
Introduction to Theory and Numerics of
Partial Differential Equations V:

And now for something completely different...

1

Sascha Husa
ICTS Summer School on Numerical Relativity

Bangalore, June 2013

Capturing radiation and infinite domains

2

3

Penrose diagram

Dispaly global
causal structure of
spacetime, uses
conformal rescaling

gcompact = Ω2 gphys

4

5

6

7

8

9

10

black holes and
event horizons

Event horizon: null surface traced backwards in time
from i+, BH is the spacetime region inside the EH.
Applying the rigorous definition in a numerical
spacetime won’t work.
Reasonable approximation: trace back spherical null
surface starting well after merger.
level set method: EH @ f(xi,t) = 0 ->

re-initialize to deal with steepening gradients
Diener CQG20 (2003), Cohen+ CQG26 (2009) [geodesics]11

gαβ∂α∂βf = 0

∂tf =
−gti∂if+

√
(gti∂if)2−gttgij∂if∂jf

gtt

12

• ...
• Matzner+ Science 270 (1995)
• Husa, Winicour, Phys.Rev. D60 (1999) 084019
• Cohen+, Phys. Rev. D 85, 024031 (2012)
• ...

Apparent horizons: local in time

Characteristic speeds ≤ c: AH is a outflow boundary! “BH excision”.
Singularity theorems:
very general conditions: trapped surface => spacetime singularity
Elliptic equation for constant expansion surfaces:

Solve directly with elliptic solver or more robust parabolic flow.

Thornburg, Liv. Rev. Rel. 10 (2007), BUT: flow is fast.
13

Trapped surface: spacelike 2-
surface with the property that
the ingoing and outoing
wavefronts decrease in area.
Light cones “tip over”!

AH: outermost “marginally”
trapped surface.

θ± = K − rarbKab ±Dar
a

Scales and mesh refinement

• binary black holes (compact objects) have many different length scales:

• the individual black holes
• (radiation efficiency ~ compactness of source)
• m1/m2 > 2 creates trouble!

• orbital scale: typically start at separations > 10 M

• wave scale for spherical harmonic (l,m):

• 1/rn background falloff

• ambiguity in boundary conditions:

• causally isolate boundaries -> 1000s of M

λ = T, Twave =
Twave
m

10M ≤ T 0
QNM ≤ 16M

Mωorb =

�
R

M

�−3/2

Torb(10M) ≈ 200M

AMR computational infrastructure

• Adaptive mesh refinement significantly increases the complexity of a
numerical code!

• Good news: For compact binaries, we do not need a general mesh
refinement algorithm, just let refinement boxes follow the objects (possible
exception with very dynamical matter fields).

• Coarser grids allow bigger time steps!

• efficient algorithm needs to allow for different time steps for different
grids!

• more difficult to get a stable discretization -> Berger-Oliger

• increases complexity

• load balancing becomes more difficult!

• outer grids typically dominate memory requirements, innermost grids
determine speed.

Berger-Oliger mesh refinement

• Adaptive mesh refinement significantly increases the complexity of a
numerical code!

• buffer points (ghost zones) are required for stability and accuracy

• with enough buffer points, one can avoid time interpolation (2nd order)

• restriction: from fine to coarse grid

• prolongation: from coarse to fine grid

Alternatives to finite differencing: Spectral methods

• Higher order finite difference can give us better accuracy, what is the
highest order we can use in a grid?

• We can always use all the points in the grid, i.e. use higher and higher
order as we refine the grid.

• Corresponds to representing our solution not piecewise by local
polynomials (Taylor series), but global basis functions defined over the
whole grid.

• Systematic approach: Search for solutions uN in a finite-dimensional sub-
space PN of some Hilbert space W, to the PDE L u = F, L some diff. op.

