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And now for something completely different...
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Capturing radiation and infinite domains

2



3



Penrose diagram

Dispaly global 
causal structure of 
spacetime, uses 
conformal rescaling

gcompact = Ω2 gphys
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black holes and 
event horizons

Event horizon: null surface traced backwards in time               
from i+, BH is the spacetime region inside the EH.
Applying the rigorous definition in a numerical 
spacetime won’t work.
Reasonable approximation: trace back spherical null 
surface starting well after merger.
level set method: EH @ f(xi,t) = 0 ->

re-initialize to deal with steepening gradients
Diener CQG20 (2003), Cohen+ CQG26 (2009) [geodesics]11

gαβ∂α∂βf = 0

∂tf =
−gti∂if+

√
(gti∂if)2−gttgij∂if∂jf

gtt
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• ...
• Matzner+ Science 270 (1995) 
• Husa, Winicour, Phys.Rev. D60 (1999) 084019
• Cohen+, Phys. Rev. D 85, 024031 (2012)
• ...



Apparent horizons: local in time

Characteristic speeds ≤ c: AH is a outflow boundary! “BH excision”. 
Singularity theorems:                                                      
very general conditions: trapped surface => spacetime singularity
Elliptic equation for constant expansion surfaces:

Solve directly with elliptic solver or more robust parabolic flow.

Thornburg, Liv. Rev. Rel. 10 (2007), BUT: flow is fast.
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Trapped surface: spacelike 2-
surface with the property that 
the ingoing and outoing 
wavefronts decrease in area. 
Light cones “tip over”!

AH: outermost “marginally” 
trapped surface.

θ± = K − rarbKab ±Dar
a



Scales and mesh refinement

• binary black holes (compact objects) have many different length scales: 

• the individual black holes 
• (radiation efficiency ~ compactness of source)
• m1/m2 > 2  creates trouble!

•  orbital scale: typically start at separations > 10 M

•  wave scale for spherical harmonic (l,m):

• 1/rn background falloff

• ambiguity in boundary conditions:

• causally isolate boundaries -> 1000s of M

λ = T, Twave =
Twave
m

10M ≤ T 0
QNM ≤ 16M

Mωorb =

�
R

M

�−3/2

Torb(10M) ≈ 200M



AMR computational infrastructure

• Adaptive mesh refinement significantly increases the complexity of a 
numerical code!

• Good news: For compact binaries, we do not need a  general mesh 
refinement algorithm, just let refinement boxes follow the objects (possible 
exception with very dynamical matter fields).

• Coarser grids allow bigger time steps!

• efficient algorithm needs to allow for different time steps for different 
grids!

• more difficult to get a stable discretization -> Berger-Oliger

• increases complexity

• load balancing becomes more difficult!

• outer grids typically dominate memory requirements, innermost grids 
determine speed. 



Berger-Oliger mesh refinement

• Adaptive mesh refinement significantly increases the complexity of a 
numerical code!

• buffer points (ghost zones) are required for stability and accuracy

• with enough buffer points, one can avoid time interpolation (2nd order)

• restriction: from fine to coarse grid

• prolongation: from coarse to fine grid



Alternatives to finite differencing: Spectral methods

• Higher order finite difference can give us better accuracy, what is the 
highest order we can use in a grid?

• We can always use all the points in the grid, i.e. use higher and higher 
order as we refine the grid.

• Corresponds to representing our solution not piecewise by local 
polynomials (Taylor series), but global basis functions defined over the 
whole grid.

• Systematic approach:  Search for solutions uN in a finite-dimensional sub-
space PN of some Hilbert space W, to the PDE  L u = F, L some diff. op.

