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Capturing radiation and infinite domains




Isolated systems as models of sources of GW

Key concepts to describe “astrophysical” processes in GR: essential independence
of the large-scale structure of the universe, “radiation leaves system”.

— physical idealization: isolated system — geometry “flattens at large distances”
or approaches some cosmological background geometry.

GR: mass, momentum, emitted gravitational radiation can not be defined
unambiguously in local/quasilocal way — only make sejnse in asymptotic limits.

Formalize as asymptotically flat or asymptotically de Sitter/AdS spacetimes

AF spacetimes usually used to model sources of GWs.

Beware: there are 3 directions toward
infinity: timelike / spacelike / null!

Compactification in these 3 directions
behaves very differently.

Key idea: use conformal rescalings
(Penrose).




Penrose diagram

Dispaly global
causal structure of
spacetime, uses
conformal rescaling

gcompact = Q° Jphys




Conformal Compactification

Using conformal rescaling to an unphysical spacetime, we can discuss asymptotics
in terms of local differential geometry.

ab =0 %gap, M={peM|Qp) >0}, “o"=03M={peM|Qp)=0}

Einstein’'s vacuum equations in terms of €2 & g.p:
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singular for Q = 0, multiplication by ? — degenerate principal part @ Q = 0.
o asymptotically flat: null infinity is null.
e asymptotically de Sitter: null infinity is space-like.
e asymptotically anti-de Sitter: null infinity is time-like — boundary data
required.
Different approaches to compactified equations:
@ Evolution along null surfaces — works well, but not general due to caustics.
o Compactification along spacelike directions: standard method to construct
initial data, underresolved blue-shifted waves in evolution.
@ K = const. — spacelike “hyperboloidal” surfaces reaching null infinity
(t? — X% = const. in Minkowski).




Wave extraction via ¥,

Wave-zone: adopt transverse-traceless (TT) gauge, all the information about the
radiative degrees of freedom contained in hj;:

by = ha(es)j + hx(ex)y.

(ey)i = Litj — — ¢ c;bj and (ex)ij = Z,-c,%j + qug,-.

Newman-Penrose scalar method, in wave zone: h = h, —ihy as

h = lim / dt/ dt"V,, N4 = —R.3,sn*m’n?

r— o0

Null-tetrad ¢ (in), n (out), m
—L-n=1=m-m,

Spin-weight —2 fields represent symmetric trace-free tensor fields on a sphere (in
our case R,3,5n*n") in terms of a complex scalar field. Freedom in the choice of

tetrad used in defining Wy!




Radiation “lives” at null infinity

Taking appropriate limit in M,
worldlines of increasingly distant
geodesic observers converge to null
geodesic generators of _# 7 (proper
time — Bondi time)!
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Compactification at /° leads to “piling

up” of waves, at _# T this effect does
not appear — waves leave the physical
spacetime through the boundary #7.

Observers situated at " astronomical” distances are modeled © (_j‘k.

E.g. computing the signal at a GW detector, # more realistically corresponds to
an observer sufficiently far way from the source to treat the radiation linearly, but
not so far away that cosmological effects have to be taken into account.




Spherical harmonics decomposition

Project onto spin-weighted s = —2 spherical harmonics Ye;,z, e.g.

5 : 5 .
Y, % \/ oA (1 —cost)’e ¢, v 2= \/ e (1 +cose)® e, (9)

2w pT
Arm = (Y, 2, Wyg) = /0 /0 V.Y, 2 sinfdodg (10)

Orthonormality:

dE : 2
e lim Armdt| | . (11)

Amplitude-phase split:

Arm(t) = A(t)e'D),




Radiated energy, linear and angular momentum

Radiated energy and linear & angular momentum:
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At finite extraction radius we need to perform “double Richardson extrapolation”
— in extraction radius and grid spacing.




Total energy, linear and angular momentum

Define surface integrals (ADM integrals)

1 ;

E(r) = F/ V&g g" (gij — gij.x) dSi, (16)
m S,
1 i s

P = 5 | VE(K ~giK) ds; (17)
| - i i

Si(r) = g¢i /5 VEx' (Km — Kép,) dS; (18)

which have to be evaluated in an asymptotically Cartesian coordinate system.

Mapw = lim E(r), P; = lim Pi(r), Ji= lim Ji(r)

r— o0

and the rest mass Mg can be defined as M3 = M3, — > i—13 PP

Bondi quantities: take values at fixed retarded time.
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black holes and
event horizons

T r =const

- - - - - - - - - - - -
L/ ./ ./ ./ ./ ./ \./ \/ ./ ./ ./ ./

@ Event horizon: null surface trac |
from it, BH is the spacetime region inside the EH.

@ Applying the rigorous definition in a numerical
spacetime wont work.