• Residual (error): R = L uN - F

• Expansion functions = trial functions : basis of PN : (ϕ1, ϕ2, ..., ϕN)

• u is expanded in terms of the trial functions:

• Test functions : family of functions (ψ1, ψ2, ..., ψN) to define the smallness
of the residual R, by means of the Hilbert space scalar product:

∀n : (ψn, R) = 0

uN =
N�

n=1

ũnφn(x)

Classification of methods

• According to the trial functions ϕn:

• Finite difference: trial functions = overlapping local polynomials (low order)

• Finite element: trial functions = local smooth functions (polynomial of fixed
degree which are non-zero only on subdomains of U)

• Spectral: trial functions = complete basis of global smooth functions
(example: Fourier series)

• For non-periodic functions, it has become standard to use Chebyshev
polynomials, orthogonal polynomials Tn(x):

uN =
N�

n=1

ũnφn(x) =
N�

n=1

ũne
iωnx

Tn(x) = cos(n arccosx)
Tn(cosϑ) = cos(nϑ)

� 1

−1
Tn(x)Tm(x)

dx√
1− x2

=






0 : n �= m
π : n = m = 0
π
2 : n = m �= 0

Classification of methods

• According to the test functions ψn:

• collocation or pseudospectral method: test functions = delta functions
at special points, called collocation points: ψn = δ(x - xn).

• Idea: use both the spectral and the “physical space” grid, compute
derivatives in the spectral representation, and source terms by
evaluating the uN on the collocation points.

• e.g. multiplication of uN × uN is expensive in Fourier space, but cheap in
physical space.

• Galerkin method: test functions = trial functions: ψn = ϕn and each ϕn

satisfies the boundary conditions.

• tau method: (Lanczos 1938) test functions = (most of) trial functions: ψn =
ϕn, but the ϕn do not satisfy the boundary conditions; the latter are
enforced by an additional set of equations.

Features of pseudo-spectral methods

• Exponential convergence for smooth functions.

• + “global” method: BH excision preferred over
punctures - keep clear of singularities

• ongoing work to combine spectral+FD ideas for
punctures

• Need to cover computational domain by orthogonal
basis functions -> want simple geometrical domain.

• Cover more complicated geometries by multiple
domains (e.g. when 2 BHs are cut out)

• Chebyshev grid is more dense at the edges -> CFL
requires small Δt

• Dissipation is applied by throwing away higher frequencies.

• Best accuracy at decreased robustness, higher implementation
complexity.

• Ideally suited and routinely applied for elliptic problems in NR.

Features of Finite Elements methods

• Tailored for adaption to complicated
geometries.

• perfect for engineering

• rarely used in NR

• many free and commercial
software packages.

• combination with spectral
methods: spectral elements.

Alternatives to FD: Finite Volume Methods

• Calculate values at discrete places on a meshed geometry.

• "Finite volume": Integrate PDE over volume surrounding each node point on a
mesh, and convert divergence terms to surface integrals, evaluate as fluxes at
the surfaces of each finite volume.

• Flux entering a given volume is identical to that leaving the adjacent volume,
these methods are “conservative”.

• Consider conservation problem: ∂tu+∇ · f(u) = 0
�

vi

∂tu dv +

�

vi

∇ · f(u) dv = 0

vi∂t ū+

�

Si

f(u) · ndS = 0

∂t ū+
1

vi

�

Si

f(u) · ndS = 0

http://en.wikipedia.org/wiki/Divergence
http://en.wikipedia.org/wiki/Divergence
http://en.wikipedia.org/wiki/Surface_integral
http://en.wikipedia.org/wiki/Surface_integral
http://en.wikipedia.org/wiki/Conservation_law
http://en.wikipedia.org/wiki/Conservation_law

alternative hardware: GP-GPU

• General-purpose computing on graphics processing units

• Graphics cards (games ...) are very fast at doing floating point operations!

• GPU providing a functionally complete set of operations performed on arbitrary
bits -> GP-GPU.

• Hundreds to thousands of cores/GPU -> “Desktop supercomputer”

• Standard hardware for scientific purposes: NVIDIA cards with Fermi architecture,
fast hardware double precision.

• Dominant general-purpose GPU computing languages: OpenCL, CUDA
(NVIDIA, proprietary)Stream processing paradigm: Given a set of data (a stream),
a series of operations (kernel functions) is applied to each element in the stream.

