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Quick review of the definition of a manifold

Basic objects of study in this talk are known as ‘manifolds’. Before
giving a formal definition of a manifold, let us first see a few
examples:

Circle S1 Real line R

Sphere S2 Torus T 2
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An immediate observation looking at the above examples is that in
the 1-dimensional examples, each point p ∈ M has a
neighbourhood in M that is homeomorphic to an open interval.

And, in the 2-dimensional examples, each point p ∈ M has a
neighbourhood in M that is homeomorphic to an open disc.

More precisely, following is a formal definition of an n-dimensional
manifold.
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Definition: An n-dimensional manifold, n ∈ N, is a set M together
with a family {(ϕα,Uα)} of 1-1 maps ϕα : Uα → M of open balls
Uα in Rn into M, called coordinate charts, such that

1
⋃
α ϕα(Uα) = M

2 For each pair of indices α, β with
ϕα(Uα) ∩ ϕβ(Uβ) = W (6= ∅), the sets ϕ−1α (W ) and ϕ−1β (W )

are open in Rn and the maps ϕ−1β ◦ ϕα and ϕ−1α ◦ ϕβ, called
transition maps, are continuous.

3 The family {(ϕα,Uα)} is maximal with respect to conditions
(1) and (2).
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Clearly, Condition (1) is a formal statement of our observation
above that around each point p ∈ M there exists a neighbourhood
‘homemorphic’ to an open ball in Rn.

The figure below explains Condition (2).
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Condition (3) is a technical one needed for completeness of the
collection {(ϕα,Uα)} in conformity with the conditions (1) and (2)

Thankfully, any family {(ϕα,Uα)} satisfying conditions (1) and (2)
can always be extended to a maximal one and so we need not
bother much about condition (3).

If, in addition, the transition maps are differentiable then it is
called a differentiable structure.

A set M together with a differentiable structure is simply called a
differentiable manifold.

If the transition maps are differentiable of any order then M is
called a smooth manifold.
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In a natural way, a manifold structure on a set M induces a
topology on M as follows:

A subset A of M is said to be open if ϕ−1α (A) ∩ Uα is open in Rn

for every α.

With respect to this topology, each of the subsets ϕα(Uα) of M
turns out to be open and each ϕα turns out to be a
homeomorphism.

Remark 1: In general, the induced topology on a manifold need
not be ‘nice’; for instance, it need not be Hausdorff or second
countable but one can ensure these properties by introducing the
following two additional conditions in the definition:

(4) If p, q ∈ M, with p 6= q, then either p and q are in a single
ϕα(Uα) or there are indices α, β such that p ∈ ϕα(Uα),
q ∈ ϕβ(Uβ), with ϕα(Uα) and ϕβ(Uβ) disjoint.

(5) There are countably many ϕα(Uα) that cover M.
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We shall only consider manifolds which are Hausdorff and second
countable. With these hypotheses, it turns out that a manifold can
also be embedded as a submanifold of RN for some large N ∈ N.

Remark 2: When the dimension of the manifold is 1, 2 or 3, it is
known that two smooth compact manifolds are homeomorphic if
and only if they are diffeomorphic; while this is not hard to prove
for n = 1, for dimensions 2 and, specially 3, it involves technically
more subtle and elaborate arguments.

Let us see a couple of more pictures of examples of manifolds.

T 2 T 2 T 2#T 2
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The space obtained by identifying every pair of diametrically
opposite points of the sphere S2 is called a Real projective plane; it
can be visualised as follows:
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Smooth functions, tangent vectors and tensor fields

In an informal sense, a manifold locally resembles an euclidean
space. And, a smooth manifold is one on which this resemblance is
sharp enough to permit essential features of differential calculus.

In particular, one can talk about smooth real-valued functions on a
smooth manifold. And also about smooth maps between smooth
manifolds.

A function f : M → R is said to be differentiable at a point p ∈ M
if for a coordinate neighbourhood φα(Uα) in M that contains the
point p, the function f ◦ φα from Uα to R is smooth at the point
φ−1α (p) ∈ Uα ⊂ Rn. A differentiable map between differentiable
manifolds is defined similarly by invoking local charts.

The condition 2 in the definition then assures that smoothness of f
at p is well-defined.
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The function f is smooth on M if it is so at each point p in M.

