Trancendental Dynamics Sharing Values and Normality

Gopal Datt

Department of mathematics
University of Delhi

December 28, 2012
Group, Geometry and Dynamics
CEMS, Kumaun University, Almora

sharing values

- According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

sharing values

- According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f and f^{\prime} share three distinct complex numbers a_{1}, a_{2}, a_{3} then $f \equiv f^{\prime}$.

sharing values

- According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f and f^{\prime} share three distinct complex numbers a_{1}, a_{2}, a_{3} then $f \equiv f^{\prime}$.

- Let f and g be two meromorphic functions in the domain G, $a \in \mathbb{C}$, If $f-a$ and $g-a$ have the same zeros in G,(Ignoring multiplicity) then we say that f and g share the value a IM .

sharing values

- According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f and f^{\prime} share three distinct complex numbers a_{1}, a_{2}, a_{3} then $f \equiv f^{\prime}$.

- Let f and g be two meromorphic functions in the domain G, $a \in \mathbb{C}$, If $f-a$ and $g-a$ have the same zeros in G,(Ignoring multiplicity) then we say that f and g share the value a IM .
- Wilhelm Schwic seems to have been first to draw a connection between normality and shared values. He proved

sharing values

- According to Bloch's principle every condition which reduces a meromorphic function in the plane to a constant, makes the family of meromorphic functions in a domain G normal. Ruble gave four counter examples to Bloch principle. Mues and Steinmentz proved.

Theorem

Let f be a non constant meromorphic function in the plane. If f and f^{\prime} share three distinct complex numbers a_{1}, a_{2}, a_{3} then $f \equiv f^{\prime}$.

- Let f and g be two meromorphic functions in the domain G, $a \in \mathbb{C}$, If $f-a$ and $g-a$ have the same zeros in G,(Ignoring multiplicity) then we say that f and g share the value a IM .
- Wilhelm Schwic seems to have been first to draw a connection between normality and shared values. He proved

Theorem

Let \mathfrak{F} be a family of meromorphic functions on a domain G and a_{1}, a_{2}, a_{3} be distinct complex numbers. If f and f^{\prime} share a_{1}, a_{2}, a_{3} for every $f \in \mathfrak{F}$, then \mathfrak{F} is normal in G

Theorem

Let \mathfrak{F} be a family of meromorphic functions on a domain G and a_{1}, a_{2}, a_{3} be distinct complex numbers. If f and f^{\prime} share a_{1}, a_{2}, a_{3} for every $f \in \mathfrak{F}$, then \mathfrak{F} is normal in G

- Chen and Hua proved the following

Theorem

Let \mathfrak{F} be a family of holomorphic functions in the unit disk
Δ.Suppose that there exist a non zero finite value a such that for each function $f \in F ; f, f^{\prime}$ and $f^{\prime \prime}$ share the value a $I M$ in Δ. Then the family \mathfrak{F} is normal in Δ.

- we improved following result of Fang and Xu

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a, b be two distinct finite complex numbers such that $b \neq 0$.If for any $f \in \mathfrak{F}, f$ and f^{\prime} share a $I M$ and $f(z)=b$ whenever $f^{\prime}(z)=b$ then \mathfrak{F} is normal in Δ.

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a, b be two distinct finite complex numbers such that $b \neq 0$.If for any $f \in \mathfrak{F}, f$ and f^{\prime} share a $I M$ and $f(z)=b$ whenever $f^{\prime}(z)=b$ then \mathfrak{F} is normal in Δ.

- we improved this as

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a, b be two distinct finite complex numbers such that $b \neq 0$.If for any $f \in \mathfrak{F}, f$ and f^{\prime} share a $I M$ and $f(z)=b$ whenever $f^{\prime}(z)=b$ then \mathfrak{F} is normal in Δ.

- we improved this as

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a, b be two distinct finite complex numbers such that $b \neq 0$.If for any $f \in \mathfrak{F}, f$ and $f^{(k)}$ share a $I M$ and $f(z)=b$ whenever $f^{(k)}(z)=b$ then \mathfrak{F} is normal in Δ.

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a, b be two distinct finite complex numbers such that $b \neq 0$.If for any $f \in \mathfrak{F}, f$ and f^{\prime} share a $I M$ and $f(z)=b$ whenever $f^{\prime}(z)=b$ then \mathfrak{F} is normal in Δ.

- we improved this as

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a, b be two distinct finite complex numbers such that $b \neq 0$.If for any $f \in \mathfrak{F}, f$ and $f^{(k)}$ share a $I M$ and $f(z)=b$ whenever $f^{(k)}(z)=b$ then \mathfrak{F} is normal in Δ.

- We use Zalcman's lemma to prove the theorem.

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a, b be two distinct finite complex numbers such that $b \neq 0$.If for any $f \in \mathfrak{F}, f$ and f^{\prime} share a $I M$ and $f(z)=b$ whenever $f^{\prime}(z)=b$ then \mathfrak{F} is normal in Δ.

