ICTS Summer School on Numerical Relativity 2013 - Mathematical formulation Tutorial \# 1

1.1 Consider a flat, three-dimensional space in spherical polar coordinates,

$$
\begin{equation*}
d s^{2}=g_{a b} d x^{a} d x^{b}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2} . \tag{1}
\end{equation*}
$$

(a) Show that the only non-vanishing components of the connection are given by

$$
\begin{array}{rlrl}
\Gamma_{\theta \theta}^{r} & =-r & \Gamma_{\phi \phi}^{r} & =-r \sin ^{2} \theta \\
\Gamma_{\phi \phi}^{\theta} & =-\sin \theta \cos \theta & \Gamma_{r \theta}^{\theta} & =r^{-1} \tag{2}\\
\Gamma_{r \phi}^{\phi} & =r^{-1} & \Gamma_{\phi \theta}^{\phi}=\cot \theta .
\end{array}
$$

and those that are related to the above by symmetry.
(b) Show that the Laplace operator acting on a scalar function f, defined as

$$
\begin{equation*}
\nabla^{2} f \equiv \gamma^{i j} \nabla_{i} \nabla_{j} f \tag{3}
\end{equation*}
$$

reduces to the well-known expression

$$
\begin{equation*}
\nabla^{2} f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}} . \tag{4}
\end{equation*}
$$

(c) What is the Riemann tensor for this space?
1.2 Consider a two-dimensional sphere of radius r with metric

$$
\begin{equation*}
d s^{2}=g_{a b} d x^{a} d x^{b}=r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2} . \tag{5}
\end{equation*}
$$

Show that the Riemann tensor can be written as

$$
\begin{equation*}
R_{a b c d}=\frac{1}{r^{2}}\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right) . \tag{6}
\end{equation*}
$$

Hint: Confirm that the above expression has the correct symmetries, and think about the number of independent components of the Riemann tensor.
1.3 In class we discussed the Schwarzschild metric

$$
\begin{equation*}
d s^{2}=-f_{0} d t^{2}+f_{0}^{-1} d R^{2}+R^{2} d \Omega^{2} \tag{7}
\end{equation*}
$$

where $f_{0}=1-2 M / R$ and where R is the areal (or circumferential) radius. Consider a new radius r that satisfies

$$
\begin{equation*}
R=r\left(1+\frac{M}{2 r}\right)^{2} \tag{8}
\end{equation*}
$$

(a) Show that under this transformation the Schwarzschild metric (7) takes the form

$$
\begin{equation*}
d s^{2}=-\left(\frac{1-M /(2 r)}{1+M /(2 r)}\right)^{2} d t^{2}+\psi^{4}\left(d r^{2}+r^{2} d \Omega^{2}\right) \tag{9}
\end{equation*}
$$

and find the "conformal factor" ψ. This form of the metric is called isotropic.
(a) Find an expression for r in terms of R. Show that real solutions for r only exist $R \geq 2 M$.
1.4 In the previous problem you considered a radial transformation of the Schwarzschild metric. Now consider a temporal transformation to a new time coordinate

$$
\begin{equation*}
t^{\prime}=t+h(R) \tag{10}
\end{equation*}
$$

where the height function $h(R)$ describes by how much surfaces of constant new time t " lift off" surfaces of constant Schwarzschild time t.
(a) Show that in these new coordinates the Schwarzschild metric (7) takes the form

$$
\begin{equation*}
d s^{2}=-f_{0} d t^{\prime 2}+2 f_{0} h^{\prime} d t^{\prime} d R+f_{0}^{-1}\left(1+f_{0}^{2} h^{2}\right) d R^{2}+R^{2} d \Omega^{2} \tag{11}
\end{equation*}
$$

where $h^{\prime} \equiv d h / d R$.
(b) Find a suitable condition for h so that the Schwarzschild metric takes the Painlevé-Gullstrand form

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 M}{R}\right) d t^{\prime 2}+2 \sqrt{\frac{2 M}{R}} d t^{\prime} d R+d R^{2}+R^{2} d \Omega^{2} \tag{12}
\end{equation*}
$$

Painlevé-Gullstrand coordinates are remarkable in that they leave the spatial part of the metric flat.

