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What are Barrier Options?

• Barrier options are over-the-counter (OTC) contracts typically
written on a single underlying risky asset and typically having a
single payoff.

• Barrier options have the property that one or more pre-specified flat
barriers affect the terms and timing of the final payoff.

• The dependence of the payoff on the barrier(s) is always through
the binary random variable which indicates whether or not the
barrier has been crossed.

• In general, barrier options have a fixed date at which one starts
monitoring the barrier and a later date at which one ends
monitoring the barrier. The earlier date at which monitoring starts
is often the issuance date and the later date at which monitoring
ends is often the expiry date.

• The most liquid barrier options have either a single barrier or else
two barriers which straddle the initial spot.



Examples of Single Barrier Options

• One touch payment at expiry

• One touch payment at hit

• Single barrier no touch

• Up/Down and In/Out Call/Put (8 examples). In practice, people
bifurcate the 8 examples into those options which knock in or out
when the underlying vanilla is in-the-money, versus those which
knock in or out when the underlying vanilla is out-of-the-money.



Examples of Double Barrier Options

• Double touch payment at expiry

• Double touch payment at hit

• Double barrier no touch

• Double Knockout Call/Put (2 examples)

• KOKI’s - one in-barrier and one-out barrier in either order (4
examples before specifying the form of final payoff)

• While there are other logical possibilities eg. double in, it is fair to
say that the above cases cover all of the barrier options that are
presently liquid.



Some Variations on Barrier Option Payoffs

• continuous vs discrete monitoring

• barrier windowing (i.e forward start and/or early end)

• knockout rectangles (eg. box options) vs knockout lines.

• sequential barrier options

• wedding cakes

• phoenix options



Digitals and Barrier Options in FX markets

• While barrier options exist in the OTC equity derivatives market,
the most liquidity in barrier options is in the OTC foreign exchange
(FX) market.

• In FX markets, digitals such as one touch (with payment at expiry)
and double no touch are the most liquid form of second generation
options.

• Barrier options such as down and outs, up and outs, and double
knockouts are also popular.

• All digitals and barriers on currencies involve continuous barrier
monitoring.

• Some barrier options are sequential and/or involve windowing,
which we don’t discuss today.

• Some out barrier options have rebates, which we don’t directly
discuss today.



Well Known Model-Free Relationships Among Vanillas

• Let’s review several well known model-free arbitrage relationships
among path-independent options, primarily to establish notation.

BPt(K ,T ) =
∂

∂K
Pt(K ,T ).

BCt(K ,T ) = − ∂

∂K
Ct(K ,T ).

GCt(K ,T ) = Ct(K ,T ) + K · BCt(K ,T ).



Model Free Relationships for Single Barriers

• There are also some well-known model-free arbitrage relationships
among single barrier options.

• WLOG, we focus on an upper barrier H and set H > S0,K :

OTPEt(T ; H) = BCMaxt(H,T ).

SNTt(T ; H) + OTPEt(T ; H) = Bt(T ).

UOBPt(K ,T ; H) = BPt(K ,T )− UIBPt(K ,T ; H).

OTPEt(T ; H) = UIBP(H,T ; H) + BC (H,T ).



Model-Free Relationships for Double Barriers

• There are some well known and not so well known model-free
arbitrage relationships among double barrier options.

• We set the upper barrier H > S0,K > L, where L is the lower
barrier:

lim
L↓−∞

DNTt(T ; L,H) = SNTt(T ; H).

lim
L↓−∞

DKOPt(K ,T ; L,H) = UOPt(K ,T ; H).

DNTt(T ; L,H) = lim
Kc↓L

lim
Kp↑H

DKOCt(Kc ,T ; L,H) + DKOPt(Kp,T ; L,H)

H − L
.



Less Well Known Model-Free Relationships

• There are other less well known model-free arbitrage relationships
for single barrier options which we introduce:

UIPt(Kp,T ; H) =

∫ Kp

−∞
UIBPt(K ,T ; H)dK .

SNTt(T ; H) = lim
K↑H

∂UOPt(K ,T ; H)

∂K
.