- we improved this as

Theorem

Let \mathfrak{F} be a family of holomorphic functions on the unit disk Δ and let a, b be two distinct finite complex numbers such that $b \neq 0$.If for any $f \in \mathfrak{F}, f$ and $f^{(k)}$ share a $I M$ and $f(z)=b$ whenever $f^{(k)}(z)=b$ then \mathfrak{F} is normal in Δ.

- We use Zalcman's lemma to prove the theorem.

Lemma

Let \mathfrak{F} be a family of holomorphic functions in a domain Δ with the property that for every function $f \in \mathfrak{F}$, the zeros of f are of multiplicity at least k. If \mathfrak{F} is not normal at $z_{0}=0$, then for $0 \leq \alpha<k$, there exist
(a) a sequennce of complex numbers $z_{n} \rightarrow 0,\left|z_{n}\right|<r<1$
(b) a sequence of functions $f_{n} \in \mathfrak{F}$ and
(c) a sequence of positive numbers $\rho_{n} \rightarrow 0$
such that $g_{n}(\zeta)=\rho^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)$ converges to a nonconstant entire function g on \mathbb{C}. Moreover g is of order at most one. If \mathfrak{F} possesses the additional property that there exists $M>0$ such that $\left|f^{(k)}(z)\right| \leq M$ whenever $f(z)=0$ for any $f \in \mathfrak{F}$, then we can take $\alpha=k$.

Sketch of proof

Sketch of proof

- suppose \mathfrak{F} is not normal in Δ; without loss of generality we assume that \mathfrak{F} is not normal at the point $\mathrm{z}=0$ then by Zalcman's lemma
$g_{n}(\zeta)=\rho^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right]$
converges locally uniformly to a nonconstant entire function g. moreover g is of order atmost one where $z_{n} \rightarrow 0,\left|z_{n}\right|<r<1 f_{n} \in \mathbb{F}$, and $\rho_{n} \rightarrow 0, \rho>0$

Sketch of proof

- suppose \mathfrak{F} is not normal in Δ; without loss of generality we assume that \mathfrak{F} is not normal at the point $\mathrm{z}=0$ then by Zalcman's lemma
$g_{n}(\zeta)=\rho^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right]$
converges locally uniformly to a nonconstant entire function g. moreover g is of order atmost one where $z_{n} \rightarrow 0,\left|z_{n}\right|<r<1 f_{n} \in \mathbb{F}$, and $\rho_{n} \rightarrow 0, \rho>0$
- Now we claim that $g=0$ iff $g^{(k)}=a$ and $g^{(k)} \neq b$

Suppose $g\left(\zeta_{0}\right)=0$. then by Hurwitz's theorem there exist $\zeta_{n} ; \zeta_{n} \rightarrow \zeta_{0}$ such that $g_{n}\left(\zeta_{n}\right)=\rho_{n}^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)-a\right]=0$, since $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a$ since f_{n} and $f_{n}^{(k)}$ share a, we have $g_{n}^{k}\left(\zeta_{n}\right)=f_{n}^{(k)}\left(z_{n} \rho_{n}\right)=a$ hence

$$
g^{(k)}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}^{(k)}\left(\zeta_{n}\right)=a
$$

Sketch of proof

- suppose \mathfrak{F} is not normal in Δ; without loss of generality we assume that \mathfrak{F} is not normal at the point $\mathrm{z}=0$ then by Zalcman's lemma
$g_{n}(\zeta)=\rho^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right]$
converges locally uniformly to a nonconstant entire function g. moreover g is of order atmost one where $z_{n} \rightarrow 0,\left|z_{n}\right|<r<1 f_{n} \in \mathbb{F}$, and $\rho_{n} \rightarrow 0, \rho>0$
- Now we claim that $g=0$ iff $g^{(k)}=a$ and $g^{(k)} \neq b$ Suppose $g\left(\zeta_{0}\right)=0$. then by Hurwitz's theorem there exist $\zeta_{n} ; \zeta_{n} \rightarrow \zeta_{0}$ such that $g_{n}\left(\zeta_{n}\right)=\rho_{n}^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)-a\right]=0$, since $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a$ since f_{n} and $f_{n}^{(k)}$ share a, we have $g_{n}^{k}\left(\zeta_{n}\right)=f_{n}^{(k)}\left(z_{n} \rho_{n}\right)=a$ hence

$$
g^{(k)}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}^{(k)}\left(\zeta_{n}\right)=a
$$

