Lie Groups: Quick overview with examples

C S Aravinda TIFR Centre for Applicable Mathematics

4 December, 2012

Outline of the talk

• Some standard examples

.⊒ . ►

э

Outline of the talk

- Some standard examples
- Groups of isometries and Symmetric spaces

Outline of the talk

- Some standard examples
- Groups of isometries and Symmetric spaces
- Generalities on Lie groups and Lie Algebras

Some standard examples

A rich class of examples of manifolds also come from matrix groups. First of all the euclidean spaces \mathbb{R}^n , which have a natural smooth structure as well as a group structure in which group operation is a smooth mapping, are the easiest known examples.

Some standard examples

A rich class of examples of manifolds also come from matrix groups. First of all the euclidean spaces \mathbb{R}^n , which have a natural smooth structure as well as a group structure in which group operation is a smooth mapping, are the easiest known examples.

Then comes the set of all $n \times n$ matrices with real entries $M(n, \mathbb{R})$; the group operation here is addition. And, with the natural identification of $M(n, \mathbb{R})$ and the euclidean space \mathbb{R}^{n^2} , it is a particular case of the above.

Some standard examples

A rich class of examples of manifolds also come from matrix groups. First of all the euclidean spaces \mathbb{R}^n , which have a natural smooth structure as well as a group structure in which group operation is a smooth mapping, are the easiest known examples.

Then comes the set of all $n \times n$ matrices with real entries $M(n, \mathbb{R})$; the group operation here is addition. And, with the natural identification of $M(n, \mathbb{R})$ and the euclidean space \mathbb{R}^{n^2} , it is a particular case of the above.

The next natural example then would be the space $GL(n, \mathbb{R})$ of all non-singular matrices. Once we note that taking determinants is a smooth real-valued function, it easily follows that $GL(n, \mathbb{R})$ is an open subspace of $M(n, \mathbb{R})$, and hence carries an (induced) smooth structure; with respect to matrix multiplication which is again a smooth operation, it follows that $GL(n, \mathbb{R})$ is another example.

Since the groups $O(n, \mathbb{R})$, $SO(n, \mathbb{R})$ act on \mathbb{R}^n and preserve the euclidean norm, they also act particularly on the unit sphere S^{n-1} in \mathbb{R}^n . In addition, they act as a group of isometries of S^{n-1} . And, S^{n-1} can also be as the quotient space SO(n)/SO(n-1).

Since the groups $O(n, \mathbb{R})$, $SO(n, \mathbb{R})$ act on \mathbb{R}^n and preserve the euclidean norm, they also act particularly on the unit sphere S^{n-1} in \mathbb{R}^n . In addition, they act as a group of isometries of S^{n-1} . And, S^{n-1} can also be as the quotient space SO(n)/SO(n-1).

The previous example, indeed suggests a lot more examples of matrix groups, namely those that preserve various quadratic forms. In particular, one can consider the (p,q) quadratic form

$$x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_n^2$$

where q = n - p; the group of matrices of determinant 1 and preserving this form is denoted by SO(p, q).

Since the groups $O(n, \mathbb{R})$, $SO(n, \mathbb{R})$ act on \mathbb{R}^n and preserve the euclidean norm, they also act particularly on the unit sphere S^{n-1} in \mathbb{R}^n . In addition, they act as a group of isometries of S^{n-1} . And, S^{n-1} can also be as the quotient space SO(n)/SO(n-1).

The previous example, indeed suggests a lot more examples of matrix groups, namely those that preserve various quadratic forms. In particular, one can consider the (p, q) quadratic form

$$x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_n^2$$

where q = n - p; the group of matrices of determinant 1 and preserving this form is denoted by SO(p, q).

It turns out that the group SO(n, 1) acts as group of isometries of the hyperbolic space H^n . And, $H^n = SO(n, 1)/SO(n)$.

Groups of isometries and Symmetric spaces

Formally, a **Lie Group** *G* is a smooth manifold which has the structure of group in such a way that the map $\varphi : G \times G \to G$ defined by $\varphi(x, y) = x \cdot y^{-1}$ is smooth.

Groups of isometries and Symmetric spaces

Formally, a **Lie Group** G is a smooth manifold which has the structure of group in such a way that the map $\varphi : G \times G \to G$ defined by $\varphi(x, y) = x \cdot y^{-1}$ is smooth.

Myers and Steenrod showed in 1939 that the isometry group I(M) of any (connected) Riemannian manifold M is a Lie group, with respect to the compact-open topology in M; they also showed that the group of isometries that fix a point is compact.