• Assuming a deterministic interest rate r(t), t ∈ [0,T ]:

OTPHt(T ; H) = OTPEt(T ; H) +

∫ T

t

r(u)OTPEt(u; H)du.

• The above model-free results imply that there is a static hedge for
all (non-windowed single up barrier) digitals and barrier options,
once there exists a static hedge for all up-and-in binary puts.



Static Hedging of Up-and-In Binary Puts

• Suppose that the underlying is a forward FX rate F , so that it has
zero risk-neutral drift under the forward measure.

• Further suppose that the process is skip-free, i.e. no jumps over the
barrier.

• Let τ denote the first passage time to the higher barrier H (τ =∞
if never hit).

• Finally assume that if τ < T , then at time τ , the conditional
risk-neutral density governing FT is symmetric about Fτ = H.
Hence:

BPτ (K ,T ) = BCτ (2H − K ,T ).

• As a result, for t ∈ [0,T ∧ τ ], no arbitrage implies:

UIBPt(K ,T ; H) = BCt(2H − K ,T ).



Implications for Up-and-In Put

• Recall that when the price is a skip-free symmetric martingale:

UIBPt(K ,T ; H) = BCt(2H − K ,T ), t ∈ [0,T ∧ τ ].

• Also recall that:

UIPt(Kp,T ; H) =

∫ Kp

−∞
UIBPt(K ,T ; H)dK .

• Hence, integrating the top equation in K from Kp down implies:

UIPt(Kp,T ; H) =

∫ Kp

−∞
BCt (2H − K ,T ) dK .

• But recall that:

BCt(K ,T ) = − ∂

∂K
Ct(K ,T ).

• So by the fundamental theorem of calculus:

UIPt(Kp,T ; H) = Ct (2H − Kp,T ) .



Implications for a One Touch

• Again recall that when the price is a skip-free symmetric martingale:

UIBPt(K ,T ; H) = BCt(2H − K ,T ), t ∈ [0,T ∧ τ ].

• Also recall that:

OTPEt(T ; H) = UIBP(H,T ; H) + BCt(H,T ).

• Hence setting K = H in the top equation implies:

OTPEt(T ; H) = 2BCt(H,T ), t ∈ [0,T ∧ τ ].

• In words, the risk-neutral probability of hitting a barrier is twice the
probability of finishing beyond it.



Geometric Brownian Martingale

• An (old) argument against the price symmetry assumption is that
positive probability of FT > 2H when Fτ = H implies positive
probability that FT < 0.

• To allow unlimited upside while imposing zero probability of
nonpositive FT , suppose that we instead assume that the forward
price follows geometric Brownian motion (Black model).

• Assuming no arbitrage, there is a probability measure (called dollar
measure) D equivalent to the physical probablity measure under
which F is a martingale.



SDE’s for Forward price and its Reciprocal

• Suppose that under D, the forward price F solves the SDE:

dFt = σFtdWt , t > 0.

• The solution to this SDE is well known to be:

Ft = F0e
σWt−σ2t/2, t > 0.

• Consider the reciprocal of F :

Rt ≡ 1/Ft = R0e
−σWt+σ

2t/2, t > 0,

where R0 ≡ 1
F0

.

• Under D, the reciprocal of the forward price R solves the SDE:

dRt = σ2Rtdt − σRtdWt , t > 0.

• The upward drift is due to the convexity of the function y(x) = 1/x .



SDE’s Under Measure Change

• Recall that under D, the reciprocal R of the forward price F solves
the SDE:

dRt = σ2Rtdt − σRtdWt , t > 0.

• Letting Mt ≡ Ft

F0
= eσWt−σ2t/2, we have: dMt

Mt
= σdWt , t > 0,

so M is a D martingale. As Ft has mean F0 under D, Mt has mean
1 under D.

• Suppose that we use MT to define a new probability measure P
called pound measure by:

dP
dD

= MT =
FT

F0
= eσWT−σ2T/2.

• Then by Girsanov’s theorem, there exists a P standard Brownian
motion B such that under P, R solves the SDE:

dRt = σ2Rtdt +
1

Mt
d〈M,R〉t − σRtdBt ,

= −σRtdBt , t > 0.



