ICTS Summer School on Numerical Relativity 2013 - Mathematical formulation Tutorial \# 3

3.1 Consider a two-dimensional sphere embedded in a flat, three-dimensional, as in the example we discussed in class. Show that the geometries of the two spaces satisfy Ricci's equation.
3.2 Show that the Lie derivative of the projection operator $\gamma^{a}{ }_{b}$ along αn^{a} vanishes,

$$
\begin{equation*}
\mathcal{L}_{\alpha \mathbf{n}} \gamma^{a}{ }_{b}=0, \tag{1}
\end{equation*}
$$

and that this is not true in general for the Lie derivative along n^{a} alone. This result implies that spatial tensors that are Lie dragged along αn^{a} remain spatial.
3.3 Show that the spatial Christoffel symbols

$$
\begin{equation*}
\Gamma_{b c}^{a}=\frac{1}{2} \gamma^{a d}\left(\partial_{b} \gamma_{d c}+\partial_{c} \gamma_{d b}-\partial_{d} \gamma_{b c}\right) \tag{2}
\end{equation*}
$$

are spatial projections of the spacetime Christoffel symbols,

$$
\begin{equation*}
\Gamma_{b c}^{a}=\gamma^{a}{ }_{d} \gamma^{e}{ }_{b} \gamma^{f}{ }_{c}{ }^{(4)} \Gamma_{e f}^{d} . \tag{3}
\end{equation*}
$$

3.4 Show that the determinant $g=\operatorname{det}\left(g_{a b}\right)$ of the spacetime metric $g_{a b}$ can be written as

$$
\begin{equation*}
\sqrt{-g}=\alpha \sqrt{\gamma} \tag{4}
\end{equation*}
$$

where $\gamma=\operatorname{det}\left(\gamma_{i j}\right)$ is the determinant of the spatial metric $\gamma_{i j}$.
Hint: Recall that for any square matrix $A_{i j}$ the inverse can be computed from $\left(A^{-1}\right)_{i j}=$ cofactor of $A_{j k} / \operatorname{det}\left(A_{i j}\right)$.
3.5 Show that the determinant of the spatial metric γ satisfies

$$
\begin{equation*}
\partial_{t} \ln \gamma^{1 / 2}=-\alpha K+D_{i} \beta^{i}, \tag{5}
\end{equation*}
$$

while the mean curvature $K \equiv \gamma^{i j} K_{i j}$ satisfies

$$
\begin{equation*}
\partial_{t} K=-D^{2} \alpha+\alpha\left(K_{i j} K^{i j}+4 \pi(\rho+S)\right)+\beta^{i} D_{i} K \tag{6}
\end{equation*}
$$

3.6 (a) Revisit the Painlevé-Gullstrand metric of Problem 1.4 and identify the lapse α, the shift β^{i} and the spatial metric $\gamma_{i j}$.
(b) Compute the extrinsic curvature $K_{i j}$ and the Ricci tensor $R_{i j}$.
(c) (Optional) Verify that this solution satisfies the constraint and evolution equations with $\partial_{t} K_{i j}=0$.

