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sharing values

According to Bloch’s principle every condition which reduces a
meromorphic function in the plane to a constant, makes the
family of meromorphic functions in a domain G normal. Ruble
gave four counter examples to Bloch principle. Mues and
Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f
and f ′ share three distinct complex numbers a1, a2, a3 then f ≡ f ′.

Let f and g be two meromorphic functions in the domain G ,
a ∈ C, If f − a and g − a have the same zeros in G ,(Ignoring
multiplicity) then we say that f and g share the value a IM.

Wilhelm Schwic seems to have been first to draw a connection
between normality and shared values. He proved
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Theorem

Let F be a family of meromorphic functions on a domain G and
a1, a2, a3 be distinct complex numbers . If f and f ′ share a1, a2,
a3 for every f ∈ F, then F is normal in G

Chen and Hua proved the following

Theorem

Let F be a family of holomorphic functions in the unit disk
∆.Suppose that there exist a non zero finite value a such that for
each function f ∈ F ; f , f ′ and f ” share the value a IM in ∆. Then
the family F is normal in ∆.

we improved following result of Fang and Xu
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Theorem

Let F be a family of holomorphic functions on the unit disk ∆ and
let a,b be two distinct finite complex numbers such that b 6= 0.If
for any f ∈ F, f and f ′ share a IM and f (z)=b whenever f ′(z)=b
then F is normal in ∆.

we improved this as

Theorem

Let F be a family of holomorphic functions on the unit disk ∆ and
let a,b be two distinct finite complex numbers such that b 6= 0.If
for any f ∈ F, f and f (k) share a IM and f (z) = b whenever
f (k)(z) = b then F is normal in ∆.

We use Zalcman’s lemma to prove the theorem.
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Lemma

Let F be a family of holomorphic functions in a domain ∆ with the
property that for every function f ∈ F , the zeros of f are of
multiplicity at least k. If F is not normal at z0=0, then for
0≤ α < k, there exist
(a) a sequennce of complex numbers zn → 0, |zn| < r < 1
(b) a sequence of functions fn ∈ F and
(c) a sequence of positive numbers ρn → 0
such that gn(ζ) = ρ−αfn(zn + ρnζ) converges to a nonconstant
entire function g on C. Moreover g is of order at most one . If F
possesses the additional property that there exists M > 0 such that
|f (k)(z)| ≤ M whenever f (z) = 0 for any f ∈ F, then we can take
α = k.
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Sketch of proof

suppose F is not normal in ∆; without loss of generality we
assume that F is not normal at the point z=0 then by
Zalcman’s lemma
gn(ζ) = ρ−k [fn(zn + ρnζ)− a]
converges locally uniformly to a nonconstant entire function
g . moreover g is of order atmost one
where zn → 0, |zn| < r < 1 fn ∈ F,and ρn → 0, ρ > 0

Now we claim that g = 0 iff g (k) = a and g (k) 6= b
Suppose g(ζ0) = 0. then by Hurwitz’s theorem there exist
ζn; ζn → ζ0 such that gn(ζn) = ρ−kn [fn(zn + ρnζn)− a] = 0,

since fn(zn + ρnζn) = a since fn and f
(k)
n share a , we have

gk
n (ζn) = f

(k)
n (znρn) = a hence

g (k)(ζ0) = lim
n→∞

g
(k)
n (ζn) = a

Thus we have proved that g (k) = a whenever g = 0.
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On the other hand, if g (k)(ζ0) = a then there exist
ζn, ζn → ζ0 such that

g
(k)
n (ζn) = f

()k
n (zn + ρnζn) = a, n = 1, 2, . . . hence

fn(zn = ρnζn) = a and gn(ζn) = 0 for n=1,2,. . . thus

g(ζ0) = lim
n→∞

gn(ζn) = 0

this shows that g = 0 whenever g (k) = a

Next, we prove g (k)(ζ) 6= b.
suppose that there exist ζ0 satisfying g (k)(ζ0) = b, by
Hurwitz’s theorem there exsit a sequence ζn → ζ0 and

g
(k)
n (ζn) = b; n = 1, 2, . . .

since fn(z) = b whenever f
(k)
n (z) = b ⇒ fn(zn + ρnζn) = b

and gn(ζn) = ρ−kn [fn(zn + ρnζn)− a] = ρ
(k)
n [b − a]→∞ this

contradicts limn→∞ gn(ζn) = g(ζ0) 6=∞
So g (k)(k) 6= b.

