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Some standard examples

A rich class of examples of manifolds also come from matrix
groups. First of all the euclidean spaces Rn, which have a natural
smooth structure as well as a group structure in which group
operation is a smooth mapping, are the easiest known examples.

Then comes the set of all n× n matrices with real entries M(n,R);
the group operation here is addition. And, with the natural
identification of M(n,R) and the euclidean space Rn2 , it is a
particular case of the above.

The next natural example then would be the space GL(n,R) of all
non-singular matrices. Once we note that taking determinants is a
smooth real-valued function, it easily follows that GL(n,R) is an
open subspace of M(n,R), and hence carries an (induced) smooth
structure; with respect to matrix multiplication which is again a
smooth operation, it follows that GL(n,R) is another example.
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Then follows the matrix groups SL(n,R),O(n,R),SO(n,R) all of
which are subgroups of GL(n,R).

Since the groups O(n,R),SO(n,R) act on Rn and preserve the
euclidean norm, they also act particularly on the unit sphere Sn−1

in Rn. In addition, they act as a group of isometries of Sn−1. And,
Sn−1 can also be as the quotient space SO(n)/SO(n − 1).

The previous example, indeed suggests a lot more examples of
matrix groups, namely those that preserve various quadratic forms.
In particular, one can consider the (p, q) quadratic form

x21 + · · ·+ x2p − x2p+1 − · · · − x2n
where q = n − p; the group of matrices of determinant 1 and
preserving this form is denoted by SO(p, q).

It turns out that the group SO(n, 1) acts as group of isometries of
the hyperbolic space Hn. And, Hn = SO(n, 1)/SO(n).
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Groups of isometries and Symmetric spaces

Formally, a Lie Group G is a smooth manifold which has the
structure of group in such a way that the map ϕ : G × G → G
defined by ϕ(x , y) = x · y−1 is smooth.

Myers and Steenrod showed in 1939 that the isometry group I (M)
of any (connected) Riemannian manifold M is a Lie group, with
respect to the compact-open topology in M; they also showed that
the group of isometries that fix a point is compact.

In case I (M) acts transitively on M, that is, for every pair of
distinct point x , y ∈ M there is an isometry that takes x to y , then
the manifold M is called a Homogeneous space and can be
expressed as the quotient space M = I (M)/Isop where Isop is the
subgroup that fix a point p ∈ M.
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As pointed out earlier, the three model spaces Rn, Sn or Hn are
examples of homogeneous spaces.

Various Projective spaces KPn over the division algebras K = R,C
or H are some more examples of homogeneous spaces.

Of the most striking examples of homogeneous spaces one has the
so called Symmetric spaces.

A Riemannian manifold M is called a Symmetric space if for each
p ∈ M, the isotropy group Isop contains an isometry Ip such that
DIp : TpM → TpM takes a vector v to −v .

Again, the three model spaces Rn,Sn or Hn are examples of
Symmetric spaces.
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Generalities on Lie groups and Lie Algebras

Canonically associated to a Lie group is its Lie algebra.

A Lie algebra is a vector space L together with a map
[, ] : L× L→ L such that

1 [a1v1 + a2v2,W ] = a1[v1,w ] + a2[v2,w ]

2 [v ,w ] = −[w , v ]

3 [v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0

Example: If M is a smooth manifold, the space X (M) of smooth
vector fields on M is a Lie algebra with respect to the bracket
operation [V ,W ] = VW −WV defined in the previous lecture.
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We shall now describe the Lie algebra associated to a Lie group G .

For each g ∈ G one has the diffeomorphisms Lg : g1 7→ gg1 and
Rg : g1 7→ g1g .

A vector field V ∈ X (G ) is said to be left invariant (resp., right
invariant) if DLg (V (g1)) = V (gg1) (resp. DRg (V (g1)) = V (g1g))

A left invariant vector field is uniquely determined by V (e) ∈ TeG ,
where e is the identity element of G .

Conversely, V ∈ TeG defines a left invariant vector field by the
relation V (g) = DLg (V (e)).

Thus, the left invariant vector fields form an n-dimensional
subspace of X (G ).

C S Aravinda TIFR Centre for Applicable Mathematics Lie Groups: Quick overview with examples



Talk at the Kasar Jungle Resort

We shall now describe the Lie algebra associated to a Lie group G .

For each g ∈ G one has the diffeomorphisms Lg : g1 7→ gg1 and
Rg : g1 7→ g1g .

A vector field V ∈ X (G ) is said to be left invariant (resp., right
invariant) if DLg (V (g1)) = V (gg1) (resp. DRg (V (g1)) = V (g1g))

A left invariant vector field is uniquely determined by V (e) ∈ TeG ,
where e is the identity element of G .

Conversely, V ∈ TeG defines a left invariant vector field by the
relation V (g) = DLg (V (e)).

Thus, the left invariant vector fields form an n-dimensional
subspace of X (G ).

C S Aravinda TIFR Centre for Applicable Mathematics Lie Groups: Quick overview with examples



Talk at the Kasar Jungle Resort

We shall now describe the Lie algebra associated to a Lie group G .

For each g ∈ G one has the diffeomorphisms Lg : g1 7→ gg1 and
Rg : g1 7→ g1g .

A vector field V ∈ X (G ) is said to be left invariant (resp., right
invariant) if DLg (V (g1)) = V (gg1) (resp. DRg (V (g1)) = V (g1g))

A left invariant vector field is uniquely determined by V (e) ∈ TeG ,
where e is the identity element of G .

Conversely, V ∈ TeG defines a left invariant vector field by the
relation V (g) = DLg (V (e)).

Thus, the left invariant vector fields form an n-dimensional
subspace of X (G ).