Among smooth functions on a manifold M, those that have
compact supports play an important role.

Though a bit involved, it is not hard to construct smooth functions
that are compactly supported.

In particular, the following lemma holds.

Lemma: Given any neighbourhood U of a point p in M there is a
function f ∈ C∞(M), called a bump function at p, such that

1 0 ≤ f ≤ 1 on M.

2 f = 1 on some neighbourhood of p.

3 supp f ⊂ U.
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Two smooth functions on the manifold M can be added or
multiplied by adding or multiplying their values.

It is not hard to see that these operations define the structure of
an R−algebra on the set C∞(M) of all real-valued smooth
functions on M.

If p is a point of M, a tangent vector to M at p is a real-valued
function v : C∞(M)→ R that satisfies
v(af + bg) = av(f ) + bv(g) and v(fg) = v(f )g(p) + f (p)v(g)
where a, b ∈ R and f , g ∈ C∞(M)

It turns out that the set TM = ∪p∈MTpM of all tangent vectors at
all points of M, called the tangent bundle of M, is also a smooth
manifold of dimension 2n and the projection π : TM → M that
sends a tangent vector to its foot-point is a smooth map.
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sends a tangent vector to its foot-point is a smooth map.
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A smooth map V : M → TM such that π ◦ V (p) = p for all
p ∈ M is called a smooth vector field on M.

A smooth vector field V on M can also be thought of as a
function from C∞(M) to itself defined by V (f )(p) = Vp(f ); and,
oftentimes, it is best to think of a vector field this way, that is, as
a derivation of the space C∞(M) to itself.

The set X (M) of all smooth vector fields on M is a module over
C∞(M).

Let X ∗(M) denote the dual module of X (M). The elements of
X ∗(M) are called one-forms.
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A tensor field A of type (r , s) on M is a C∞(M)-multilinear
function A : X ∗(M)r ×X (M)s → C∞(M)

A fundamental property of a tensor field, called tensoriality, is the
following:

If A is a tensor field of type (r , s), θ1, . . . , θr ∈ X ∗(M) and
V1, . . . ,Vs ∈ X (M), then the number A(θ1, . . . , θr ,V1, . . . ,Vs)(p)
depends only on the values of θ1, . . . , θr and V1, . . . ,Vs at the
point p and not on their values elsewhere.

A differential k-form on M is a tensor field of type (0, k) in which
interchange of any two consecutive variables results in a change of
sign.

On an n-dimensional smooth manifold, any differential k-form, for
k > n is zero.
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Rule of differentiation or the Connection

We have seen that on a manifold M, in general, apart from the
notion of smooth functions, one also has the notion of tensor fields
(functions are tensor fields of type (0, 0)). Just as one has vector
derivatives of functions, one can differentiate tensor fields of type
(0, s) in the direction of a tangent vector v .

Globally, one has the notion of differentiating a tensor field A of
type (0, s) along a vector field V which, at each point p ∈ M, is
the same as the differentiating A along the tangent vector V (p).

Let us first see the notion of differentiating a vector field W
(which is a tensor field of type (0, 1)) along a vector field V .
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Such a notion is called a Connection which is a rule that satisfies
properties similar to ordinary differentiation of functions.

In particular, it is described as a function
D : X (M)×X (M)→ X (M) such that for any vector fields
X ,V ,W ∈ X (M) and any function f ∈ C∞(M), one has

1 DVW is C∞(M)-linear in V

2 DVW is R-linear in W

3 DV (fW ) = (Vf )W + fDVW
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There is also a notion of taking mixed partial derivatives, that is,
taking successive partial derivatives with respect the same or
different variables. In terms of vector fields, it means the following.

Recall that a vector field is a derivation on C∞(M) to itself. So,
one can take compositions of vector fields (just as the usual
composition of functions); and, composing two vector fields is
similar to taking mixed partial derivatives.

And, composing two vector fields involves the underlying
differential structure. Alluding to its relation to taking mixed
partial derivatives, does the order in which composition of two
vector fields is taken matter? How does it relate to a given
connection (or the rule of differentiation)?

