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Problem Specification

Suppose we are given a continuum of option prices of different
maturities at the same strike.

Assuming zero cost of carry for the underlying and for the options, no
arbitrage implies that the option prices must be (weakly) above
intrinsic value and (weakly) increasing in time to maturity.

For the rest of this talk, we will favor puts over calls and we will
consider an underlying whose price is real-valued rather than
non-negative (eg temperatures, spreads).

So suppose we are given a continuum of put prices on a real-valued
underlying. Can we convert this information into a curve that is
unconstrained eg allowed to be constant?
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Forward Implied Bachelier Volatilities

The time-dependent Bachelier model assumes that the risk-neutral
process for the underlying forward price F is Gaussian with
time-dependent volatility viz:

dFt = a(t)dWt, t ≥ 0.

For each T > 0, there is a closed form formula relating the put price
P (T ) to the (deterministic) quadratic variation 〈F 〉t ≡

∫ T
0 a2(t)dt.

As a result, one can (numerically) convert the given curve of
arbitrage-free put prices {P (T ), T > 0} into a term structure
{a(t), t ≥ 0} of forward implied Bachelier volatilities.

Conversely, if one starts with any term structure of forward implied
Bachelier volatilities {a(t), t ≥ 0}, one can convert into an
arbitrage-free curve of put prices {P (T ), T > 0}.
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Problem Specification

Now suppose instead that we are given a continuum of put prices of
different strikes at one maturity.

No arbitrage implies that the put prices must be above intrinsic value,
increasing in strike price, and convex in strike price.

One can convert the given curve of arbitrage-free put prices into a
smile of implied Bachelier volatilities.

The converse does not hold. If one starts with any smile, and uses the
Bachelier valuation formula to convert to put prices, the resulting
curve is not necessarily arbitrage-free.

If the underlying has non-negative price, the same issues arise if we
use Black in place of Bachelier.
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Single Maturity Setting

To summarize thus far, a term structure of arbitrage-free put prices is
one-to-one with a term structure of forward implied Bachelier
volatilities. A strike structure of arbitrage-free put prices can be
converted into a strike structure of implied Bachelier volatilities, but
not conversely.

For some underlyings eg. commodity futures, the market provides
simultaneous option quotes at several strikes, but only one maturity
date.

If we pretend that we are given a continuum of co-terminal option
prices that are arbitrage-free, we may ask if there exists a one-to-one
transformation which need only be real-valued.

Schweitzer and Wissel (F&S 2008) answer in the affirmative with a
concept they call strike vol.

This talk proposes a simpler alternative which we call money vol.
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Definition of Optionality

Before we can define money vol, we first need to define a concept
called Optionality.

Assume no arbitrage and hence the existence of a forward probability
measure QT.

Let Ft be the forward price at time t ∈ [0, T ] with maturity date T .

Let P (K) and C(K) respectively denote the initial forward prices of
European options maturing at T and paying off (K − FT )+ and
(FT −K)+ respectively.

Optionality at strike K ∈ R for fixed maturity date T is defined as:
O(K) ≡ QT{FT ≤ K}C(K) + QT{FT > K}P (K).
In words, Optionality at strike K ∈ R is a convex combination of the
forward prices of the put and call at that strike. Each option’s forward
price is weighted by its (risk-neutral) probability of finishing out of the
money (OTM). For K 6= F0, the higher priced option gets the lower
weight and vice versa.

Carr (MS/NYU) Optionality & Volatility November 3, 2011 7 / 34



Optionality from Option Prices

Recall that Optionality at strike K ∈ R is defined as the following
convex combination of the forward prices of put and call at that strike:

O(K) ≡ QT{FT ≤ K}C(K) + QT{FT > K}P (K).

If (forward) option prices are differentiable in their strike K, then the
strike derivatives of these prices reveal the risk-neutral probabilities:

P ′(K) = QT{FT ≤ K} and − C ′(K) = QT{FT > K}.

As a result, Optionality at strike K ∈ R is observed from the level
and slope information in put and call prices:

O(K) = P ′(K)C(K)− C ′(K)P (K).

Hence, if option prices are arbitrage-free, then Optionality is
non-negative.
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Optionality as a Wronskian

Recall that Optionality at strike K ∈ R is observed from the level and
slope information in put and call prices:

O(K) = P ′(K)C(K)− C ′(K)P (K).

If we form a 2x2 matrix with option prices and their strike derivatives,
then Optionality is the determinant of this matrix:

O(K) = det

(
C(K) P (K)
C ′(K) P ′(K)

)
.