• Limited memory capabilities: few GByte / card (~ MByte / compute core)

• Harder to program, but can already be used from within Matlab,
Mathematica,

• Very successful for problems with smaller memory requirements, e.g. Teukolsky
equation for BH perturbations.

http://en.wikipedia.org/wiki/Functional_completeness
http://en.wikipedia.org/wiki/Functional_completeness

• (Theoretical) computational cost scales with grid size, 3D:

• x 2 resolution -> x 16 computational cost

• Real world software and hardware may behave in a more complicated way!

• To estimate the error, we need to understand convergence. n-th accurate:

• 3 resolutions determine

• logic: is n consistent with what I think my algorithm is?
Yes -> estimate X0, estimate error e.g. as X0 - X(best resolution).

• break-even for 3D - n=4: x 2 resolution, 16 computational cost, error/16

• typical n for binary black holes: 6-10.

• spectral code: exponential convergence (SpEC, standard initial data
solvers), more accurate, harder to verify.

• mixed order schemes are common, and can lead to subtle problems, e.g.
RK4 + 6th order finite differencing + ...

Cost & error II

X(∆x) = X0 + e∆x
n +O(∆x

n+1)
X0, e, n

∝ ∆x−3∆t−1

• Typical memory requirements for 3D BBH codes:

• ~ 100 grid functions (e.g. harmonic first order, BSSN: 21 GFs, 4 time levels)

• ≥ 1003 boxes in 10 refinement levels: ~85 GByte.

• Typical memory/core in a compute cluster: 2 GByte

• standard processors ~ 12 cores => do need clusters for 3D physics

• use domain decomposition: split computational domain over several blocks,
1 block/core. Communicate between blocks after each time step.

• Typical time requirements for 3D BBH codes:

• (100 GFs) x (4 time levels) x (10 evaluations/GF/time level) x (1003 points)
= 4 x 109 operations/time step => > 1 second/step on 3GHz core.

• 100 points to cover black hole region => Δx ~ Δt = 0.01 M

• 100 000 iterations for 1000 M ~ 1 day.

• cost increases for 2 BHs, 1 BH much smaller, outer regions (waves!), ...

• standard processors ~ 12 cores => do need clusters for 3D physics

Cost & error: some numbers

• Break up computational domains, e.g. into logical cubes:

• enlarge each cube by “ghost zones” depending on size of finite difference
stencil: e.g. 1 GZ for 2nd order centered, 2 GZ for 4th order centered, 4 GZ
for sixth order upwind ...

• Fill up ghost zones after each iteration by communicating between
processors.

• load balance: how to spread load evenly among processors when domains
are complicated, time steps not equal, ...

Domain decomposition with ghost zones

• 2 types of algorithms:

• overlapping grids: use interpolation

• touching grids: can exchange characteristic information, i.e. book-
keeping of the information in the hyperbolic system which travels across
domain boundaries.

• 2 types of communication technology

• Common address space: OpenMP, ...

• Message passing: MPI (message passing interface), ...

Domain Decomposition: Communication

MPI

• Output from this code looks like:

Hello world: processor 0 of 4
Hello world: processor 1 of 4
Hello world: processor 2 of 4
Hello world: processor 3 of 4
That is all for now!

Scaling

• Strong scaling: how the solution time varies with the number of processors for a
fixed total problem size.

• Weak scaling: how the solution time varies with the number of processors for a
fixed problem size per processor.

• Amdahl-Gunther law: (speedup S, parallel fraction of algorithm P, N cores, β
coherency delay). Amdahl’s law for β = 0.

S =
1

1−
�
1− 1

n

�
p+ β(n− 1)

• Real life: may be more interested in
keeping execution time constant and
increase problem size with number of
processors.

• Throughput can be more important than
speed! How much science can you do
with a given amount of resources?

OpenMP: multithreading

• OpenMP (Open Multiprocessing) is an API that supports multi-platform shared
memory multiprocessing programming in C, C++, andFortran.

• It consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior.

• Typically combine OpenMP with MPI:

• parallelization on each “node”
with Open MP

• communication between nodes with MPI

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable

Moore’s law
• Processor performance doubles every ~ 18 months

• Modern CPUs have
increasingly more cores!

• Modern supercomputers
have more and more
CPUs!