We say that a connection is compatible with the underlying
differential structure if

DVW − DWV = [V ,W ], where [V ,W ] = VW −WV

C S Aravinda TIFR Centre for Applicable Mathematics Manifolds and Geometry: A quick warm-up



Talk at the Kasar Jungle Resort

There is also a notion of taking mixed partial derivatives, that is,
taking successive partial derivatives with respect the same or
different variables. In terms of vector fields, it means the following.

Recall that a vector field is a derivation on C∞(M) to itself. So,
one can take compositions of vector fields (just as the usual
composition of functions); and, composing two vector fields is
similar to taking mixed partial derivatives.

And, composing two vector fields involves the underlying
differential structure. Alluding to its relation to taking mixed
partial derivatives, does the order in which composition of two
vector fields is taken matter? How does it relate to a given
connection (or the rule of differentiation)?

We say that a connection is compatible with the underlying
differential structure if

DVW − DWV = [V ,W ], where [V ,W ] = VW −WV

C S Aravinda TIFR Centre for Applicable Mathematics Manifolds and Geometry: A quick warm-up



Talk at the Kasar Jungle Resort

There is also a notion of taking mixed partial derivatives, that is,
taking successive partial derivatives with respect the same or
different variables. In terms of vector fields, it means the following.

Recall that a vector field is a derivation on C∞(M) to itself. So,
one can take compositions of vector fields (just as the usual
composition of functions); and, composing two vector fields is
similar to taking mixed partial derivatives.

And, composing two vector fields involves the underlying
differential structure. Alluding to its relation to taking mixed
partial derivatives, does the order in which composition of two
vector fields is taken matter? How does it relate to a given
connection (or the rule of differentiation)?

We say that a connection is compatible with the underlying
differential structure if

DVW − DWV = [V ,W ], where [V ,W ] = VW −WV

C S Aravinda TIFR Centre for Applicable Mathematics Manifolds and Geometry: A quick warm-up



Talk at the Kasar Jungle Resort

There is also a notion of taking mixed partial derivatives, that is,
taking successive partial derivatives with respect the same or
different variables. In terms of vector fields, it means the following.

Recall that a vector field is a derivation on C∞(M) to itself. So,
one can take compositions of vector fields (just as the usual
composition of functions); and, composing two vector fields is
similar to taking mixed partial derivatives.

And, composing two vector fields involves the underlying
differential structure. Alluding to its relation to taking mixed
partial derivatives, does the order in which composition of two
vector fields is taken matter? How does it relate to a given
connection (or the rule of differentiation)?

We say that a connection is compatible with the underlying
differential structure if

DVW − DWV = [V ,W ], where [V ,W ] = VW −WV

C S Aravinda TIFR Centre for Applicable Mathematics Manifolds and Geometry: A quick warm-up



Talk at the Kasar Jungle Resort

Riemannian manifolds and the Levi-Civita Connection

The starting point for Riemannian geometry is the prescription of a
Riemannian metric (or a metric tensor) g on M which is a
symmetric, positive definite tensor field on M of type (0, 2).

In particular, at each point p ∈ M, it prescribes a real inner
product on the tangent space TpM.

On a coordinate neighbourhood, it is described by functions
gij = g( ∂

∂x i
, ∂
∂x j

) with 1 ≤ i , j ≤ n.

Further, positive definiteness of g implies that at each point p of
U, the matrix (gij(p)) is invertible; its inverse matrix is denoted by
(g ij(p)).

C S Aravinda TIFR Centre for Applicable Mathematics Manifolds and Geometry: A quick warm-up



Talk at the Kasar Jungle Resort

Riemannian manifolds and the Levi-Civita Connection

The starting point for Riemannian geometry is the prescription of a
Riemannian metric (or a metric tensor) g on M which is a
symmetric, positive definite tensor field on M of type (0, 2).

In particular, at each point p ∈ M, it prescribes a real inner
product on the tangent space TpM.

On a coordinate neighbourhood, it is described by functions
gij = g( ∂

∂x i
, ∂
∂x j

) with 1 ≤ i , j ≤ n.

Further, positive definiteness of g implies that at each point p of
U, the matrix (gij(p)) is invertible; its inverse matrix is denoted by
(g ij(p)).