This determinant is called the Wronskian of the put and call prices.
We later develop a 2nd order ODE which option prices solve. The
positivity of the Wronskian guarantees that the put and call are two
linearly independent solutions.
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Single Polarity Representation of Optionality

Recall that Optionality is a Wronskian of put and call prices:

O(K) = P ′(K)C(K)− C ′(K)P (K).

Suppose we use Put Call Parity to eliminate the calls:

C(K) = F0 −K + P (K) so C ′(K) = −1 + P ′(K).

Then Optionality is the following functional of put prices:

O(K) = P (K)− (K − F0)P ′(K).

Suppose we had instead used Put Call Parity to eliminate the puts:

P (K) = K − F0 + C(K) so P ′(K) = 1 + C ′(K).

Then optionality is the following functional of call prices:

O(K) = C(K)− (K − F0)C ′(K).

Hence, Optionality is the same price functional for puts and calls.
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Optionality and Time Value

Recall the single polarity representations of Optionality:

O(K) = C(K)− (K − F0)C ′(K).

O(K) = P (K)− (K − F0)P ′(K).

When K = F0, we see that ATM calls and puts have the same value.
This common value is both Optionality and time value.

Differentiating Optionality w.r.t. K implies O′(K) = (F0 −K)q(K)
where q(K) ≡ C ′′(K) = P ′′(K) is the risk-neutral PDF of terminal
price. Since q(K) ≥ 0, Optionality is decreasing for K > F0 and
increasing for K < F0.

Since Optionality is non-negative, the Optionality profile is that of a
bell-shaped curve. The area under this curve is positive and finite, but
not necessarily one.

In models where option price is a twice differentiable function of strike
price, Optionality is a differentiable function of strike price.
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From Optionality to Option Prices

Recall again the single polarity representations of Optionality:

O(K) = C(K)− (K − F0)C ′(K).

O(K) = P (K)− (K − F0)P ′(K).

Suppose C(K) and P (K) are unknown and that O(K) ≥ 0 is given.
To obtain call prices across strikes, we can solve the first order ODE
subject to the condition that lim

K↑∞
C(K) = 0. The solution is:

C(K) = (K − F0)
∫ ∞

K

O(J)
(J − F0)2

dJ.

To obtain put prices across strikes, we can solve the first order ODE
subject to the condition that lim

K↓−∞
P (K) = 0. The solution is:

P (K) = (F0 −K)
∫ K

−∞

O(J)
(J − F0)2

dJ.

We now explore alternative interpretations of Optionality.
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Optionality as Truncated Forward Price

Recall the representation of Optionality in terms of call price:

O(K) = C(K)− (K − F0)C ′(K).

The RHS is the risk-neutral exp’d value of a truncated forward payoff:

EQT [(FT−K)++(K−F0)1(FT > K)] = EQT [(FT−F0)1(FT > K)].

Since: lim
K↓−∞

EQT (FT − F0)1(FT > K) = 0, it is no surprise that

Optionality is non-negative.

As K increases from negative infinity towards F0, negative outcomes
are taken away from the calculation and so Optionality increases.

When K passes F0 positive outcomes are taken away from the
calculation and so Optionality decreases. As K ↑ ∞, all outcomes are
taken away from the calculation and so Optionality approaches zero.

As a result, Optionality is non-negative and the optionality profile is
that of a bell shaped curve.
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Optionality as Profit from a Partial Buy-Write

A buy-write is defined as the sale of a call combined with a purchase
of one unit of the underlying asset.

If an investor sells a call and buys −C ′(K) ∈ (0, 1) shares instead, we
term it a “partial buy-write”.

The terminal P&L if the position is held static to maturity is:

P&LT (FT ) = C(K)− (FT −K)+ + C ′
0(K)(FT − F0).

If FT = K, then the terminal P&L simplifies to:

P&LT (K) = C(K)− C ′
0(K)(K − F0) = O(K).

As a result, Optionality is just the profit from a partial buy write
when the underling finishes at-the-money. This profit is non-negative
for every strike price.
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Optionality as the Far Convexity Part of ATM Value

The Optionality at K 6= F0 can be interpreted as the part of the
ATM Value due to the convexity of option prices in K for all strikes
more distant from F0 than K.
For example, for K > F0, Taylor expanding C(K) about K > F0

expresses the ATM value C(F0) as:

C(F0) = C(K) + C ′(K)(F0 −K) +
∫ K

−∞
C ′′(L)(L− F0)+dL.