@ Reasonable approximation: trace back spherical null
surface starting well affer merger.

o level set method: EH @ f(x',t) = 0 -> gaﬁaaaﬁf =
tid; f++/(9"10: )2 —g*' "7 0; f0; f

g't

Ofi = i

@ re-initialize to deal with steepening gradients
@ Diener CQG20 (2003), Cohen+ CQG26 (2009) [geodesics]
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Apparent horizons: local in time

@ Trapped surface: spacelike 2-
surface with the property that
the ingoing and outoing
wavefronts decrease in area.
Light cones “tip over”!

@ AH: outermost "marginally”
trapped surface.

@ Characteristic speeds < c: AH is a outflow~boundary! “BH excision”.

@ Singularity theorems:
very general conditions: trapped surface => spacetime singularity

o Elliptic equation for constant expansion surfaces:
(Qi = K — ’I“a’l“bKab 1o Da’I“a

@ Solve directly with elliptic solver or more robust parabolic flow.

@ Thornburg, Liv. Rev. Rel. 10 (2007), BUT: flow is fast.
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Scales and mesh refinement

¢ pbinary black holes (compact objects) have many different length scales:

¢ the individual black holes
e (radiation efficiency ~ compactness of source)

e M1/m2 > 2 creates trouble!
e orbital scale: typically start at separations > 10 M

e wave scale for spherical harmonic (I,m):
1
A\=T, Twave = —C 10M < THnp < 16M
m

—3/2
Mworb = (%) Tof,nb(l()M) ~ 200M

¢ 1/r" background falloff
e ambiguity in boundary conditions:

e causally isolate boundaries -> 1000s of M




AMR computational infrastructure

e Adaptive mesh refinement significantly increases the complexity of a
numerical code!

e (Good news: For compact binaries, we do not need a general mesh
refinement algorithm, just let refinement boxes follow the objects (possible
exception with very dynamical matter fields).

e Coarser grids allow bigger time steps!

e cfficient algorithm needs to allow for different time steps for different
grids!

e more difficult to get a stable discretization -> Berger-Oliger
® increases complexity
¢ |0ad balancing becomes more difficult!

¢ outer grids typically dominate memory requirements, innermost grids
determine speed.



Berger-0Oliger mesh refinement

e Adaptive mesh refinement significantly increases the complexity of a
numerical code! ~
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Figure 1. Berger-Oliger time stepping details, showing a coarse and a fine grid, with time
advancing upwards. Left: Time stepping algorithm. First the coarse grid takes a large
time step, then the refined grid takes two smaller steps. The fine grid solution is then
injected into the coarse grid where the grids overlap. Right: Fine grid boundary conditions.
The boundary points of the refined grids are filled via interpolation. This may require
interpolation in space and in time.

¢ puffer points (ghost zones) are required for stability and accuracy
¢ with enough buffer points, one can avoid time interpolation (2nd order)

e restriction: from fine to coarse grid

* prolongation: from coarse to fine grid



Alternatives to finite differencing: Spectral methods

e Higher order finite difference can give us better accuracy, what is the
highest order we can use in a grid”?

¢ \Ve can always use all the points in the grid, i.e. use higher and higher
order as we refine the grid.

e Corresponds to representing our solution not piecewise by local
polynomials (Taylor series), but global basis functions defined over the
whole grid.

e Systematic approach: Search for solutions un in a finite-dimensional sub-
space Pn of some Hilbert space W, to the PDE L u = F, L some diff. op.

e Residual (error): R=Lun-F
e Expansion functions = trial functions : basis of Pn : (1, d2,N.., ON)
* U is expanded in terms of the trial functions: UN = Z un¢n

e Jest functions : family of functions (\p+1, Y2, ..., Pn) to deﬂne the smallness
of the residual R, by means of the Hilbert space scalar product:

n: (Y, R) =0



Classification of methods

e According to the trial functions ¢n:

e Finite difference: trial functions = overlapping local polynomials (low order)

e Finite element: trial functions = local smooth functions (polynomial of fixed
degree which are non-zero only on subdomains of U)

e Spectral: trial functions = complete basis of global smooth functions

(example: Fourier series)
zwn
UN = E Up Gn (T E U €

® For non-periodic functions, it has become standard to use Chebyshev
polynomials, orthogonal polynomials Tn(x): 1o T an —

T, (x) = cos(n arccos )
T, (cos¥) = cos(nd) 2 of
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Classification of methods

e According to the test functions Pn:

e collocation or pseudospectral method: test functions = delta functions
at special points, called collocation points: Yn= 0(X - Xn).

¢ |dea: use both the spectral and the “physical space” grid, compute
derivatives Iin the spectral representation, and source terms by
evaluating the un on the collocation points.