• Residual (error): R = L uN - F

• Expansion functions = trial functions : basis of PN : (ϕ1, ϕ2, ..., ϕN)

• u is expanded in terms of the trial functions:

• Test functions : family of functions (ψ1, ψ2, ..., ψN) to define the smallness 
of the residual R, by means of the Hilbert space scalar product:

∀n : (ψn, R) = 0

uN =
N�

n=1

ũnφn(x)



Classification of methods

• According to the trial functions ϕn:

• Finite difference: trial functions = overlapping local polynomials (low order)

• Finite element: trial functions = local smooth functions (polynomial of fixed 
degree which are non-zero only on subdomains of U)

• Spectral: trial functions = complete basis of global smooth functions 
(example: Fourier series)

• For non-periodic functions, it has become standard to use Chebyshev 
polynomials, orthogonal polynomials Tn(x):

uN =
N�

n=1

ũnφn(x) =
N�

n=1

ũne
iωnx

Tn(x) = cos(n arccosx)
Tn(cosϑ) = cos(nϑ)

� 1

−1
Tn(x)Tm(x)

dx√
1− x2

=






0 : n �= m
π : n = m = 0
π
2 : n = m �= 0



Classification of methods

• According to the test functions ψn:

• collocation or pseudospectral method: test functions = delta functions 
at special points, called collocation points: ψn = δ(x - xn).

• Idea: use both the spectral and the “physical space” grid, compute 
derivatives in the spectral representation, and source terms by 
evaluating the uN on the collocation points.

• e.g. multiplication of uN × uN is expensive in Fourier space, but cheap in 
physical space.

• Galerkin method: test functions = trial functions: ψn = ϕn and each ϕn 

satisfies the boundary conditions.

• tau method: (Lanczos 1938) test functions = (most of) trial functions: ψn = 
ϕn, but the ϕn do not satisfy the boundary conditions; the latter are 
enforced by an additional set of equations.



Features of pseudo-spectral methods

• Exponential convergence for smooth functions.

• + “global” method: BH excision preferred over 
punctures - keep clear of singularities

• ongoing work to combine spectral+FD ideas for 
punctures

• Need to cover computational domain by orthogonal 
basis functions -> want simple geometrical domain.

• Cover more complicated geometries by multiple 
domains (e.g. when 2 BHs are cut out)

• Chebyshev grid is more dense at the edges -> CFL 
requires small Δt

• Dissipation is applied by throwing away higher frequencies.

• Best accuracy at decreased robustness, higher implementation 
complexity.

• Ideally suited and routinely applied for elliptic problems in NR.



Features of Finite Elements methods

• Tailored for adaption to complicated 
geometries.

• perfect for engineering

• rarely used in NR

• many free and commercial 
software packages.

• combination with spectral 
methods: spectral elements. 



Alternatives to FD: Finite Volume Methods

• Calculate values at discrete places on a meshed geometry. 

• "Finite volume": Integrate PDE over volume surrounding each node point on a 
mesh, and convert divergence terms to surface integrals, evaluate as fluxes at 
the surfaces of each finite volume.

•  Flux entering a given volume is identical to that leaving the adjacent volume, 
these methods are “conservative”.

• Consider conservation problem: ∂tu+∇ · f(u) = 0
�

vi

∂tu dv +

�

vi

∇ · f(u) dv = 0

vi∂t ū+

�

Si

f(u) · ndS = 0

∂t ū+
1

vi

�

Si

f(u) · ndS = 0

http://en.wikipedia.org/wiki/Divergence
http://en.wikipedia.org/wiki/Divergence
http://en.wikipedia.org/wiki/Surface_integral
http://en.wikipedia.org/wiki/Surface_integral
http://en.wikipedia.org/wiki/Conservation_law
http://en.wikipedia.org/wiki/Conservation_law


alternative hardware: GP-GPU

• General-purpose computing on graphics processing units 

• Graphics cards (games ...) are very fast at doing floating point operations!

•  GPU providing a functionally complete set of operations performed on arbitrary 
bits -> GP-GPU.

• Hundreds to thousands of cores/GPU -> “Desktop supercomputer”

• Standard hardware for scientific purposes: NVIDIA cards with Fermi architecture, 
fast hardware double precision.

•  Dominant general-purpose GPU computing languages: OpenCL, CUDA 
(NVIDIA, proprietary)Stream processing paradigm: Given a set of data (a stream), 
a series of operations (kernel functions) is applied to each element in the stream.

• Limited memory capabilities: few GByte / card (~ MByte / compute core) 

• Harder to program, but can already be used from within Matlab, 
Mathematica, ....

