ICTS Summer School on Numerical Relativity 2013 - Mathematical formulation Tutorial \# 4

4.1 (a) Show that

$$
\begin{equation*}
\Gamma_{j k}^{i}=\bar{\Gamma}_{j k}^{i}+2\left(\delta^{i}{ }_{j} \partial_{k} \ln \psi+\delta_{k}^{i} \partial_{j} \ln \psi-\bar{\gamma}_{j k} \bar{\gamma}^{i l} \partial_{l} \ln \psi\right), \tag{1}
\end{equation*}
$$

where the $\bar{\Gamma}_{j k}^{i}$ are the connection symbols associated with the conformally related metric $\bar{\gamma}_{i j}=\psi^{-4} \gamma_{i j}$.
(b) (Optional) Derive the transformation rules for $R_{i j}$ and R that we quoted in class.
4.2 Consider a traceless tensor $T^{i j}$ and a conformal rescaling

$$
\begin{equation*}
T^{i j}=\psi^{\alpha} \bar{T}^{i j} \tag{2}
\end{equation*}
$$

Show that the divergence of $T^{i j}$ then transforms according to

$$
\begin{equation*}
D_{j} T^{i j}=\psi^{-10} \bar{D}_{j}\left(\psi^{10+\alpha} \bar{T}^{i j}\right) \tag{3}
\end{equation*}
$$

This motivates our choice of $\alpha=-10$ for the rescaling of the traceless part of the extrinsic curvature, $A^{i j}$.
4.3 (a) Show that, for conformal flatness, maximal slicing and vacuum, the momentum constraint reduces to

$$
\begin{equation*}
\partial^{j} \partial_{j} W_{i}+\frac{1}{3} \partial_{i} \partial^{j} W_{j}=0 \tag{4}
\end{equation*}
$$

when it is expressed in Cartesian coordinates. Different decompositions of W^{i} can be used to bring this equation into a set of easier Laplace equations.
(b) Write

$$
\begin{equation*}
W_{i}=\frac{7}{8} V_{i}-\frac{1}{8}\left(\partial_{i} U+x^{k} \partial_{i} V_{k}\right) \tag{5}
\end{equation*}
$$

where V_{i} is a new vector and U some scalar. Insert this ansatz into (4), assume that U satisfies

$$
\begin{equation*}
\partial^{j} \partial_{j} U=0, \tag{6}
\end{equation*}
$$

and show that V_{i} must then satisfy

$$
\begin{equation*}
\partial^{j} \partial_{j} V_{i}=0 \tag{7}
\end{equation*}
$$

for the ansatz (5) to satisfy the vector Laplacian (4). That means that we may solve two Laplace equations instead of a vector Laplacian!
(c) Verify that a simple solution to the above equations is given by

$$
\begin{equation*}
U=0, \quad V_{i}=-\frac{2 P_{i}}{r} \tag{8}
\end{equation*}
$$

where P_{i} is a vector with constant coefficients.
(d) Insert this solution into (5) to find W^{i}. Finally, compute $\bar{A}_{L}^{i j}$ from W^{i}. If all went well, you have derived the Bowen-York solution for a boosted black hole with linear momentum P^{i}.