- Thus we have proved that $g^{(k)}=a$ whenever $g=0$.
- On the other hand, if $g^{(k)}\left(\zeta_{0}\right)=a$ then there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$ such that $g_{n}^{(k)}\left(\zeta_{n}\right)=f_{n}^{() k}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a, n=1,2, \ldots$ hence $f_{n}\left(z_{n}=\rho_{n} \zeta_{n}\right)=a$ and $g_{n}\left(\zeta_{n}\right)=0$ for $n=1,2, \ldots$ thus

$$
g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=0
$$

this shows that $g=0$ whenever $g^{(k)}=a$

- On the other hand, if $g^{(k)}\left(\zeta_{0}\right)=a$ then there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$ such that $g_{n}^{(k)}\left(\zeta_{n}\right)=f_{n}^{() k}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a, n=1,2, \ldots$ hence $f_{n}\left(z_{n}=\rho_{n} \zeta_{n}\right)=a$ and $g_{n}\left(\zeta_{n}\right)=0$ for $n=1,2, \ldots$ thus

$$
g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=0
$$

this shows that $g=0$ whenever $g^{(k)}=a$

- Next, we prove $g^{(k)}(\zeta) \neq b$.
suppose that there exist ζ_{0} satisfying $g^{(k)}\left(\zeta_{0}\right)=b$, by Hurwitz's theorem there exsit a sequence $\zeta_{n} \rightarrow \zeta_{0}$ and $g_{n}^{(k)}\left(\zeta_{n}\right)=b ; n=1,2, \ldots$
- On the other hand, if $g^{(k)}\left(\zeta_{0}\right)=a$ then there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$ such that
$g_{n}^{(k)}\left(\zeta_{n}\right)=f_{n}^{() k}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a, n=1,2, \ldots$ hence $f_{n}\left(z_{n}=\rho_{n} \zeta_{n}\right)=a$ and $g_{n}\left(\zeta_{n}\right)=0$ for $n=1,2, \ldots$ thus

$$
g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=0
$$

this shows that $g=0$ whenever $g^{(k)}=a$

- Next, we prove $g^{(k)}(\zeta) \neq b$.
suppose that there exist ζ_{0} satisfying $g^{(k)}\left(\zeta_{0}\right)=b$, by Hurwitz's theorem there exsit a sequence $\zeta_{n} \rightarrow \zeta_{0}$ and $g_{n}^{(k)}\left(\zeta_{n}\right)=b ; n=1,2, \ldots$
- since $f_{n}(z)=b$ whenever $f_{n}^{(k)}(z)=b \Rightarrow f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=b$ and $g_{n}\left(\zeta_{n}\right)=\rho_{n}^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)-a\right]=\rho_{n}^{(k)}[b-a] \rightarrow \infty$ this contradicts $\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=g\left(\zeta_{0}\right) \neq \infty$ So $g^{(k)}(k) \neq b$.
- On the other hand, if $g^{(k)}\left(\zeta_{0}\right)=a$ then there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$ such that
$g_{n}^{(k)}\left(\zeta_{n}\right)=f_{n}^{() k}\left(z_{n}+\rho_{n} \zeta_{n}\right)=a, n=1,2, \ldots$ hence $f_{n}\left(z_{n}=\rho_{n} \zeta_{n}\right)=a$ and $g_{n}\left(\zeta_{n}\right)=0$ for $n=1,2, \ldots$ thus

$$
g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=0
$$

this shows that $g=0$ whenever $g^{(k)}=a$

- Next, we prove $g^{(k)}(\zeta) \neq b$.
suppose that there exist ζ_{0} satisfying $g^{(k)}\left(\zeta_{0}\right)=b$, by Hurwitz's theorem there exsit a sequence $\zeta_{n} \rightarrow \zeta_{0}$ and $g_{n}^{(k)}\left(\zeta_{n}\right)=b ; n=1,2, \ldots$
- since $f_{n}(z)=b$ whenever $f_{n}^{(k)}(z)=b \Rightarrow f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=b$ and $g_{n}\left(\zeta_{n}\right)=\rho_{n}^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)-a\right]=\rho_{n}^{(k)}[b-a] \rightarrow \infty$ this contradicts $\lim _{n \rightarrow \infty} g_{n}\left(\zeta_{n}\right)=g\left(\zeta_{0}\right) \neq \infty$ So $g^{(k)}(k) \neq b$.
- Hence we get

$$
g^{(k)}(\zeta)=b+e^{A \zeta+B}
$$

- we claim that $A=0$. suppose $A \neq 0$; then
- we claim that $A=0$.
suppose $A \neq 0$; then
- $g(\zeta)=\frac{b \zeta^{k}}{k!}+\frac{e^{A \zeta+B}}{A^{k}}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k-1} \zeta+c_{k}$
- we claim that $A=0$.
suppose $A \neq 0$; then
- $g(\zeta)=\frac{b \zeta^{k}}{k!}+\frac{e^{A \zeta+B}}{A^{k}}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k-1} \zeta+c_{k}$
- Let $g^{(k)}=a$ and
since $g^{(k)}(\zeta)=a \Rightarrow g(\zeta)=0$
- we claim that $A=0$.
suppose $A \neq 0$; then
- $g(\zeta)=\frac{b \zeta^{k}}{k!}+\frac{e^{A \zeta+B}}{A^{k}}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k-1} \zeta+c_{k}$
- Let $g^{(k)}=a$ and
since $g^{(k)}(\zeta)=a \Rightarrow g(\zeta)=0$
- we have

$$
\frac{b \zeta^{k}}{k!}+\frac{c_{1} \xi^{k-1}}{(k-1)!}+\ldots+c_{k}+\frac{b-a}{A^{k}}=0
$$