The first two terms on the RHS are just the Optionality at K, so:

O(K) = C(F0)−
∫ K

F0

C ′′(L)(L− F0)dL.

Since lim
K↑∞

C(K) = lim
K↑∞

C ′(K) = 0, C(F0) =
∫∞
F0

C ′′(L)(L− F0)dL.

Thus, Optionality is just the far convexity contribution to ATM Value:

O(K) =
∫ ∞

K
C ′′(L)(L− F0)dL, K > F0.
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Optionality as Covariance of F with Call’s Exercise Prob.

Let BC(K) ≡ −C ′(K) be the call’s risk-neutral exercise probability.

The value of the forward contract F −K and the binary call’s price
BC(K) are both martingales under forward measure QT . Their
bracket process is the stochastic process that must be subtracted
from their product to produce a martingale. The martingale so
produced has terminal payoff (FT −K)+ − [F −K, BC(K)]T and
initial value (F0 −K)BC0(K).
Using the martingale property implies that Optionality is just the
risk-neutral covariance of F with the call’s exercise probability:

O(K) = C0(K)− (F0 −K)BC0(K) = EQT
0 [F,BC(K)]T .

While it is possible for the call’s exercise probability to occasionally
fall as the forward price rises, no arbitrage implies that the mean
covariation has to be positive.
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Optionality as Expected Rebalancing Cost

We now suppose that the risk-neutral process for the underlying
forward price has translation invariance. In words, option prices
depend only on F and K through F −K. Hence, the martingale
describing the binary call’s value also describes the call’s delta:

BCt(K) = ∂F Ct(K), t ∈ [0, T ]

Recall that Optionality is just the risk-neutral covariance of F with
the call’s exercise probability:

O(K) = C0(K)− (F0 −K)BC0(K) = EQT
0 [F,BC(K)]T .

It follows that Optionality is also the risk-neutral mean of the
covariation of F with the call’s delta:

O(K) = C0(K)− (F0 −K)∂F C0(K) = EQT
0 [F, ∂F C(K)]T .

This expectation is exactly the expected cost of rebalancing a
delta-hedge. It is sometimes mistaken for either option premium
C0(K) or time value C0(K)− (F0 −K)+.
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Optionality as the Mean of Gamma Trading Profit

Still assuming that F has translation invariance, Optionality is still
the expected cost of rebalancing a delta-hedge:

O(K) = EQT
0 [F, ∂F C(K)]T .

We now further assume that F is standard Brownian motion (SBM)
running on an independent and continuous stochastic clock:

dFt = atdWt, dat = b(at, t)dt + ω(at, t)dZt,

where W and Z are independent standard Brownian motions.

Hence the covariation of F with the call’s delta ∂F C(K) simplifies to
the mean of the call’s gamma trading profit:

O(K) = EQT
0

∫ T

0
∂2

F Ct(K)d〈F 〉t, t ∈ [0, T ].
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Optionality as the Mean of Sifted Quadratic Variation

Still assuming that F is SBM running on an independent and
continuous stochastic clock, Optionality is still the risk-neutral mean
of the call’s gamma trading profit:

O(K) = EQT
0

∫ T

0
∂2

F Ct(K)d〈F 〉t, t ∈ [0, T ].

Under these assumptions, the call’s gamma ∂2
F C(K) is a continuous

QT martingale, which is just the conditional expected value of its
terminal payoff, i.e.:

∂2
F Ct(K) = EQT

t δ(FT −K), t ∈ [0, T ].

The law of iterated expectations implies that Optionality is just the
risk-neutral mean of sifted Quadratic Variation:

O(K) = EQT
0 [δ(FT −K)〈F 〉T ].
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Optionality vs. Time Value for Time Changed SBM

When F is independently time-changed SBM:

dFt = atdWt, dat = b(at, t)dt + ω(at, t)dZt, d〈W,Z〉t = 0,

Optionality is just the risk-neutral mean of sifted Quadratic Variation:

O(K) = EQT
0 [δ(FT −K)〈F 〉T ] = EQT

0

[
δ(FT −K)

∫ T

0
d〈F 〉T

]
.

In contrast, doubling time value permutes sifting and integrating:

2T V(K) ≡ 2[P (K)− (K − F0)+] = EQT
0

[∫ T

0
δ(Ft −K)d〈F 〉t

]
.
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Local Variance Rate

The last result holds if F is a continuous martingale:

2T V(K, T ) ≡ 2[P (K, T )−(K−F0)+] = EQT
0

[∫ T

0
δ(Ft −K)d〈F 〉t

]
.