Groups of isometries and Symmetric spaces

Formally, a **Lie Group** G is a smooth manifold which has the structure of group in such a way that the map $\varphi : G \times G \to G$ defined by $\varphi(x, y) = x \cdot y^{-1}$ is smooth.

Myers and Steenrod showed in 1939 that the isometry group I(M) of any (connected) Riemannian manifold M is a Lie group, with respect to the compact-open topology in M; they also showed that the group of isometries that fix a point is compact.

In case I(M) acts transitively on M, that is, for every pair of distinct point $x, y \in M$ there is an isometry that takes x to y, then the manifold M is called a **Homogeneous space** and can be expressed as the quotient space $M = I(M)/Iso_p$ where Iso_p is the subgroup that fix a point $p \in M$.

Various Projective spaces KP^n over the division algebras $K = \mathbb{R}, \mathbb{C}$ or \mathbb{H} are some more examples of homogeneous spaces.

Various Projective spaces KP^n over the division algebras $K = \mathbb{R}, \mathbb{C}$ or \mathbb{H} are some more examples of homogeneous spaces.

Of the most striking examples of homogeneous spaces one has the so called Symmetric spaces.

Various Projective spaces KP^n over the division algebras $K = \mathbb{R}, \mathbb{C}$ or \mathbb{H} are some more examples of homogeneous spaces.

Of the most striking examples of homogeneous spaces one has the so called Symmetric spaces.

A Riemannian manifold M is called a **Symmetric space** if for each $p \in M$, the isotropy group Iso_p contains an isometry I_p such that $DI_p : T_pM \to T_pM$ takes a vector v to -v.

Various Projective spaces KP^n over the division algebras $K = \mathbb{R}, \mathbb{C}$ or \mathbb{H} are some more examples of homogeneous spaces.

Of the most striking examples of homogeneous spaces one has the so called Symmetric spaces.

A Riemannian manifold M is called a **Symmetric space** if for each $p \in M$, the isotropy group Iso_p contains an isometry I_p such that $DI_p : T_pM \to T_pM$ takes a vector v to -v.

Again, the three model spaces \mathbb{R}^n , S^n or H^n are examples of Symmetric spaces.

Generalities on Lie groups and Lie Algebras

Canonically associated to a Lie group is its Lie algebra.

Generalities on Lie groups and Lie Algebras

Canonically associated to a Lie group is its Lie algebra.

A **Lie algebra** is a vector space *L* together with a map $[,]: L \times L \rightarrow L$ such that

$$[a_1v_1 + a_2v_2, W] = a_1[v_1, w] + a_2[v_2, w]$$

2
$$[v, w] = -[w, v]$$

3
$$[v_1, [v_2, v_3]] + [v_2, [v_3, v_1]] + [v_3, [v_1, v_2]] = 0$$

Generalities on Lie groups and Lie Algebras

Canonically associated to a Lie group is its Lie algebra.

A **Lie algebra** is a vector space *L* together with a map $[,] : L \times L \rightarrow L$ such that

$$[a_1v_1 + a_2v_2, W] = a_1[v_1, w] + a_2[v_2, w]$$

$$[v,w] = -[w,v]$$

3
$$[v_1, [v_2, v_3]] + [v_2, [v_3, v_1]] + [v_3, [v_1, v_2]] = 0$$

Example: If M is a smooth manifold, the space $\mathcal{X}(M)$ of smooth vector fields on M is a Lie algebra with respect to the bracket operation [V, W] = VW - WV defined in the previous lecture.

-

э

э

For each $g \in G$ one has the diffeomorphisms $L_g: g_1 \mapsto gg_1$ and $R_g: g_1 \mapsto g_1g$.

For each $g \in G$ one has the diffeomorphisms $L_g : g_1 \mapsto gg_1$ and $R_g : g_1 \mapsto g_1g$.

A vector field $V \in \mathcal{X}(G)$ is said to be **left invariant** (resp., right invariant) if $DL_g(V(g_1)) = V(gg_1)$ (resp. $DR_g(V(g_1)) = V(g_1g)$)

For each $g \in G$ one has the diffeomorphisms $L_g : g_1 \mapsto gg_1$ and $R_g : g_1 \mapsto g_1g$.

A vector field $V \in \mathcal{X}(G)$ is said to be **left invariant** (resp., right invariant) if $DL_g(V(g_1)) = V(gg_1)$ (resp. $DR_g(V(g_1)) = V(g_1g)$)

A left invariant vector field is uniquely determined by $V(e) \in T_eG$, where e is the identity element of G.