• Very successful for problems with smaller memory requirements, e.g. Teukolsky 
equation for BH perturbations.

http://en.wikipedia.org/wiki/Functional_completeness
http://en.wikipedia.org/wiki/Functional_completeness


• (Theoretical) computational cost scales with grid size, 3D:

• x 2 resolution ->  x 16 computational cost

• Real world software and hardware may behave in a more complicated way!

• To estimate the error, we need to understand convergence. n-th accurate:

•  3 resolutions determine

• logic: is n consistent with what I think my algorithm is?                          
Yes -> estimate X0, estimate error e.g. as X0 - X(best resolution).

• break-even for 3D - n=4: x 2 resolution, 16 computational cost, error/16

• typical n for binary black holes: 6-10.

• spectral code: exponential convergence (SpEC, standard initial data 
solvers), more accurate, harder to verify. 

• mixed order schemes are common, and can lead to subtle problems, e.g. 
RK4 + 6th order finite differencing + ...

Cost & error II

X(∆x) = X0 + e∆x
n +O(∆x

n+1)
X0, e, n

∝ ∆x−3∆t−1



•  Typical memory requirements for 3D BBH codes: 

• ~ 100 grid functions (e.g. harmonic first order, BSSN: 21 GFs, 4 time levels)

• ≥ 1003  boxes in 10 refinement levels: ~85 GByte.

• Typical memory/core in a compute cluster: 2 GByte

• standard processors ~ 12 cores => do need clusters for 3D physics

• use domain decomposition: split computational domain over several blocks, 
1 block/core. Communicate between blocks after each time step.

• Typical time requirements for 3D BBH codes:

• (100 GFs) x (4 time levels) x (10 evaluations/GF/time level) x (1003 points)       
= 4 x 109 operations/time step  =>  > 1 second/step on 3GHz core.

• 100 points to cover black hole region => Δx ~ Δt = 0.01 M

• 100 000 iterations for 1000 M ~ 1 day.

•  cost increases for 2 BHs, 1 BH much smaller, outer regions (waves!), ...

• standard processors ~ 12 cores => do need clusters for 3D physics

Cost & error: some numbers



•  Break up computational domains, e.g. into logical cubes: 

• enlarge each cube by “ghost zones” depending on size of finite difference 
stencil: e.g. 1 GZ for 2nd order centered, 2 GZ for 4th order centered, 4 GZ 
for sixth order upwind ...

• Fill up ghost zones after each iteration by communicating between 
processors.

• load balance: how to spread load evenly among processors when domains 
are complicated, time steps not equal, ...

Domain decomposition with ghost zones



•  2 types of algorithms:

• overlapping grids: use interpolation

• touching grids: can exchange characteristic information, i.e. book-
keeping of the information in the hyperbolic system which travels across 
domain boundaries.

• 2 types of communication technology 

• Common address space: OpenMP, ...

• Message passing: MPI (message passing interface), ...

Domain Decomposition: Communication



MPI

• Output from this code looks like:

Hello world: processor 0 of 4
Hello world: processor 1 of 4
Hello world: processor 2 of 4
Hello world: processor 3 of 4
That is all for now!



Scaling

• Strong scaling:  how the solution time varies with the number of processors for a 
fixed total problem size.

• Weak scaling: how the solution time varies with the number of processors for a 
fixed problem size per processor.

• Amdahl-Gunther law: (speedup S, parallel fraction of algorithm P, N cores, β 
coherency delay). Amdahl’s law for β = 0.

S =
1

1−
�
1− 1

n

�
p+ β(n− 1)

• Real life: may be more interested in 
keeping execution time constant and 
increase problem size with number of 
processors.

• Throughput can be more important than 
speed! How much science can you do 
with a given amount of resources?



OpenMP: multithreading

• OpenMP (Open Multiprocessing) is an API that supports multi-platform shared 
memory multiprocessing programming in C, C++, andFortran.

• It consists of a set of compiler directives, library routines, and environment 
variables that influence run-time behavior.

• Typically combine OpenMP with MPI:

•  parallelization on each “node”                                                                     
with Open MP

• communication between nodes with MPI

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable




Moore’s law
• Processor performance doubles every ~ 18 months

• Modern CPUs have 
increasingly more cores!

• Modern supercomputers 
have more and more 
CPUs!