Differentiating w.r.t. T implies that:

2∂TT V(K, T ) = 2∂T P (K, T ) = EQT
0

[
δ(FT −K)

d〈F 〉T
dT

]
.

Dupire (94/96) defines the local variance rate `2(K, T ) by dividing
twice the calendar spread by the transition probability: `2(K, T ) ≡

2
∂T P (K, T )

∂KKP (K, T )
= EQT

0

[
d〈F 〉T

dT
|FT = K

]
=

EQT
0

[
δ(FT −K)d〈F 〉T

dT

]
EQT

0 [δ(FT −K)]
.
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Money Variance Rate

Recall that the local variance rate `2(K, T ) ≡

2
∂T P (K, T )

∂KKP (K, T )
= EQT

0

[
d〈F 〉T

dT
|FT = K

]
=

EQT
0

[
δ(FT −K)d〈F 〉T

dT

]
EQT

0 [δ(FT −K)]
.

Also recall that when F is an independently time-changed SBM:

O(K) = P (K)− (K − F0)P ′(K) = EQT
0 [δ(FT −K)〈F 〉T ].

Suppose Optionality is divided by the transition probability and T :

O(K)
q(K)T

= EQT

[
〈F 〉T

T

∣∣∣∣FT = K

]
=

EQT
0 [δ(FT −K)〈F 〉T ]

EQT
0 [δ(FT −K)T ]

.

Whether F is an independently time changed SBM or not, we define
the LHS for each fixed T > 0 as the “money variance rate” curve:

m2(K) ≡ O(K)
q(K)T

=
P (K)− (K − F0)P ′(K)

P ′′(K)T
, K ∈ R.

If a given {P (K),K ∈ R} is arb-free, then {m2(K),K ∈ R} ≥ 0.
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Money Vol

Recall how we defined the “money variance rate” curve:

m2(K) ≡ P (K)− (K − F0)P ′(K)
P ′′(K)T

, K ∈ R.

When F is independently time-changed SBM:

dFt = atdWt, dat = b(at, t)dt + ω(at, t)dZt, d〈W,Z〉t = 0,

the money variance rate at strike K is the average of squared price
changes over all paths that finish at-the-money.

m2(K) = EQT
0

[
〈F 〉T

T

∣∣∣∣FT = K

]
.

The money vol at K is just the square root of the money variance
rate at K:

m(K) =

√
EQT

0

[
〈F 〉T

T

∣∣∣∣FT = K

]
.
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Linear Second Order ODE for Put Prices

Suppose we are given a money vol curve {m(K),K ∈ R}.
Recall the relation between the money variance rate and put prices:

m2(K) =
P (K)− (K − F0)P ′(K)

P ′′(K)T
, K ∈ R.

It follows that put prices solve a linear second order ODE:

m2(K)TP ′′(K) + (K − F0)P ′(K)− P (K) = 0, K ∈ R,

subject to boundary cdns lim
K↓−∞

P (K) = 0 and lim
K↑∞

P (K) ∼ K − F0.

We now solve for the put price curve and show that it is arbitrage-free.
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Factorizing the 2nd Order Differential Operator

Let GK be a linear second order differential operator:

GK ≡ m2(K)TDKK + (K − F0)DK − I.

The last slide showed that this operator annihilates put prices:

GKP (K) = 0, K ∈ R.

For K 6= F0, you can check that GK factorizes as:

GK =
[
m2(K)T
F0 −K

DK − I
] [
I − (K − F0)DK

]
.

When the inner operator acts on P (K), it produces Optionality
O(K). It follows that O(K) solves a simple 1st order linear ODE:

O′(K) +
K − F0

m2(K)T
O(K) = 0, K ∈ R.
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Formula for Optionality and PDF

The solution to the first order ODE for Optionality is:

O(K) = p× e
−

R K
−∞

I−F0
m2(I)T

dI
,

where p is a positive constant.

The money vol definition implies that the PDF q(K) is related to the
Optionality curve via:

q(K) =
O(K)

m2(K)T
=

p× e
−

R K
−∞

I−F0
m2(I)T

dI

m2(K)T
.

The positive constant is determined by requiring that the PDF
integrates to one:

q(K) =
e
−

R K
−∞

I−F0
m2(I)T

dI
/(m2(K)T )∫∞

−∞ e
−

R J
−∞

I−F0
m2(I)T

dI
/(m2(J)T )dJ

.
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Put Option Pricing Formula

The last slide shows that the PDF is given in closed form by:

q(K) =
e
−

R K
−∞

I−F0
m2(I)T

dI
/(m2(K)T )∫∞

−∞ e
−

R J
−∞

I−F0
m2(I)T

dI
/(m2(J)T )dJ

.