For each $g \in G$ one has the diffeomorphisms $L_g : g_1 \mapsto gg_1$ and $R_g : g_1 \mapsto g_1g$.

A vector field $V \in \mathcal{X}(G)$ is said to be **left invariant** (resp., right invariant) if $DL_g(V(g_1)) = V(gg_1)$ (resp. $DR_g(V(g_1)) = V(g_1g)$)

A left invariant vector field is uniquely determined by $V(e) \in T_eG$, where *e* is the identity element of *G*.

Conversely, $V \in T_e G$ defines a left invariant vector field by the relation $V(g) = DL_g(V(e))$.

For each $g \in G$ one has the diffeomorphisms $L_g : g_1 \mapsto gg_1$ and $R_g : g_1 \mapsto g_1g$.

A vector field $V \in \mathcal{X}(G)$ is said to be **left invariant** (resp., right invariant) if $DL_g(V(g_1)) = V(gg_1)$ (resp. $DR_g(V(g_1)) = V(g_1g)$)

A left invariant vector field is uniquely determined by $V(e) \in T_eG$, where *e* is the identity element of *G*.

Conversely, $V \in T_e G$ defines a left invariant vector field by the relation $V(g) = DL_g(V(e))$.

Thus, the left invariant vector fields form an *n*-dimensional subspace of $\mathcal{X}(G)$.

- ∢ ≣ ▶

э

It is a simple consequence of the fact that if φ is a diffeomorphism of M and $V, W \in \mathcal{X}(M)$, then $D\varphi[V, W] = [D\varphi V, D\varphi W]$.

It is a simple consequence of the fact that if φ is a diffeomorphism of M and $V, W \in \mathcal{X}(M)$, then $D\varphi[V, W] = [D\varphi V, D\varphi W]$.

In particular, $DL_g[V, W] = [DL_gV, DL_gW] = [V, W]$.

It is a simple consequence of the fact that if φ is a diffeomorphism of M and $V, W \in \mathcal{X}(M)$, then $D\varphi[V, W] = [D\varphi V, D\varphi W]$.

In particular, $DL_g[V, W] = [DL_gV, DL_gW] = [V, W]$. This means that the left invariant vector fields form a Lie algebra denoted by \mathfrak{g} , called the Lie algebra associated to the Lie group G; it is often identified with the tangent space T_eG .

It is a simple consequence of the fact that if φ is a diffeomorphism of M and $V, W \in \mathcal{X}(M)$, then $D\varphi[V, W] = [D\varphi V, D\varphi W]$.

In particular, $DL_g[V, W] = [DL_gV, DL_gW] = [V, W]$. This means that the left invariant vector fields form a Lie algebra denoted by \mathfrak{g} , called the Lie algebra associated to the Lie group G; it is often identified with the tangent space T_eG .

Similarly, the right invariant vector fields also form a Lie algebra isomorphic to the left invariant vector fields.

We first define, $Ad_g(v) = DR_g \circ DL_{g^{-1}}(v)$ for $v \in \mathfrak{g}(=T_eG)$

We first define,
$$\mathit{Ad}_g(v) = \mathit{DR}_g \circ \mathit{DL}_{g^{-1}}(v)$$
 for $v \in \mathfrak{g}(=\mathcal{T}_e \mathcal{G})$

It is easy to see that $Ad_{g_1g_2} = Ad_{g_1}Ad_{g_2}$. And since, for each g, the map $h \mapsto ghg^{-1}$ is an automorphism of G, it follows that Ad_g is an automorphism of \mathfrak{g} ; that is, $Ad_g[v, w] = [Ad_g(v), Ad_g(w)]$.

We first define,
$$\mathit{Ad}_g(v) = \mathit{DR}_g \circ \mathit{DL}_{g^{-1}}(v)$$
 for $v \in \mathfrak{g}(=\mathcal{T}_e G)$

It is easy to see that $Ad_{g_1g_2} = Ad_{g_1}Ad_{g_2}$. And since, for each g, the map $h \mapsto ghg^{-1}$ is an automorphism of G, it follows that Ad_g is an automorphism of \mathfrak{g} ; that is, $Ad_g[v, w] = [Ad_g(v), Ad_g(w)]$.

The map $Ad : G \to GL(\mathfrak{g})$ taking g to Ad_g is the adjoint representation.

We first define,
$$\mathit{Ad}_g(v) = \mathit{DR}_g \circ \mathit{DL}_{g^{-1}}(v)$$
 for $v \in \mathfrak{g}(=\mathcal{T}_e G)$

It is easy to see that $Ad_{g_1g_2} = Ad_{g_1}Ad_{g_2}$. And since, for each g, the map $h \mapsto ghg^{-1}$ is an automorphism of G, it follows that Ad_g is an automorphism of \mathfrak{g} ; that is, $Ad_g[v, w] = [Ad_g(v), Ad_g(w)]$.

