
ICTS Summer School on Numerical Relativity 2013 – Mathematical formulation

A brief review of tensor properties

A tensor is a physical object and has an intrinsic meaning independently of coordinates or basis vectors. An
example is a rank-1 tensor A that has a certain length and points in a certain direction independently of the
coordinate system in which we express this tensor.

We can expand any tensor in terms of either basis vectors ea or basis 1-forms ω̃a. Expanding a rank-1 tensor
in terms of basis vectors, for example, yields

A = Aaea. (1)

This expression deserves several comments. For starters, we have used the Einstein summation rule, meaning that
we sum over repeated indices. The “up-stairs” index a on Aa refers to a contravariant component of A – meaning
one that is used in an expansion of A in terms of basis vectors. The index a on the basis vector ea, on the other
hand, does not refer to a component of the basis vector – instead it denotes the name of the basis vector (e.g. the
basis vector pointing in the x direction). If we wanted to refer to the b-th component of the basis vector ea, say,
we would write (ea)b.

An immediate question is whether we always have (ea)b = δa
b, where δa

b is the Kronecker delta. The answer
is no – this is true only if we are expressing normalized basis vectors in their own coordinate system, for example,
if we are expressing Cartesian basis vectors in Cartesian coordinates. In general, however, this is not true. Think,
for instance, about Cartesian basis vectors expressed in a spherical polar coordinate system.

We now write the dot product between two vectors as

A ·B = (Aaea) · (Bbeb) = AaBb ea · eb. (2)

Defining the metric as
gab ≡ ea · eb (3)

we obtain
A ·B = AaBbgab. (4)

Expanding a rank-1 tensor in terms of 1-forms ω̃a yields

B = Baω̃
a, (5)

where the “down-stairs” index a refers to a covariant component. We call the basis 1-forms ω̃a dual to the basis
vectors eb if

ω̃a · eb = δab. (6)

This is what we will assume throughout. We can then compute the dot product between B and A as

A ·B = (Aaea) · (Bbω̃
b) = AaBb ea · ω̃b = AaBb δa

b = AaBa. (7)

Since both this expression and (4) have to hold for any tensor A, we can compare the two and identify

Ba = gabB
b. (8)

We refer to this operation as “lowering the index of Ba”.
We define the inverse metric gab so that

gacgcb = δab. (9)

We then “raise the index of Ba” using
Ba = gabBb. (10)

We can also show that
gab = ω̃a · ω̃b. (11)

Note that we can find the contravariant component of a rank-1 tensor A by computing the dot product with
the corresponding 1-form,

Aa = A · ω̃a. (12)



We can verify this expression by inserting the expansion (1) for A, and then using the duality relation (6).
Under a change of basis, i.e. when we transform from one coordinate system xa to another, say xb

′
, basis

vectors and basis 1-forms transform according to

eb′ = Ma
b′ea (13)

ω̃b′ = M b′
aω̃

a (14)

where M b′
a is the transformation matrix and Ma

b′ its inverse, so that

Ma′
cM

c
b′ = δa

′
b′ . (15)

Note that vectors and 1-forms transform in “inverse ways”. This guarantees that the duality relation (6) also
holds in the new coordinate system,

ω̃a′ · eb′ = (Ma′
c ω̃

c) · (Md
b′ed) = Ma′

cM
d
b′(ω̃

c · ed) = Ma′
cM

d
b′δ

c
d = Ma′

cM
c
b′ = δa

′
b′ . (16)

The components of a vector then transform according to

Ab′ = A · ω̃b′ = A · (M b′
aω̃

a) = M b′
aA

a (17)

and similarly
Bb′ = Ma

b′Ba. (18)

The fact that contravariant and covariant components transform in “inverse” ways guarantees that the dot product
(7) is invariant under coordinate transformations,

Ab′Bb′ = M b′
aA

aM c
b′Bc = δcaA

aBc = AaBa, (19)

as it is supposed to be.
We can generalize all the above concepts to higher-rank tensors. A rank-n tensor can be expanded into n

basis vectors or 1-forms, and we transform the components of a rank-n tensor with n copies of the transformation
matrix or its inverse.

For transformations between coordinate bases, for which the basis vectors are tangent to coordinate lines, we
have

M b′
a ≡ ∂xb

′

∂xa
= ∂ax

b′ . (20)

As an illustration of the above concepts, consider the components of a displacement vector dxa, which measures
the displacement between two points expressed in a coordinate system xa. To compute the components of this
vector in a different coordinate system, say a primed coordinate system xb

′
, we use the chain rule to obtain

dxb
′

=
∂xb

′

∂xa
dxa = M b′

adx
a (21)

where we have used (20) in the last step. As expected, the components of dxa transform like the vector components
in (17).

As an example of a 1-form, consider the components of the gradient ∂f/∂xa of a function f , again expressed
in some coordinate system xa. To transform to a new coordinate system xb

′
we again use the chain rule, but this

time we obtain
∂f

∂xb′
=
∂xa

∂xb′
∂f

∂xa
= Ma

b′
∂f

∂xa
(22)

as in (18). We see that the “inverse” transformation of the components of a gradient are a result of the chain rule.
Finally, consider the difference df in the function values f at two (close) points. Clearly, this difference is an

invariant, i.e. independent of coordinate choice. We can express this difference as the dot product between the
vector displacement vector dxa between the two points and the 1-form ∂f/∂xa,

df =
∂f

∂xa
dxa. (23)

As an exercise, apply the above transformation rules for the components of vectors and 1-form to show that df is
indeed invariant under a coordinate transformation.
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