¢ c.g. multiplication of un x UN IS expensive In Fourier space, but cheap in
physical space.

e Galerkin method: test functions = trial functions: Yn = ¢n and each ¢n
satisfies the boundary conditions.

e tau method: (Lanczos 1938) test functions = (most of) trial functions: Pn =
¢én, but the ¢n do not satisfy the boundary conditions; the latter are
enforced by an additional set of equations.



Features of pseudo-spectral methods

¢ Exponential convergence for smooth functions.

11 ) . //
* + “global” method: BH excision preferred over e
punctures - keep clear of singularities =L L((SHPD
e ongoing work to combine spectral+FD ideas for ”\' L ?
punctures . <
* Need to cover computational domain by orthogonal - .
basis functions -> want simple geometrical domain. """ * * T
e Cover more complicated geometries by muiltiple AN S

domains (e.g. when 2 BHs are cut out)

e Chebyshev grid is more dense at the edges -> CFL

requires small At
e Dissipation is applied by throwing away higher frequencies.

e Best accuracy at decreased robustness, higher implementation
complexity.

e |deally suited and routinely applied for elliptic problems in NR.

ee o
e e e,



Features of Finite Elements methods

e Tailored for adaption to complicated
geometries.

¢ perfect for engineering
e rarely used in NR

e many free and commercial
software packages.

e combination with spectral
methods: spectral elements.



Alternatives to FD: Finite Volume Methods

e Calculate values at discrete places on a meshed geometry.

e "Finite volume": Integrate PDE over volume surrounding each node point on a
mesh, and convert divergence terms to surface integrals, evaluate as fluxes at

the surfaces of each finite volume.

e [ux entering a given volume is identical to that leaving the adjacent volume,

these methods are “conservative”.

e Consider conservation problem: O¢tb + V - f(u) =0

/&udv%—/ V-f(u)dv:OL
Si

1
8tu—|——/ f(u)-ndS =0
U; S,

R

Ui+1

L|R L|R
o\hsh
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alternative hardware: GP-GPU

e (General-purpose computing on graphics processing units

i ‘l?.'ll
e Graphics cards (games ...) are very fast at doing floating point opﬂ‘ar

e (GPU providing a functionally complete set of operations performed on arbitrary
bits -> GP-GPU.

e Hundreds to thousands of cores/GPU -> “Desktop supercomputer”

e Standard hardware for scientific purposes: NVIDIA cards with Fermi architecture,
fast hardware double precision.

e Dominant general-purpose GPU computing languages: OpenCL, CUDA
(NVIDIA, proprietary)Stream processing paradigm: Given a set of data (a stream),
a series of operations (kernel functions) is applied to each element in the stream.

e Limited memory capabilities: few GByte / card (~ MByte / compute core)

e Harder to program, but can already be used from within Matlab,
Mathematica, ....

¢ \/ery successful for problems with smaller memory requirements, e.g. Teukolsky
equation for BH perturbations.


http://en.wikipedia.org/wiki/Functional_completeness
http://en.wikipedia.org/wiki/Functional_completeness

Cost & error |l

e (Theoretical) computational cost scales with grid size, 3D: X Az 3AE 1
® X 2 resolution -> x 16 computational cost
¢ Real world software and hardware may behave in a more complicated way!
® [0 estimate the error, we need to understand convergence. n-th accurate:
X(Az) = Xg + eAz™ + O(Az™ )
e 3 resolutions determine Xo, e, n

® |ogic: is n consistent with what | think my algorithm is?
Yes -> estimate Xo, estimate error e.g. as Xo - X(best resolution).

¢ pbreak-even for 3D - n=4: x 2 resolution, 16 computational cost, error/16
e typical n for binary black holes: 6-10.

e spectral code: exponential convergence (SpEC, standard initial data
solvers), more accurate, harder to verify.

® mixed order schemes are common, and can lead to subtle problems, e.q.
RK4 + 6th order finite differencing + ...



Cost & error: some numbers

* Typical memory requirements for 3D BBH codes:

e ~ 100 grid functions (e.g. harmonic first order, BSSN: 21 GFs, 4 time levels)
e > 1003 boxes in 10 refinement levels: ~85 GByte.

e Typical memory/core in a compute cluster: 2 GByte

e standard processors ~ 12 cores => do need clusters for 3D physics

¢ use domain decomposition: split computational domain over several blocks,
1 block/core. Communicate between blocks after each time step.

* Typical time requirements for 3D BBH codes:

* (100 GFs) x (4 time levels) x (10 evaluations/GF/time level) x (100° points)
= 4 x 10° operations/time step => > 1 second/step on 3GHz core.