- we claim that $A=0$.
suppose $A \neq 0$; then
- $g(\zeta)=\frac{b \zeta^{k}}{k!}+\frac{e^{A \zeta+B}}{A^{k}}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k-1} \zeta+c_{k}$
- Let $g^{(k)}=a$ and
since $g^{(k)}(\zeta)=a \Rightarrow g(\zeta)=0$
- we have $\frac{b \zeta^{k}}{k!}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k}+\frac{b-a}{A^{k}}=0$
- this is a polynomial of degree k in ζ this polynomial has k solutions.
- we claim that $A=0$.
suppose $A \neq 0$; then
- $g(\zeta)=\frac{b \zeta^{k}}{k!}+\frac{e^{A \zeta+B}}{A^{k}}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k-1} \zeta+c_{k}$
- Let $g^{(k)}=a$ and
since $g^{(k)}(\zeta)=a \Rightarrow g(\zeta)=0$
- we have
$\frac{b \zeta^{k}}{k!}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k}+\frac{b-a}{A^{k}}=0$
- this is a polynomial of degree k in ζ this polynomial has k solutions.
- which contradicts the fact that $g^{(k)}$ has infiniteky many solutions, then we have $g^{(k)}(\zeta)=b+e^{B}$
$\Rightarrow g(\zeta)=\left(b+e^{B}\right) \frac{\zeta^{k}}{k!}+\frac{c_{1} \xi^{k-1}}{(k-1)!}+\ldots+c_{k}$
g is nonconstant. This contradicts $g(\zeta)=0 \Leftrightarrow g^{(k)}(\zeta)=a$. thus \mathfrak{F} is normal.
- we claim that $A=0$.
suppose $A \neq 0$; then
- $g(\zeta)=\frac{b \zeta^{k}}{k!}+\frac{e^{A \zeta+B}}{A^{k}}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k-1} \zeta+c_{k}$
- Let $g^{(k)}=a$ and
since $g^{(k)}(\zeta)=a \Rightarrow g(\zeta)=0$
- we have
$\frac{b \zeta^{k}}{k!}+\frac{c_{1} \zeta^{k-1}}{(k-1)!}+\ldots+c_{k}+\frac{b-a}{A^{k}}=0$
- this is a polynomial of degree k in ζ this polynomial has k solutions.
- which contradicts the fact that $g^{(k)}$ has infiniteky many solutions, then we have $g^{(k)}(\zeta)=b+e^{B}$
$\Rightarrow g(\zeta)=\left(b+e^{B}\right) \frac{\zeta^{k}}{k!}+\frac{c_{1} \xi^{k-1}}{(k-1)!}+\ldots+c_{k}$
g is nonconstant. This contradicts $g(\zeta)=0 \Leftrightarrow g^{(k)}(\zeta)=a$. thus \mathfrak{F} is normal.
- We improved one more result of Fang and Xu as

Theorem

let \mathfrak{F} be a family of holomorphic functions in the unit disc Δ and let a be a non zero finite complex number. If for any $f \in \mathfrak{F} f$ and $f^{(k)}$ share a IM and $f^{(k+1)}(z)=a$ whenever $f(z)=a$. Then \mathfrak{F} is normal in Δ.

Theorem

let \mathfrak{F} be a family of holomorphic functions in the unit disc Δ and let \mathbf{a} be a non zero finite complex number. If for any $f \in \mathfrak{F} f$ and $f^{(k)}$ share a IM and $f^{(k+1)}(z)=a$ whenever $f(z)=a$. Then \mathfrak{F} is normal in Δ.

- For proving this theorem we use tools from Nevanlinna theory of meromorphic functions.

Theorem

let \mathfrak{F} be a family of holomorphic functions in the unit disc Δ and let a be a non zero finite complex number. If for any $f \in \mathfrak{F} f$ and $f^{(k)}$ share a IM and $f^{(k+1)}(z)=a$ whenever $f(z)=a$. Then \mathfrak{F} is normal in Δ.

- For proving this theorem we use tools from Nevanlinna theory of meromorphic functions.