C S Aravinda TIFR Centre for Applicable Mathematics Lie Groups: Quick overview with examples



Talk at the Kasar Jungle Resort

We shall now describe the Lie algebra associated to a Lie group G .

For each g ∈ G one has the diffeomorphisms Lg : g1 7→ gg1 and
Rg : g1 7→ g1g .

A vector field V ∈ X (G ) is said to be left invariant (resp., right
invariant) if DLg (V (g1)) = V (gg1) (resp. DRg (V (g1)) = V (g1g))

A left invariant vector field is uniquely determined by V (e) ∈ TeG ,
where e is the identity element of G .

Conversely, V ∈ TeG defines a left invariant vector field by the
relation V (g) = DLg (V (e)).

Thus, the left invariant vector fields form an n-dimensional
subspace of X (G ).

C S Aravinda TIFR Centre for Applicable Mathematics Lie Groups: Quick overview with examples



Talk at the Kasar Jungle Resort

We shall now describe the Lie algebra associated to a Lie group G .

For each g ∈ G one has the diffeomorphisms Lg : g1 7→ gg1 and
Rg : g1 7→ g1g .

A vector field V ∈ X (G ) is said to be left invariant (resp., right
invariant) if DLg (V (g1)) = V (gg1) (resp. DRg (V (g1)) = V (g1g))

A left invariant vector field is uniquely determined by V (e) ∈ TeG ,
where e is the identity element of G .

Conversely, V ∈ TeG defines a left invariant vector field by the
relation V (g) = DLg (V (e)).

Thus, the left invariant vector fields form an n-dimensional
subspace of X (G ).

C S Aravinda TIFR Centre for Applicable Mathematics Lie Groups: Quick overview with examples



Talk at the Kasar Jungle Resort

We shall now describe the Lie algebra associated to a Lie group G .

For each g ∈ G one has the diffeomorphisms Lg : g1 7→ gg1 and
Rg : g1 7→ g1g .

A vector field V ∈ X (G ) is said to be left invariant (resp., right
invariant) if DLg (V (g1)) = V (gg1) (resp. DRg (V (g1)) = V (g1g))

A left invariant vector field is uniquely determined by V (e) ∈ TeG ,
where e is the identity element of G .

Conversely, V ∈ TeG defines a left invariant vector field by the
relation V (g) = DLg (V (e)).

Thus, the left invariant vector fields form an n-dimensional
subspace of X (G ).

C S Aravinda TIFR Centre for Applicable Mathematics Lie Groups: Quick overview with examples



Talk at the Kasar Jungle Resort

Moreover, the bracket of two left invariant vector fields is again left
invariant.

It is a simple consequence of the fact that if ϕ is a diffeomorphism
of M and V ,W ∈ X (M), then Dϕ[V ,W ] = [DϕV ,DϕW ].

In particular, DLg [V ,W ] = [DLgV ,DLgW ] = [V ,W ]. This
means that the left invariant vector fields form a Lie algebra
denoted by g, called the Lie algebra associated to the Lie group G ;
it is often identified with the tangent space TeG .

Similarly, the right invariant vector fields also form a Lie algebra
isomorphic to the left invariant vector fields.
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For a Lie group G of dimension n, there is a natural
homomorphism from G to GL(g) called the adjoint representation.

We first define, Adg (v) = DRg ◦ DLg−1(v) for v ∈ g(= TeG )

It is easy to see that Adg1g2 = Adg1Adg2 . And since, for each g ,
the map h 7→ ghg−1 is an automorphism of G , it follows that Adg
is an automorphism of g; that is, Adg [v ,w ] = [Adg (v),Adg (w)].

The map Ad : G → GL(g) taking g to Adg is the adjoint
representation.

Let ad = D(Ad) be the differential of Ad ; hence, ad : g→ gl(g).
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Since one has the facility of moving from one point to another by
diffeomorphisms of G (either left or right translations) one can
prescribe Riemannian metrics on a Lie group G in a natural way as
follows:

It is sufficient to prescribe an inner product on g, the tangent
space to G at e; and then, at an arbitrary point g ∈ G use the
linear isomorphism DLg (or DRg ) to prescribe the induced inner
product on TgG that turns the linear isomorphism DLg into a
linear isometry.

Such a prescription of inner products on each of the tangent
spaces turns G into a Riemannian manifold; and, the action of G
on itself by left multiplication is an isometric action.

One has the so called Killing form on g defined by
〈g1, g2〉 = −trace (ad(g1)ad(g2)), which gives rise the standard
Riemannian metric on G if and only if G is compact and
semisimple.
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A discrete subgroup Γ of G gives rise to interesting quotient
manifolds G/Γ and the quotient map π : G → G/Γ is a covering
projection.

If G is a connected Lie group and H is a closed subgroup of G ,
then the homogenous space G/H sometime admit Riemannian
metrics, when the action by G on G/H is by isometries. Such
examples also provide an interesting class of examples of
Riemannian manifolds and has a vast literature.

The case of G = SO(n+ 1,R),SO(n, 1) and H = SO(n) giving rise
to the homogeneous spaces Sn and Hn were mentioned earlier.

Further, the case of Hn = SO(n, 1)/SO(n) admits interesting
discrete subgroups Γ whose quotient spaces carry finite Riemannian
volume.
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Let us see another interesting example:

The euclidean space R3 can be identified with the group G of all
3× 3-upper triangular (nilpotent) matrices with real entries, in
which all entries on the diagonal and below the diagonal are zero;
this is called the Heisenberg group.

If Γ is a subgroup of G in which the entries are integers, then the
quotient is a 3-manifold, with an interesting geometry.
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