A Pair of SDE’s

• Recall that under the $ measure D, the forward price F solves the
SDE:

dFt

Ft
= σdWt , t > 0,

where W is a standard Brownian motion under D.

• Also recall that under the pound measure P, the reciprocal R of the
forward price solves the SDE:

dRt

Rt
= −σdBt , t > 0,

where B is a standard Brownian motion under P.

• Hence for any t, Ft

F0
has the same law under D as Rt

R0
has under P.



Implications for European Claims

• Let’s assume zero interest rates in the two countries.

• Since FT

F0
has the same law under D as RT

R0
has under P, it takes just

as many dollars to create the payoff f
(

FT

F0

)
as it takes pounds to

create the payoff f
(

RT

R0

)
:

EDf

(
FT

F0

)
= EPf

(
RT

R0

)
.



Example: Vanilla Calls

• Recall that it takes just as many dollars to create the payoff f
(

FT

F0

)
as it takes pounds to create the payoff f

(
RT

R0

)
:

EDf

(
FT

F0

)
= EPf

(
RT

R0

)
.

• For example, if f (x) = (F0x − Kc)+, then:

ED (FT − K )+ = EP
(

F0
RT

R0
− Kc

)+

.

• What happens if we express the quantity on the right in dollars
rather than pounds?



Call Put Symmetry

• Recall our example of a vanilla call:

ED(FT − Kc)+ = EP
(

F0
RT

R0
− Kc

)+

.

• Since dP
dD = FT

F0
, it follows that dD

dP = RT

R0
, and hence we have:

ED(FT − Kc)+ = EP RT

R0
1

(
F0 −

KcR0

RT

)+

= KcR0E
D1

(
F0

KcR0
− 1

RT

)+

=
Kc

F0
ED
(

F 2
0

Kc
− FT

)+

.

• This is call put symmetry. So long as it holds at the first passage
time to a barrier, it can be used to find a static hedge for a
down-and-in call.



Static Hedge of a Down-and-In Call

• Consider a down-and-in call (DIC) written on the forward FX rate F .

• Letting K denote the strike and L denote the lower barrier L < F0,
the payoff at the maturity date T is:

DICT (K , L,T ) = 1(τ < T )(FT − K )+,

where τ is the first passage time of F to L (τ =∞ if L is never hit).

• Suppose we sell a DIC at t = 0 and buy K
L vanilla puts struck at L2

K .

• If F stays above L over [0,T ], then the puts expire worthless as
does the DIC.

• If F hits L before T , then at τ ∈ [0,T ], call put symmetry implies
that the $ received from selling the K

L puts is exactly the $ needed
to buy 1 vanilla call struck at Kc :

ED
τ (FT − Kc)+ =

Kc

L
ED
τ

(
L2

Kc
− FT

)+

.



Implications for Pricing of a Down-and-In Call

• Recall that K
L vanilla puts struck at L2

K has the same payoff at τ ∧T
as a down-and-in call with strike K and barrier L < F0.

• It follows from no arbitrage that:

DIC0(K , L,T ) =
K

L
P0

(
L2

K
,T

)
.

• So long as L is skipfree and call put symmetry holds at τ , the hedge
succeeds even if F does not follow geometric Brownian motion.

• The static hedging results can be extended to constant rates, a
drifting underlying, asymmetric dynamics, and other single and
double barrier options (see my website for details).

• In particular, if we independently randomize the instantaneous
volatility when the underlying has zero drift, then call put symmetry
still holds and hence so do the above results.



Summary of Barrier Options

• We first developed many model-free results that relate payoffs and
values of different barrier options to each other.

• We then showed how to (semi-)statically hedge the payoffs of some
single barrier options with vanilla options when barriers are skip-free
and when the risk-neutral distribution of the terminal forward FX
rate is symmetric at the first passage time(s).

• As the conditions leading to exact replication never hold in practice
for either classical dynamic replication or for semi-static option
replication, it is worth noting that nothing prevents doing both.