Lemma

let f be a nonconstant meromophic function. Then for
$k \geq 1, b \neq 0, \infty$,
$T(r, f) \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-b}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)$

SKETCH OF PROOF

- Suppose \mathfrak{F} is not normal in Δ; without loss of generality we assume that \mathfrak{F} is not normal at the point $z=0$.
- Suppose \mathfrak{F} is not normal in Δ; without loss of generality we assume that \mathfrak{F} is not normal at the point $z=0$.
- Then by Zalcman's lemma
$g_{n}(\zeta)=\rho^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right]$
converges locally uniformly to a nonconstant entire function g.
- Suppose \mathfrak{F} is not normal in Δ; without loss of generality we assume that \mathfrak{F} is not normal at the point $z=0$.
- Then by Zalcman's lemma
$g_{n}(\zeta)=\rho^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right]$
converges locally uniformly to a nonconstant entire function g.
- moreover g is of order atmost one where $z_{n} \rightarrow 0,\left|z_{n}\right|<r<1 f_{n} \in \mathfrak{F}$, and $\rho_{n} \rightarrow 0, \rho>0$
- Suppose \mathfrak{F} is not normal in Δ; without loss of generality we assume that \mathfrak{F} is not normal at the point $z=0$.
- Then by Zalcman's lemma
$g_{n}(\zeta)=\rho^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right]$
converges locally uniformly to a nonconstant entire function g.
- moreover g is of order atmost one where $z_{n} \rightarrow 0,\left|z_{n}\right|<r<1 f_{n} \in \mathfrak{F}$, and $\rho_{n} \rightarrow 0, \rho>0$
- Using the same reasoning as in the previous proof we can prove that $g=0 \Leftrightarrow g^{\prime}=a$ and $g^{(k)}=g^{(k+1)}=0$
- Suppose \mathfrak{F} is not normal in Δ; without loss of generality we assume that \mathfrak{F} is not normal at the point $z=0$.
- Then by Zalcman's lemma
$g_{n}(\zeta)=\rho^{-k}\left[f_{n}\left(z_{n}+\rho_{n} \zeta\right)-a\right]$
converges locally uniformly to a nonconstant entire function g.
- moreover g is of order atmost one where $z_{n} \rightarrow 0,\left|z_{n}\right|<r<1 f_{n} \in \mathfrak{F}$, and $\rho_{n} \rightarrow 0, \rho>0$
- Using the same reasoning as in the previous proof we can prove that $g=0 \Leftrightarrow g^{\prime}=a$ and $g^{(k)}=g^{(k+1)}=0$
- Now using lemma and Nevanlinna's first fundamental theorem, we have
- $T(r, g) \leq$
$\bar{N}(r, g)+N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{(k)}-a}\right)-N\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g)$
$=N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{(k)}-a}-N\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g)\right.$
$\leq N\left(r, \frac{1}{g^{k}-a}\right)-\bar{N}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g)$
$\leq T\left(r, \frac{1}{g^{k}-a}\right)-\bar{N}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g) \leq$
$T\left(r, g^{(k)}-a\right)-\bar{N}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g)$
$\leq T(r, g)-\bar{N}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g)$
Thus we get
$\bar{N}\left(r, \frac{1}{g^{(k+1)}}\right)=S(r, g)$
by this and the
claim $\left(g=0 \Leftrightarrow g^{\prime}=a, g^{(k)}=g^{(k+1)}=0\right.$ whenever $\left.g=0\right)$
we get a contradiction: $T(r, g)=S(r, g)$.
Hence the theorem.

Dynamics of Composite Entire Functions

Dynamics of Composite Entire Functions

Definition

1. Fatou set of f. The set
$F(f)=\left\{z \in \mathbb{C}:\left\{f^{n}\right\}_{n \in \mathbb{N}}\right.$ is normal in some neighborhood of $\left.z\right\}$ is called the Fatou set of f or the set of normality of f.

Dynamics of Composite Entire Functions

Definition

1. Fatou set of f. The set
$F(f)=\left\{z \in \mathbb{C}:\left\{f^{n}\right\}_{n \in \mathbb{N}}\right.$ is normal in some neighborhood of $\left.z\right\}$ is called the Fatou set of f or the set of normality of f.
2. its complement $J(f)$ is the Julia set of f.

Dynamics of Composite Entire Functions

Definition

1. Fatou set of f. The set
$F(f)=\left\{z \in \mathbb{C}:\left\{f^{n}\right\}_{n \in \mathbb{N}}\right.$ is normal in some neighborhood of $\left.z\right\}$ is called the Fatou set of f or the set of normality of f.
2. its complement $J(f)$ is the Julia set of f.
3. The Fatou set is open and completely invariant: $z \in F(f)$ if and only if $f(z) \in F(f)$ and consequently $J(f)$ is completely invariant.

