Using the continuity of e^z , for each k = 1, 2, ... choose $\eta_{p,q}$ and $\xi_{p,q}$ so that

continued...

• We can write $G_k = G_{p,q}$ for suitable p, q. Using the continuity of e^z , for each k = 1, 2, ... choose $\eta_{p,q}$ and $\xi_{p,q}$ so that

•
$$|e^w + (4(\frac{q(q+1)}{2} + 1 + p(q+1) + \frac{p(p+1)}{2}) + 2)| < \frac{1}{2}$$
, whenever $|w - (\pi i + \log(4(\frac{q(q+1)}{2} + 1 + p(q+1) + \frac{p(p+1)}{2}) + 2))| < \eta_{p,q}$, and

continued...

• We can write $G_k = G_{p,q}$ for suitable p, q. Using the continuity of e^z , for each k = 1, 2, ... choose $\eta_{p,q}$ and $\xi_{p,q}$ so that

•
$$|e^w + (4(\frac{q(q+1)}{2} + 1 + p(q+1) + \frac{p(p+1)}{2}) + 2)| < \frac{1}{2}$$
, whenever $|w - (\pi i + \log(4(\frac{q(q+1)}{2} + 1 + p(q+1) + \frac{p(p+1)}{2}) + 2))| < \eta_{p,q}$, and

•
$$|e^{w} - (4(\frac{q(q+1)}{2} + 1 + p(q+1) + \frac{p(p+1)}{2}) + 2)| < \frac{1}{2}$$
, whenever
 $|w - \log(4(\frac{q(q+1)}{2} + 1 + p(q+1) + \frac{p(p+1)}{2}) + 2)| < \xi_{p,q}$
Also choose $\delta_0, \delta_q, \delta'_q$ so that
 $|e^{w} - 2| < \frac{1}{2}$, whenever $|w - \log 2| < \delta_0$
 $|e^{w} + (4(\frac{q(q-1)}{2} + 1) + 2)| < \frac{1}{2}$, whenever
 $|w - (\pi i + \log(4(\frac{q(q-1)}{2} + 1) + 2))| < \delta_q$, and
 $|e^{w} - (4(\frac{q(q-1)}{2} + 1) + 2)| < \frac{1}{2}$, whenever
 $|w - \log(4(\frac{q(q-1)}{2} + 1) + 2)| < \delta'_q$.

• Define

$$\begin{aligned} \alpha(z) &= \log 2, \text{ if } z \in G_0 \cup \{\bigcup_{k=1}^{\infty} (L_k \cup M_k)\} \\ &= \pi i + \log(4(\frac{q(q-1)}{2} + 1) + 2), \text{ if } z \in G_{p,q}, \\ p &= 0, 1, \dots, q = 1, 2, \dots \\ &= \pi i + \log(4(\frac{q(q+1)}{2} + 1 + p(q+1) + \frac{p(p+1)}{2}) + 2), \\ &\text{ if } z \in B_{p,q}, \ p &= 0, 1, \dots, q = 1, 2, \dots \end{aligned}$$

æ

≣ ।•

□ ▶ ▲ 臣 ▶ ▲

$$\begin{split} \beta(z) &= \log 2, \text{ if } z \in G_0 \cup \{\bigcup_{k=1}^{\infty} (L_k \cup M_k)\} \\ &= \log(4(\frac{q(q-1)}{2}+1)+2), \text{ if } z \in B_{p,q}, \\ p &= 0, 1, \dots, q = 1, 2, \dots \\ &= \log(4(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2})+2), \\ &\text{ if } z \in G_{p,q}, \ p &= 0, 1, \dots, q = 1, 2, \dots \end{split}$$

$$\epsilon(z) = \begin{cases} \delta_0, & z \in G_0 \cup \{\bigcup_{k=1}^{\infty} (L_k \cup M_k)\} \\ \delta_q, & z \in G_{p,q}, \ p = 0, 1, \dots, q = 1, 2, \dots \\ \eta_{p,q}, & z \in B_{p,q}, \ p = 0, 1, \dots, q = 1, 2, \dots \end{cases}$$

 $\quad \text{and} \quad$

$$\epsilon_1(z) = \begin{cases} \delta_0, & z \in G_0 \cup \{\bigcup_{k=1}^{\infty} (L_k \cup M_k)\} \\ \delta'_q, & z \in B_{p,q}, \ p = 0, 1, \dots, q = 1, 2, \dots \\ \xi_{p,q}, & z \in G_{p,q}, \ p = 0, 1, \dots, q = 1, 2, \dots \end{cases}$$

< ロ > < 部 > < 注 > < 注 > < </p>

Thank You!

æ

Э

▲ □ ▶ ▲ 三