Hence we get
g (k)(ζ) = b + eAζ+B
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we claim that A = 0.
suppose A 6= 0; then

g(ζ) = bζk

k! + eAζ+B

Ak + c1ζk−1

(k−1)! + . . .+ ck−1ζ + ck

Let g (k) = a and
since g (k)(ζ) = a⇒ g(ζ) = 0

we have
bζk

k! + c1ζk−1

(k−1)! + . . .+ ck + b−a
Ak = 0

this is a polynomial of degree k in ζ this polynomial has k
solutions.

which contradicts the fact that g (k) has infiniteky many
solutions, then we have
g (k)(ζ) = b + eB

⇒ g(ζ) = (b + eB) ζ
k

k! + c1ζk−1

(k−1)! + . . .+ ck

g is nonconstant . This contradicts g(ζ) = 0⇔ g (k)(ζ) = a.
thus F is normal.

We improved one more result of Fang and Xu as
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Theorem

letF be a family of holomorphic functions in the unit disc ∆ and
let a be a non zero finite complex number. If for any f ∈ F f and
f (k) share a IM and f (k+1)(z) = a whenever f (z) = a. Then F
is normal in ∆.

For proving this theorem we use tools from Nevanlinna
theory of meromorphic functions.

Lemma

let f be a nonconstant meromophic function. Then for
k ≥ 1, b 6= 0,∞,
T (r , f ) ≤ N(r , f ) + N(r , 1f ) + N(r , 1

f (k)−b )− N(r , 1
f (k+1) ) + S(r , f )
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T (r , f ) ≤ N(r , f ) + N(r , 1f ) + N(r , 1

f (k)−b )− N(r , 1
f (k+1) ) + S(r , f )
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SKETCH OF PROOF

Suppose F is not normal in ∆; without loss of generality we
assume that F is not normal at the point z = 0.

Then by Zalcman’s lemma
gn(ζ) = ρ−k [fn(zn + ρnζ)− a]
converges locally uniformly to a nonconstant entire function
g .

moreover g is of order atmost one
where zn → 0, |zn| < r < 1 fn ∈ F,and ρn → 0, ρ > 0

Using the same reasoning as in the previous proof we can
prove that g = 0⇔ g ′ = a and g (k) = g (k+1) = 0

Now using lemma and Nevanlinna’s first fundamental
theorem , we have

Gopal Datt (DU) Trancendental Dynamics



SKETCH OF PROOF

Suppose F is not normal in ∆; without loss of generality we
assume that F is not normal at the point z = 0.

Then by Zalcman’s lemma
gn(ζ) = ρ−k [fn(zn + ρnζ)− a]
converges locally uniformly to a nonconstant entire function
g .

moreover g is of order atmost one
where zn → 0, |zn| < r < 1 fn ∈ F,and ρn → 0, ρ > 0

Using the same reasoning as in the previous proof we can
prove that g = 0⇔ g ′ = a and g (k) = g (k+1) = 0

Now using lemma and Nevanlinna’s first fundamental
theorem , we have

Gopal Datt (DU) Trancendental Dynamics



SKETCH OF PROOF

Suppose F is not normal in ∆; without loss of generality we
assume that F is not normal at the point z = 0.

Then by Zalcman’s lemma
gn(ζ) = ρ−k [fn(zn + ρnζ)− a]
converges locally uniformly to a nonconstant entire function
g .

moreover g is of order atmost one
where zn → 0, |zn| < r < 1 fn ∈ F,and ρn → 0, ρ > 0

Using the same reasoning as in the previous proof we can
prove that g = 0⇔ g ′ = a and g (k) = g (k+1) = 0

Now using lemma and Nevanlinna’s first fundamental
theorem , we have

Gopal Datt (DU) Trancendental Dynamics



SKETCH OF PROOF

Suppose F is not normal in ∆; without loss of generality we
assume that F is not normal at the point z = 0.

Then by Zalcman’s lemma
gn(ζ) = ρ−k [fn(zn + ρnζ)− a]
converges locally uniformly to a nonconstant entire function
g .

moreover g is of order atmost one
where zn → 0, |zn| < r < 1 fn ∈ F,and ρn → 0, ρ > 0

Using the same reasoning as in the previous proof we can
prove that g = 0⇔ g ′ = a and g (k) = g (k+1) = 0

Now using lemma and Nevanlinna’s first fundamental
theorem , we have

Gopal Datt (DU) Trancendental Dynamics



SKETCH OF PROOF

Suppose F is not normal in ∆; without loss of generality we
assume that F is not normal at the point z = 0.