¢ 100 points to cover black hole region => Ax ~ At = 0.01 M

¢ 100 00O iterations for 1000 M ~ 1 day.

e cost increases for 2 BHs, 1 BH much smaller, outer regions (waves!), ...
¢ standard processors ~ 12 cores => do need clusters for 3D physics



Domain decomposition with ghost zones

processor ) processor |

. * A /wm

\ ghostzones

boundary of physical domain

e Break up computational domains, e.g. into logical cubes:

® cnlarge each cube by “ghost zones” depending on size of finite difference
stencil: e.g. 1 GZ for 2nd order centered, 2 GZ for 4th order centered, 4 GZ
for sixth order upwind ...

* Fill up ghost zones after each iteration by communicating between
OrOCESSOrs.

¢ [0oad balance: how to spread load evenly among processors when domains
are complicated, time steps not equal, ...



Domain Decomposition;: Communication

e 2 types of algorithms:
e overlapping grids: use interpolation

e touching grids: can exchange characteristic information, i.e. book-
keeping of the information in the hyperbolic system which travels across
domain boundaries.

e 2 types of communication technology
e Common address space: OpenMP, ...

¢ Message passing: MP| (message passing interface), ...
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MPI

program mpitest

100

implicit none

integer ierr,my rank,size,partner

CHARACTER*50 greeting

include 'mpif.h’
integer status(MPI_STATUS_SIZE)

call mpi_init(ierr)

call mpi comm_ rank(MPI_COMM WORLD,my rank,ierr)
call mpi comm size(MPI COMM wORLD,size,ierr)

write(greeting,100) my rank, size

if(my rank.eq.0) then
write(6,*) greeting
do partner=1,size-~l

call mpi_recv(greeting, 50, MPI_CHARACTER, partner, 1,

MPI_COMM WORLD, status, ierr)
write(6,*) greeting
end do
else
call mpi_send(greeting, 50, MPI_CHARACTER, 0, 1,
MPI CQMM . WORLD, ierr)
end if

if(my_ rank.eq.0) then
write(6,*) 'That is all for now!'
end if
call mpi finalize(ierr)
format( 'Hello World: processor ', 12,

end

of

o I2)

e QOutput from this code looks like:

Hello
Hello
Hello
Hello

world:
world:
world:
world:

processor
processor
processor
processor

That is all for now!

w N = O

,uswe MP}

Portabta Pmue:“ rog
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Scaling

e Strong scaling: how the solution time varies with the number of processors for a
fixed total problem size.

¢ \Weak scaling: how the solution time varies with the number of processors for a
fixed problem size per processor.

e Amdahl-Gunther law: (speedup S, parallel fraction of algorithm P, N cores, 8
coherency delay). Amdahl’s law for f = O.

. 1 Amdahlsches Gesetz
E— 1) | 20,00 ey — //‘;__4
]_ - 1 - n - ]_ 18.00 ! ] ! )
( n p _I_ /B( ’) v Paralleler Anteil
16.00+ + + + $ /‘ $ 50% 4
/ — T5%
\ , , 14.00 / - 90% —
e Real life: may be more interested in o ) — 5%
keeping execution time constant and el L L1/
: : : 2 [
Increase problem size with number of .00 A
PrOCEeSSOrs. 6.001—— /
l 4.00+ /’_;//,-»—"’—
* Throughput can be more important than | ze2=—
speed! How much science can you do O B EE R EEEE R
with a given amount of resources”? Anzahl Prozessoren -




OpenMP: multithreading

e OpenMP (Open Multiprocessing) is an API that supports multi-platform shared
memory multiprocessing programming in C, C++, andFortran.

e |t consists of a set of compiler directives, library routines, and environment

variables that influence run-time behavior. Parallel Task | Parallel Task Il Parallel Task Il
.-.-0-‘- 8 R 2
MasterThré;;
* Typlca”y Comblﬂe OpeﬂMP Wlth MP' Parallel Task | Parallel Task Il Parallel Task Il
. . « . Master Thread — —
e parallelization on each “node \ : —
with Open MP e :
. . . e o
e communication between nodes with MPI
int main(int argc, char *argv[]) {
#include <stdio.h> const int N = 100000;
int i, a[N];
int main(void)
{ #pragma omp parallel for
#pragma omp parallel (i = 0; 1 < N; i++)
printf("Hello, world.\n"); a[i] = 2 * i;
0;

} 0;


http://en.wikipedia.org/wiki/Application_programming_interface
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http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Environment_variable
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Figure 2. Results from weak scaling tests evolving the Einstein equations on a mesh
refinement grid structure with nine levels. This shows the time required per grid point, where
smaller numbers are better (the ideal scaling is a horizontal line). This demonstrates excellent
scalability to up to more than 10,000 cores. Including hydrodynamics approximately doubles
calculation times without negatively influencing scalability.



Moore’s law

e Processor performance doubles every ~ 18 months

e Modern CPUs have

iIncreasingly more cores!

e Modern supercomputers

have more and more
CPUs!
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