Dynamics of Composite Entire Functions

Definition

1. Fatou set of f. The set
$F(f)=\left\{z \in \mathbb{C}:\left\{f^{n}\right\}_{n \in \mathbb{N}}\right.$ is normal in some neighborhood of $\left.z\right\}$ is called the Fatou set of f or the set of normality of f.
2. its complement $J(f)$ is the Julia set of f.
3. The Fatou set is open and completely invariant: $z \in F(f)$ if and only if $f(z) \in F(f)$ and consequently $J(f)$ is completely invariant.
4. A component U of the Fatou set is called a wandering domain if $U_{k} \cap U_{l}=\emptyset$ for $k \neq I$, where U_{k} denotes the component of $F(f)$ containing $f^{k}(U)$, otherwise U is called a preperiodic component of $F(f) f^{k}\left(U_{l}\right)=U_{l}$, for some $k, l \geq 0$. If $f^{k}(U)=U$, for some $k \in \mathbb{N}$, then U is called a periodic component of $F(f)$.

Theorem [berg.,poon]- If f and g are two non-linear entire functions, then $f \circ g$ has wandering domain if and only if $g \circ f$ has wandering domain.

Theorem [berg.,poon]- If f and g are two non-linear entire functions, then $f \circ g$ has wandering domain if and only if $g \circ f$ has wandering domain.
Singh A.P. constructed several examples where the dynamics of f and g vary largely from the dynamics of the composite entire functions. In fact he proved:

Theorem
 Let f and g be transcendental entire functions, then

Theorem

Let f and g be transcendental entire functions, then

- There exists a domain which lies in the wandering component of f and wandering component of g and lies in the periodic component of $g \circ f$.

Theorem

Let f and g be transcendental entire functions, then

- There exists a domain which lies in the wandering component of f and wandering component of g and lies in the periodic component of $g \circ f$.
- There exists a domain which lies in the wandering component of f and wandering component of g and also lies in the wandering component of $f \circ g$ and the wandering component of $g \circ f$.

Theorem

Let f and g be transcendental entire functions, then

- There exists a domain which lies in the wandering component of f and wandering component of g and lies in the periodic component of $g \circ f$.
- There exists a domain which lies in the wandering component of f and wandering component of g and also lies in the wandering component of $f \circ g$ and the wandering component of $g \circ f$.
- There exists a domain which lies in the periodic component of f and periodic component of g, but lies in the wandering component of $f \circ g$ and the wandering component of $g \circ f$.

Theorem

Let f and g be transcendental entire functions, then

- There exists a domain which lies in the wandering component of f and wandering component of g and lies in the periodic component of $g \circ f$.
- There exists a domain which lies in the wandering component of f and wandering component of g and also lies in the wandering component of $f \circ g$ and the wandering component of $g \circ f$.
- There exists a domain which lies in the periodic component of f and periodic component of g, but lies in the wandering component of $f \circ g$ and the wandering component of $g \circ f$.
- There exists a domain which lies in the periodic component of f and periodic component of g and also in the periodic component of $g \circ f$ but lies in the wandering component of $f \circ g$.
- In the construction of the proof SINGH has exhibited entire functions f and g with one domain G_{1} satisfying the conditions of Theorem . In this connection, one would also be interested in knowing whether it is possible to have entire functions f and g having more than one domain satisfying the conditions of Theorem. This is possible. We have shown the existence of entire functions having infinitely many domains satisfying the conditions of Theorem .
- In the construction of the proof SINGH has exhibited entire functions f and g with one domain G_{1} satisfying the conditions of Theorem . In this connection, one would also be interested in knowing whether it is possible to have entire functions f and g having more than one domain satisfying the conditions of Theorem. This is possible. We have shown the existence of entire functions having infinitely many domains satisfying the conditions of Theorem .

We (Pant S.K., Kumar D., Datt G.) proved the following

- In the construction of the proof SINGH has exhibited entire functions f and g with one domain G_{1} satisfying the conditions of Theorem. In this connection, one would also be interested in knowing whether it is possible to have entire functions f and g having more than one domain satisfying the conditions of Theorem. This is possible. We have shown the existence of entire functions having infinitely many domains satisfying the conditions of Theorem .

We (Pant S.K., Kumar D., Datt G.) proved the following

Theorem

There exists infinite number of domains which lies in the wandering component of f and wandering component of g and lies in the periodic component of $g \circ f$.

- We will require the following results from Approximation theory of entire functions to prove the theorems
- We will require the following results from Approximation theory of entire functions to prove the theorems

Let S be a closed subset of \mathbb{C} and
$C(S)=\{h: S \rightarrow \mathbb{C} \mid h$ is continuous on S and analytic in the interior

- We will require the following results from Approximation theory of entire functions to prove the theorems

Let S be a closed subset of \mathbb{C} and
$C(S)=\{h: S \rightarrow \mathbb{C} \mid h$ is continuous on S and analytic in the interior
Then S is called a Carleman set (for \mathbb{C}) if for any $f \in C(S)$
and any positive continuous function ϵ on S, there exists an entire function g such that $|f(z)-g(z)|<\epsilon(z)$ for all $z \in S$.