Recall that put prices solve a linear 2nd order ODE:

m2(K)TP ′′(K) + (K − F0)P ′(K)− P (K) = 0, K ∈ R,

Since P ′′(K) = q(K), put prices are given in closed form by:

P (K) = (K − F0)
∫ K

−∞
q(J)dJ + m2(K)Tq(K), K ∈ R.
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Boundary Conditions for Call and Put

One can check that the put pricing formula on the last slide satisfies
the boundary conditions lim

K↓−∞
P (K) = 0 and lim

K↑∞
P (K) ∼ K − F0.

Call prices solve the same ODE, but have complementary boundary
conditions lim

K↓−∞
C(K) ∼ F0 −K and lim

K↑∞
C(K) = 0. The solution

is determined by put call parity and the put formula on the last slide.

We conclude that put and call prices can each be analytically
expressed in terms of a given money vol curve.

However, the fastest way to numerically determine an option price
curve is to approximate the ODE using finite differences and solve an
initial value problem. The closed form formula can be used to
generate the initial value and slope. This finite difference scheme will
actually be faster than converting implied volatilities to option prices.
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Arbitrage-free Option Prices

Recall that put and call prices each solve a linear 2nd order ODE:

Tm2(K)V ′′(K) + (K − F0)V ′(K)− V (K) = 0, K ∈ R,

More generally, for T > 0, linear 2nd order ODE’s of the form:

Tm2(K)V ′′(K) + c(K)V ′(K)− V (K) = 0, K ∈ R,

are said to be “of positive type” by Birkhoff and Kotin (1967).

These ODE’s have a positive solution. Moreover, so long as a certain
integral diverges, they also have one increasing and one decreasing
solution.

In our special case, the put is an increasing solution and the call is a
decreasing solution. Our specialization also has the property that the
2nd derivative of both solutions has the same sign as the Wronskian
(or Optionality) of these two linearly independent solutions.

Since Optionality is non-negative, option prices are arbitrage-free
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Generalized Bachelier Formula for Option Prices

If the money vol curve m(K) is constant at a, then the formula for
q(K) reduces to a normal PDF with mean F0 and variance a2T .

Analogously, the put option pricing formula:

P (K) = (K − F0)
∫ K

−∞
q(J)dJ + m2(K)Tq(K), K ∈ R,

then reduces to the Bachelier put formula.

As a result, we refer to the option pricing formulae as generalized
Bachelier formulae, when the money vol curve {m(K),K ∈ R} is not
constant.

Carr (MS/NYU) Optionality & Volatility November 3, 2011 30 / 34



Consistent Dynamics for the Underlying Forward Price

Having converted the money vol curve into an arbitrage-free option
price curve at one maturity, one naturally wonders whether one can
construct continuous time dynamics for the underlying forward price
which are consistent with these curves.

It is a numerically difficult problem to find a time homogeneous local
vol function which meets a given arbitrage-free set of options prices
across strikes.

However, the problem of finding consistent dynamics is just the
Skorohod stopping problem. As the underlying is a martingale, we
just need to find a stopping time for SBM such that option prices can
be represented as a solution to a 2nd order ODE.
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Madan Yor Brownian Scaling Solution

Fortunately, Madan and Yor (2002) have shown that a consistent
SDE for the underlying forward price is:

dFt = b

(
Ft − F0√

t

)
dWt, t ∈ [0, T ],

where b(z) ≡ m(K), z ≡ K−F0√
T

is the money vol considered as a

function of the moneyness measure z.

These dynamics can be used to generate option prices at other
maturities, to generate greeks, and to value exotics.

An interesting open problem is whether consistent jump dynamics can
also be found (LVG won’t work).
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Optionality and Volatility

In a setting where option prices across strikes are given at a single
maturity, we developed a natural concept called Optionality and gave
it several interpretations.

When optionality is normalized by the PDF and time to maturity, we
obtained a second new concept called the “money variance rate”. We
showed that the money variance rate is non-negative if and only if
option prices at one maturity are arbitrage-free.

The approach is much simpler than one recently proposed in
Schweizer and Wissel (2008).

Future research can explore whether this approach can be extended
when arbitrage-free option prices are given at two or more maturities.

Alternatively, one can explore imposing dynamics on the money vol
curve, as is commonly done for local and implied volatilities.
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