The map $Ad: G \to GL(\mathfrak{g})$ taking g to Ad_g is the adjoint representation.

Let ad = D(Ad) be the differential of Ad; hence, $ad : \mathfrak{g} \to gl(\mathfrak{g})$.

It is sufficient to prescribe an inner product on \mathfrak{g} , the tangent space to G at e;

It is sufficient to prescribe an inner product on \mathfrak{g} , the tangent space to G at e; and then, at an arbitrary point $g \in G$ use the linear isomorphism DL_g (or DR_g) to prescribe the induced inner product on $T_g G$ that turns the linear isomorphism DL_g into a linear isometry.

It is sufficient to prescribe an inner product on \mathfrak{g} , the tangent space to G at e; and then, at an arbitrary point $g \in G$ use the linear isomorphism DL_g (or DR_g) to prescribe the induced inner product on $T_g G$ that turns the linear isomorphism DL_g into a linear isometry.

Such a prescription of inner products on each of the tangent spaces turns G into a Riemannian manifold; and, the action of G on itself by left multiplication is an isometric action.

It is sufficient to prescribe an inner product on \mathfrak{g} , the tangent space to G at e; and then, at an arbitrary point $g \in G$ use the linear isomorphism DL_g (or DR_g) to prescribe the induced inner product on $T_g G$ that turns the linear isomorphism DL_g into a linear isometry.

Such a prescription of inner products on each of the tangent spaces turns G into a Riemannian manifold; and, the action of G on itself by left multiplication is an isometric action.

One has the so called Killing form on \mathfrak{g} defined by $\langle g_1, g_2 \rangle = -\text{trace}(ad(g_1)ad(g_2))$, which gives rise the standard Riemannian metric on G if and only if G is compact and semisimple.

If G is a connected Lie group and H is a closed subgroup of G, then the homogenous space G/H sometime admit Riemannian metrics, when the action by G on G/H is by isometries.

If G is a connected Lie group and H is a closed subgroup of G, then the homogenous space G/H sometime admit Riemannian metrics, when the action by G on G/H is by isometries. Such examples also provide an interesting class of examples of Riemannian manifolds and has a vast literature.

If G is a connected Lie group and H is a closed subgroup of G, then the homogenous space G/H sometime admit Riemannian metrics, when the action by G on G/H is by isometries. Such examples also provide an interesting class of examples of Riemannian manifolds and has a vast literature.

The case of $G = SO(n+1, \mathbb{R})$, SO(n, 1) and H = SO(n) giving rise to the homogeneous spaces S^n and H^n were mentioned earlier.

If G is a connected Lie group and H is a closed subgroup of G, then the homogenous space G/H sometime admit Riemannian metrics, when the action by G on G/H is by isometries. Such examples also provide an interesting class of examples of Riemannian manifolds and has a vast literature.

The case of $G = SO(n+1, \mathbb{R})$, SO(n, 1) and H = SO(n) giving rise to the homogeneous spaces S^n and H^n were mentioned earlier.

Further, the case of $H^n = SO(n, 1)/SO(n)$ admits interesting discrete subgroups Γ whose quotient spaces carry finite Riemannian volume.

э

The euclidean space \mathbb{R}^3 can be identified with the group G of all 3×3 -upper triangular (nilpotent) matrices with real entries, in which all entries on the diagonal and below the diagonal are zero;

The euclidean space \mathbb{R}^3 can be identified with the group G of all 3×3 -upper triangular (nilpotent) matrices with real entries, in which all entries on the diagonal and below the diagonal are zero; this is called the *Heisenberg group*.

The euclidean space \mathbb{R}^3 can be identified with the group G of all 3×3 -upper triangular (nilpotent) matrices with real entries, in which all entries on the diagonal and below the diagonal are zero; this is called the *Heisenberg group*.

If Γ is a subgroup of G in which the entries are integers, then the quotient is a 3-manifold, with an interesting geometry.

The euclidean space \mathbb{R}^3 can be identified with the group G of all 3×3 -upper triangular (nilpotent) matrices with real entries, in which all entries on the diagonal and below the diagonal are zero; this is called the *Heisenberg group*.

If Γ is a subgroup of G in which the entries are integers, then the quotient is a 3-manifold, with an interesting geometry.

<ロ> <同> <同> < 同> < 同>

<ロ> <同> <同> < 同> < 同>