- Lemma[Gair]. Let S be a closed proper subset of \mathbb{C}. Then S is a Carleman set in \mathbb{C} if and only if S satisfies:
(i) $\widetilde{\mathbb{C}} \backslash S$ is connected;
(ii) $\widetilde{\mathbb{C}} \backslash S$ is locally connected at ∞;
(iii) for every compact subset K of \mathbb{C} there exists a neighborhood V of ∞ in $\widetilde{\mathbb{C}}$ such that no component of S° intersects both K and V.

Proof.

We follow the construction of Carleman set as in Singh's paper.

Proof.

We follow the construction of Carleman set as in Singh's paper. Let

$$
S=G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(G_{k} \cup B_{k} \cup L_{k} \cup M_{k}\right)\right\}
$$

where

Proof.

We follow the construction of Carleman set as in Singh's paper. Let

$$
S=G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(G_{k} \cup B_{k} \cup L_{k} \cup M_{k}\right)\right\}
$$

where $G_{0}=\{z:|z-2| \leq 1\}$

Proof.

We follow the construction of Carleman set as in Singh's paper. Let

$$
S=G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(G_{k} \cup B_{k} \cup L_{k} \cup M_{k}\right)\right\}
$$

where $G_{0}=\{z:|z-2| \leq 1\}$
$G_{k}=\{z:|z-(4 k+2)| \leq 1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \geq$ $1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \leq-1\}, k=1,2, \ldots$

Proof.

We follow the construction of Carleman set as in Singh's paper. Let

$$
S=G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(G_{k} \cup B_{k} \cup L_{k} \cup M_{k}\right)\right\}
$$

where $G_{0}=\{z:|z-2| \leq 1\}$
$G_{k}=\{z:|z-(4 k+2)| \leq 1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \geq$ $1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \leq-1\}, k=1,2, \ldots$
$M_{k}=\{z: \operatorname{Re} z=-4 k\}, k=1,2, \ldots$

Proof.

We follow the construction of Carleman set as in Singh's paper. Let

$$
S=G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(G_{k} \cup B_{k} \cup L_{k} \cup M_{k}\right)\right\}
$$

where $G_{0}=\{z:|z-2| \leq 1\}$
$G_{k}=\{z:|z-(4 k+2)| \leq 1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \geq$ $1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \leq-1\}, k=1,2, \ldots$
$M_{k}=\{z: \operatorname{Re} z=-4 k\}, k=1,2, \ldots$
$L_{k}=\{z: \operatorname{Re} z=4 k\}, k=1,2, \ldots$

Proof.

We follow the construction of Carleman set as in Singh's paper. Let

$$
S=G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(G_{k} \cup B_{k} \cup L_{k} \cup M_{k}\right)\right\}
$$

where $G_{0}=\{z:|z-2| \leq 1\}$
$G_{k}=\{z:|z-(4 k+2)| \leq 1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \geq$ $1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \leq-1\}, k=1,2, \ldots$
$M_{k}=\{z: \operatorname{Re} z=-4 k\}, k=1,2, \ldots$
$L_{k}=\{z: \operatorname{Re} z=4 k\}, k=1,2, \ldots$
$B_{k}=\{z:|z+(4 k+2)| \leq 1\} \cup\{z: \operatorname{Re} z=-(4 k+2)$ and $\operatorname{Im} z \geq$ $1\} \cup\{z: \operatorname{Re} z=-(4 k+2)$ and $\operatorname{Im} z \leq-1\}, k=1,2, \ldots$

Proof.

We follow the construction of Carleman set as in Singh's paper. Let

$$
S=G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(G_{k} \cup B_{k} \cup L_{k} \cup M_{k}\right)\right\}
$$

where $G_{0}=\{z:|z-2| \leq 1\}$
$G_{k}=\{z:|z-(4 k+2)| \leq 1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \geq$ $1\} \cup\{z: \operatorname{Re} z=4 k+2$ and $\operatorname{Im} z \leq-1\}, k=1,2, \ldots$
$M_{k}=\{z: \operatorname{Re} z=-4 k\}, k=1,2, \ldots$
$L_{k}=\{z: \operatorname{Re} z=4 k\}, k=1,2, \ldots$
$B_{k}=\{z:|z+(4 k+2)| \leq 1\} \cup\{z: \operatorname{Re} z=-(4 k+2)$ and $\operatorname{Im} z \geq$ $1\} \cup\{z: \operatorname{Re} z=-(4 k+2)$ and $\operatorname{Im} z \leq-1\}, k=1,2, \ldots$
Then using Lemma, we get S is a Carleman set.

continued...

- It is known that the set of all natural numbers \mathbb{N} can be expressed in an infinite array of numbers as

$$
\left\{\frac{q(q-1)}{2}+1+p q+\frac{p(p+1)}{2}: p=0,1, \ldots, q=1,2, \ldots\right\}
$$

Infact a natural number lying in row p and column q $(p=0,1, \ldots, q=1,2, \ldots)$ would be $\frac{q(q-1)}{2}+1+p q+\frac{p(p+1)}{2}$. Next if $n \in \mathbb{N}$, let r be the least positive integer such that $\frac{r(r+1)}{2} \geq n$ and $s=\frac{r(r+1)}{2}-n$. Then n lies in row $n_{r}=r-s-1$ and column $n_{c}=s+1$. Thus without any loss of generality we may denote the set G_{n} by its place position $G_{n_{r}, n_{c}}$ say, or more simply by $G_{i, j}$ for suitable i, j and $G_{i, j}$ may be denoted by G_{n} for suitable n, and similarly for other terms.

continued...