Then by Zalcman’s lemma
gn(ζ) = ρ−k [fn(zn + ρnζ)− a]
converges locally uniformly to a nonconstant entire function
g .

moreover g is of order atmost one
where zn → 0, |zn| < r < 1 fn ∈ F,and ρn → 0, ρ > 0

Using the same reasoning as in the previous proof we can
prove that g = 0⇔ g ′ = a and g (k) = g (k+1) = 0

Now using lemma and Nevanlinna’s first fundamental
theorem , we have

Gopal Datt (DU) Trancendental Dynamics



T (r , g) ≤
N(r , g) + N(r , 1g ) + N(r , 1

g (k)−a)− N(r , 1
g (k+1) ) + S(r , g)

= N(r , 1g ) + N(r , 1
g (k)−a − N(r , 1

g (k+1) ) + S(r , g)

≤ N(r , 1
gk−a)− N(r , 1

g (k+1) ) + S(r , g)

≤ T (r , 1
gk−a)− N(r , 1

g (k+1) ) + S(r , g)≤
T (r , g (k) − a)− N(r , 1

g (k+1) ) + S(r , g)

≤ T (r , g)− N(r , 1
g (k+1) ) + S(r , g)

Thus we get
N(r , 1

g (k+1) ) = S(r , g)

by this and the
claim(g = 0⇔ g ′ = a, g (k) = g (k+1) = 0 whenever g = 0)
we get a contradiction: T (r , g) = S(r , g).
Hence the theorem.
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Dynamics of Composite Entire Functions

Definition

1. Fatou set of f . The set
F (f ) = {z ∈ C : {f n}n∈N is normal in some neighborhood of z} is
called the Fatou set of f or the set of normality of f .

2. its complement J(f ) is the Julia set of f .

3. The Fatou set is open and completely invariant: z ∈ F (f ) if and
only if f (z) ∈ F (f ) and consequently J(f ) is completely invariant.

4. A component U of the Fatou set is called a wandering
domain if Uk ∩ Ul = ∅ for k 6= l , where Uk denotes the
component of F (f ) containing f k(U), otherwise
U is called a preperiodic component of F (f ) f k(Ul) = Ul , for
some k , l ≥ 0. If f k(U) = U, for some k ∈ N, then U is called a
periodic component of F (f ).
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Theorem [berg.,poon]− If f and g are two non-linear entire
functions, then f ◦ g has wandering domain if and only if g ◦ f has
wandering domain.

Singh A.P. constructed several examples where the dynamics of f
and g vary largely from the dynamics of the composite entire
functions. In fact he proved:
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Theorem

Let f and g be transcendental entire functions, then

There exists a domain which lies in the wandering component of f
and wandering component of g and lies in the periodic component
of g ◦ f .

There exists a domain which lies in the wandering component of f
and wandering component of g and also lies in the wandering
component of f ◦ g and the wandering component of g ◦ f .

There exists a domain which lies in the periodic component of f
and periodic component of g, but lies in the wandering component
of f ◦ g and the wandering component of g ◦ f .

There exists a domain which lies in the periodic component of f
and periodic component of g and also in the periodic component
of g ◦ f but lies in the wandering component of f ◦ g .
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In the construction of the proof SINGH has exhibited entire
functions f and g with one domain G1 satisfying the
conditions of Theorem . In this connection, one would also be
interested in knowing whether it is possible to have entire
functions f and g having more than one domain satisfying the
conditions of Theorem . This is possible. We have shown the
existence of entire functions having infinitely many domains
satisfying the conditions of Theorem .

We (Pant S.K., Kumar D., Datt G.) proved the following

Theorem

There exists infinite number of domains which lies in the
wandering component of f and wandering component of g and lies
in the periodic component of g ◦ f .
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We will require the following results from Approximation
theory of entire functions to prove the theorems

Let S be a closed subset of C and

C (S) = {h : S → C | h is continuous on S and analytic in the interior S◦ of S}

Then S is called a Carleman set (for C) if for any f ∈ C (S)

and any positive continuous function ε on S , there exists an
entire function g such that |f (z)− g(z)| < ε(z) for all z ∈ S .
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Lemma[Gair ] . Let S be a closed proper subset of C. Then S
is a Carleman set in C if and only if S satisfies:

(i) C̃ \ S is connected;

(ii) C̃ \ S is locally connected at ∞;
(iii) for every compact subset K of C there exists a neighborhood

V of ∞ in C̃ such that no component of S◦ intersects both K
and V .
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Proof.

We follow the construction of Carleman set as in Singh’s paper.

Let

S = G0 ∪ {
⋃∞

k=1
(Gk ∪ Bk ∪ Lk ∪Mk)}

whereG0 = {z : |z − 2| ≤ 1}

Gk = {z : |z − (4k + 2)| ≤ 1} ∪ {z : Re z = 4k + 2 and Im z ≥
1} ∪ {z : Re z = 4k + 2 and Im z ≤ −1}, k = 1, 2, . . .

Mk = {z : Re z = −4k}, k = 1, 2, . . .

Lk = {z : Re z = 4k}, k = 1, 2, . . .

Bk = {z : |z + (4k + 2)| ≤ 1} ∪ {z : Re z = −(4k + 2) and Im z ≥
1} ∪ {z : Re z = −(4k + 2) and Im z ≤ −1}, k = 1, 2, . . .