C S Aravinda TIFR Centre for Applicable Mathematics Manifolds and Geometry: A quick warm-up



Talk at the Kasar Jungle Resort

Riemannian manifolds and the Levi-Civita Connection

The starting point for Riemannian geometry is the prescription of a
Riemannian metric (or a metric tensor) g on M which is a
symmetric, positive definite tensor field on M of type (0, 2).

In particular, at each point p ∈ M, it prescribes a real inner
product on the tangent space TpM.

On a coordinate neighbourhood, it is described by functions
gij = g( ∂

∂x i
, ∂
∂x j

) with 1 ≤ i , j ≤ n.

Further, positive definiteness of g implies that at each point p of
U, the matrix (gij(p)) is invertible; its inverse matrix is denoted by
(g ij(p)).

C S Aravinda TIFR Centre for Applicable Mathematics Manifolds and Geometry: A quick warm-up



Talk at the Kasar Jungle Resort

Riemannian manifolds and the Levi-Civita Connection

The starting point for Riemannian geometry is the prescription of a
Riemannian metric (or a metric tensor) g on M which is a
symmetric, positive definite tensor field on M of type (0, 2).

In particular, at each point p ∈ M, it prescribes a real inner
product on the tangent space TpM.

On a coordinate neighbourhood, it is described by functions
gij = g( ∂

∂x i
, ∂
∂x j

) with 1 ≤ i , j ≤ n.

Further, positive definiteness of g implies that at each point p of
U, the matrix (gij(p)) is invertible; its inverse matrix is denoted by
(g ij(p)).

C S Aravinda TIFR Centre for Applicable Mathematics Manifolds and Geometry: A quick warm-up



Talk at the Kasar Jungle Resort

It is a fundamental result in Riemannian geometry that there is a
unique rule of covariant differentiation D on M, given by the more
commonly known Riemannian connection or the Levi-Civita
connection, which is compatible with the Riemannian metric.

Compatibility with the Riemannian metric means that, apart from
the conditions that the rule D must satisfy, it should also satisfy

X 〈V ,W 〉 = 〈DXV ,W 〉+ 〈V ,DXW 〉

Uniqueness of the Riemannian connection can be seen from the
fact that D can be characterised by the formula

2〈DVW ,X 〉 = V 〈W ,X 〉+ W 〈X ,V 〉 − X 〈V ,W 〉 − 〈V , [W ,X ]〉
+〈W , [X ,V ]〉+ 〈X , [V ,W ]〉
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One of the most important geometric invariants of a Riemannian
manifold is the Riemann curvature tensor which is a (1, 3)-tensor
field R : X (M)3 → X (M) defined by

R(X ,Y )Z = DXDYZ − DYDXZ − D[X ,Y ]Z .

To check that this is a tensor field is left as an easy exercise.

Equivalently, the Riemann curvature tensor can also be regarded as
a (0, 4)-tensor field taking X ,Y ,Z ,W ∈ X (M) to
〈R(X ,Y )Z ,W )〉.

Given a 2-dimensional subspace P of TpM and an orthonormal
basis {v ,w} for P, the sectional curvature κ(P) of the plane P at
a point p ∈ M is given by

κ(P) = 〈R(v ,w)w , v〉 = 〈R(V ,W )W ,V 〉(p)

where V ,W ∈ X (M) such that V (p) = v and W (p) = w .
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To check that this is a tensor field is left as an easy exercise.

Equivalently, the Riemann curvature tensor can also be regarded as
a (0, 4)-tensor field taking X ,Y ,Z ,W ∈ X (M) to
〈R(X ,Y )Z ,W )〉.

Given a 2-dimensional subspace P of TpM and an orthonormal
basis {v ,w} for P, the sectional curvature κ(P) of the plane P at
a point p ∈ M is given by

κ(P) = 〈R(v ,w)w , v〉 = 〈R(V ,W )W ,V 〉(p)

where V ,W ∈ X (M) such that V (p) = v and W (p) = w .
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Sectional curvature has a very strong influence on the underlying
topology of the manifold. The following theorem due to Hopf and
Cartan illustrates such an influence quite effectively.

Let M̃ be a complete, simply connected Riemannian manifold with
constant sectional curvature K . Then M̃ is isometric to one of the
model spaces Rn, Sn or Hn with constant sectional curvature K .
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