- We can write $G_{k}=G_{p, q}$ for suitable p, q. Using the continuity of e^{z}, for each $k=1,2, \ldots$ choose $\eta_{p, q}$ and $\xi_{p, q}$ so that
- We can write $G_{k}=G_{p, q}$ for suitable p, q. Using the continuity of e^{z}, for each $k=1,2, \ldots$ choose $\eta_{p, q}$ and $\xi_{p, q}$ so that
- $\left|e^{w}+\left(4\left(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2}\right)+2\right)\right|<\frac{1}{2}$, whenever $\left|w-\left(\pi i+\log \left(4\left(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2}\right)+2\right)\right)\right|<\eta_{p, q}$, and

continued...

- We can write $G_{k}=G_{p, q}$ for suitable p, q. Using the continuity of e^{z}, for each $k=1,2, \ldots$ choose $\eta_{p, q}$ and $\xi_{p, q}$ so that
- $\left|e^{w}+\left(4\left(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2}\right)+2\right)\right|<\frac{1}{2}$, whenever $\left|w-\left(\pi i+\log \left(4\left(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2}\right)+2\right)\right)\right|<\eta_{p, q}$, and
- $\left|e^{w}-\left(4\left(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2}\right)+2\right)\right|<\frac{1}{2}$, whenever $\left|w-\log \left(4\left(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2}\right)+2\right)\right|<\xi_{p, q}$
Also choose $\delta_{0}, \delta_{q}, \delta_{q}^{\prime}$ so that

$$
\begin{aligned}
& \left|e^{w}-2\right|<\frac{1}{2}, \text { whenever }|w-\log 2|<\delta_{0} \\
& \left|e^{w}+\left(4\left(\frac{q(q-1)}{2}+1\right)+2\right)\right|<\frac{1}{2}, \text { whenever } \\
& \left|w-\left(\pi i+\log \left(4\left(\frac{q(q-1)}{2}+1\right)+2\right)\right)\right|<\delta_{q}, \text { and } \\
& \left|e^{w}-\left(4\left(\frac{q(q-1)}{2}+1\right)+2\right)\right|<\frac{1}{2}, \text { whenever } \\
& \left|w-\log \left(4\left(\frac{q(q-1)}{2}+1\right)+2\right)\right|<\delta_{q}^{\prime} .
\end{aligned}
$$

- Define

$$
\begin{aligned}
\alpha(z)= & \log 2, \text { if } z \in G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(L_{k} \cup M_{k}\right)\right\} \\
= & \pi i+\log \left(4\left(\frac{q(q-1)}{2}+1\right)+2\right), \text { if } z \in G_{p, q} \\
& p=0,1, \ldots, q=1,2, \ldots \\
= & \pi i+\log \left(4\left(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2}\right)+2\right), \\
& \text { if } z \in B_{p, q}, p=0,1, \ldots, q=1,2, \ldots
\end{aligned}
$$

$$
\begin{aligned}
\beta(z)= & \log 2, \text { if } z \in G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(L_{k} \cup M_{k}\right)\right\} \\
= & \log \left(4\left(\frac{q(q-1)}{2}+1\right)+2\right), \text { if } z \in B_{p, q}, \\
& p=0,1, \ldots, q=1,2, \ldots \\
= & \log \left(4\left(\frac{q(q+1)}{2}+1+p(q+1)+\frac{p(p+1)}{2}\right)+2\right), \\
& \text { if } z \in G_{p, q}, p=0,1, \ldots, q=1,2, \ldots
\end{aligned}
$$

$$
\epsilon(z)= \begin{cases}\delta_{0}, & z \in G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(L_{k} \cup M_{k}\right)\right\} \\ \delta_{q}, & z \in G_{p, q}, p=0,1, \ldots, q=1,2, \ldots \\ \eta_{p, q}, & z \in B_{p, q}, p=0,1, \ldots, q=1,2, \ldots\end{cases}
$$

and

$$
\epsilon_{1}(z)= \begin{cases}\delta_{0}, & z \in G_{0} \cup\left\{\bigcup_{k=1}^{\infty}\left(L_{k} \cup M_{k}\right)\right\} \\ \delta_{q}^{\prime}, & z \in B_{p, q}, p=0,1, \ldots, q=1,2, \ldots \\ \xi_{p, q}, & z \in G_{p, q}, p=0,1, \ldots, q=1,2, \ldots\end{cases}
$$

Thank You!

