ICTS Summer School on Numerical Relativity 2013 – Mathematical formulation Tutorial # 3

- **3.1** Consider a two-dimensional sphere embedded in a flat, three-dimensional, as in the example we discussed in class. Show that the geometries of the two spaces satisfy Ricci's equation.
- **3.2** Show that the Lie derivative of the projection operator γ^a_b along αn^a vanishes,

$$\mathcal{L}_{\alpha \mathbf{n}} \gamma^a_{\ b} = 0, \tag{1}$$

and that this is not true in general for the Lie derivative along n^a alone. This result implies that spatial tensors that are Lie dragged along αn^a remain spatial.

3.3 Show that the spatial Christoffel symbols

$$\Gamma^{a}_{bc} = \frac{1}{2} \gamma^{ad} (\partial_b \gamma_{dc} + \partial_c \gamma_{db} - \partial_d \gamma_{bc})$$
⁽²⁾

are spatial projections of the spacetime Christoffel symbols,

$$\Gamma^a_{bc} = \gamma^a{}_d \gamma^e{}_b \gamma^f{}_c {}^{(4)}\Gamma^d_{ef}.$$
(3)

3.4 Show that the determinant $g = \det(g_{ab})$ of the spacetime metric g_{ab} can be written as

$$\sqrt{-g} = \alpha \sqrt{\gamma},\tag{4}$$

where $\gamma = \det(\gamma_{ij})$ is the determinant of the spatial metric γ_{ij} . *Hint:* Recall that for any square matrix A_{ij} the inverse can be computed from $(A^{-1})_{ij} = \text{cofactor of } A_{jk}/\det(A_{ij})$.

3.5 Show that the determinant of the spatial metric γ satisfies

$$\partial_t \ln \gamma^{1/2} = -\alpha K + D_i \beta^i,\tag{5}$$

while the mean curvature $K \equiv \gamma^{ij} K_{ij}$ satisfies

$$\partial_t K = -D^2 \alpha + \alpha \left(K_{ij} K^{ij} + 4\pi (\rho + S) \right) + \beta^i D_i K.$$
(6)

- **3.6** (a) Revisit the Painlevé-Gullstrand metric of Problem 1.4 and identify the lapse α , the shift β^i and the spatial metric γ_{ij} .
 - (b) Compute the extrinsic curvature K_{ij} and the Ricci tensor R_{ij} .
 - (c) (Optional) Verify that this solution satisfies the constraint and evolution equations with $\partial_t K_{ij} = 0$.