Then using Lemma, we get S is a Carleman set.
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continued...

It is known that the set of all natural numbers N can be
expressed in an infinite array of numbers as

{q(q − 1)

2
+ 1 + pq +

p(p + 1)

2
: p = 0, 1, . . . , q = 1, 2, . . .}

Infact a natural number lying in row p and column q
(p = 0, 1, . . . , q = 1, 2, . . .) would be
q(q−1)

2 + 1 + pq + p(p+1)
2 . Next if n ∈ N, let r be the least

positive integer such that r(r+1)
2 ≥ n and s = r(r+1)

2 − n.
Then n lies in row nr = r − s − 1 and column nc = s + 1.
Thus without any loss of generality we may denote the set Gn

by its place position Gnr ,nc say, or more simply by Gi ,j for
suitable i , j and Gi ,j may be denoted by Gn for suitable n, and
similarly for other terms.
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continued...

We can write Gk = Gp,q for suitable p, q. Using the continuity
of ez , for each k = 1, 2, . . . choose ηp,q and ξp,q so that

|ew + (4(q(q+1)
2 + 1 + p(q + 1) + p(p+1)

2 ) + 2)| < 1
2 , whenever

|w − (πi + log(4(q(q+1)
2 + 1 + p(q + 1) + p(p+1)

2 ) + 2))| < ηp,q,
and

|ew − (4(q(q+1)
2 + 1 + p(q + 1) + p(p+1)

2 ) + 2)| < 1
2 , whenever

|w − log(4(q(q+1)
2 + 1 + p(q + 1) + p(p+1)

2 ) + 2)| < ξp,q
Also choose δ0, δq, δ

′
q so that

|ew − 2| < 1
2 , whenever |w − log 2| < δ0

|ew + (4(q(q−1)2 + 1) + 2)| < 1
2 , whenever

|w − (πi + log(4(q(q−1)2 + 1) + 2))| < δq, and

|ew − (4(q(q−1)2 + 1) + 2)| < 1
2 , whenever

|w − log(4(q(q−1)2 + 1) + 2)| < δ′q.
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continued...

We can write Gk = Gp,q for suitable p, q. Using the continuity
of ez , for each k = 1, 2, . . . choose ηp,q and ξp,q so that

|ew + (4(q(q+1)
2 + 1 + p(q + 1) + p(p+1)

2 ) + 2)| < 1
2 , whenever

|w − (πi + log(4(q(q+1)
2 + 1 + p(q + 1) + p(p+1)

2 ) + 2))| < ηp,q,
and

|ew − (4(q(q+1)
2 + 1 + p(q + 1) + p(p+1)

2 ) + 2)| < 1
2 , whenever

|w − log(4(q(q+1)
2 + 1 + p(q + 1) + p(p+1)

2 ) + 2)| < ξp,q
Also choose δ0, δq, δ

′
q so that

|ew − 2| < 1
2 , whenever |w − log 2| < δ0
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2 , whenever
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|w − log(4(q(q−1)2 + 1) + 2)| < δ′q.
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continued...

Define

α(z) = log 2, if z ∈ G0 ∪ {
⋃∞

k=1
(Lk ∪Mk)}

= πi + log(4(
q(q − 1)

2
+ 1) + 2), if z ∈ Gp,q,

p = 0, 1, . . . , q = 1, 2, . . .

= πi + log(4(
q(q + 1)

2
+ 1 + p(q + 1) +

p(p + 1)

2
) + 2),

if z ∈ Bp,q, p = 0, 1, . . . , q = 1, 2, . . .

Gopal Datt (DU) Trancendental Dynamics



β(z) = log 2, if z ∈ G0 ∪ {
⋃∞

k=1
(Lk ∪Mk)}

= log(4(
q(q − 1)

2
+ 1) + 2), if z ∈ Bp,q,

p = 0, 1, . . . , q = 1, 2, . . .

= log(4(
q(q + 1)

2
+ 1 + p(q + 1) +

p(p + 1)

2
) + 2),

if z ∈ Gp,q, p = 0, 1, . . . , q = 1, 2, . . .
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ε(z) =


δ0, z ∈ G0 ∪ {

⋃∞
k=1(Lk ∪Mk)}

δq, z ∈ Gp,q, p = 0, 1, . . . , q = 1, 2, . . .

ηp,q, z ∈ Bp,q, p = 0, 1, . . . , q = 1, 2, . . .

and

ε1(z) =


δ0, z ∈ G0 ∪ {

⋃∞
k=1(Lk ∪Mk)}

δ′q, z ∈ Bp,q, p = 0, 1, . . . , q = 1, 2, . . .

ξp,q, z ∈ Gp,q, p = 0, 1, . . . , q = 1, 2, . . .
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Thank You!
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