ICTS Summer School on Numerical Relativity 2013 - Mathematical formulation Tutorial \# 2

2.1 In class we decomposed the spacetime vector v^{a} into a spatial part $\gamma^{a}{ }_{b} v^{b}$ and a normal part $-n^{a} n_{b} v^{b}$.
(a) Show that the spatial part is indeed spatial by showing that its contraction with the normal vector n^{a} vanishes.
(b) Show that the normal part is indeed normal by showing that its contraction with the spatial metric $\gamma_{a c}$ vanishes.
2.2 We can "count" the number of dimensions by taking the trace of the metric. Take the trace of the induced metric $\gamma_{a b}$ to show that the dimension of the hypersurface Σ is one less than that of the embedding space M.
2.3 Show that the spatial covariant derivative is compatible with the spatial metric $\gamma_{a b}$, i.e. show that

$$
\begin{equation*}
D_{a} \gamma_{b c}=0 \tag{1}
\end{equation*}
$$

2.4 Show that the acceleration of a normal observer, $a_{a} \equiv n^{b} \nabla_{b} n_{a}$, is related to the lapse α according to

$$
\begin{equation*}
a_{a}=\epsilon D_{a} \ln \alpha . \tag{2}
\end{equation*}
$$

2.5 In Problem 1.3 you derived the Schwarzschild metric in isotropic form,

$$
\begin{equation*}
d s^{2}=-\left(\frac{1-M /(2 r)}{1+M /(2 r)}\right)^{2} d t^{2}+\left(1+\frac{M}{2 r}\right)^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right) \tag{3}
\end{equation*}
$$

Now consider hypersurfaces of constant Schwarzschild time t.
(a) Compute the lapse α and the normal vector n^{a}.
(b) Compute the spatial metric $\gamma_{a b}$.
(c) Show that the extrinsic curvature $K_{a b}$ vanishes.
2.6 Use the example of a mixed-index, rank- 2 tensor $T^{a}{ }_{b}$ to show that we can replace partial derivatives with covariant derivatives in the Lie derivative $\mathcal{L}_{\mathbf{X}} T^{a}{ }_{b}$.
2.7 Show that

$$
\begin{equation*}
D_{a} D_{b} V^{c}=\gamma_{a}{ }^{p} \gamma_{b}{ }^{q} \gamma^{c}{ }_{r} \nabla_{p} \nabla_{q} V^{r}-\epsilon K_{a b} \gamma^{c}{ }_{r} n^{p} \nabla_{p} V^{r}-\epsilon K_{a}{ }^{c} K_{b p} V^{p} . \tag{4}
\end{equation*}
$$

