A Survey of Kleinian Groups: Infinite Covolume

Mahan Mj, Department of Mathematics, RKM Vivekananda University.

Fuchsian Groups

G – group of Mobius transformations $Mob(\widehat{\mathbb{H}})$

Metric = $ds^2 = \frac{dx^2 + dy^2}{y^2}$ on upper half plane \mathbb{H}^2 . Metric blows up as on approaches y = 0 (resp. z = 0). Geodesics are semicircles meeting the boundary at rig angles.

Discrete subgroup G of group of Mobius transformations $Mob(\Delta) = Mob(\mathbb{H}^2)$ called Fuchsian Group, discovered by Poincare.

Fuchsian Groups

G – group of Mobius transformations $Mob(\widehat{\mathbb{H}})$ = $PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$ Metric = $ds^2 = \frac{dx^2 + dy^2}{y^2}$ on upper half plane \mathbb{H}^2 . Metric blows up as on approaches y = 0 (resp. z =Geodesics are semicircles meeting the boundary at

Discrete subgroup G of group of Mobius transformations $Mob(\Delta) = Mob(\mathbb{H}^2)$ called Fuchsian Group, discovered by Poincare.

Fuchsian Groups

G – group of Mobius transformations $Mob(\widehat{\mathbb{H}})$ = $PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$

Metric = $ds^2 = \frac{dx^2 + dy^2}{v^2}$ on upper half plane \mathbb{H}^2 .

Metric blows up as on approaches y = 0 (resp. z = 0). Geodesics are semicircles meeting the boundary at right

angles.

Discrete subgroup *G* of group of Mobius transformations $Mob(\Delta) = Mob(\mathbb{H}^2)$ called Fuchsian Group, discovered by Poincare.

Fuchsian Groups

 $\begin{array}{l} G - \text{group of Mobius transformations } \textit{Mob}(\widehat{\mathbb{H}}) \\ = \textit{PSL}_2(\mathbb{R}) = \textit{lsom}(\mathbb{H}^2) \\ \text{Metric} = \textit{ds}^2 = \frac{\textit{dx}^2 + \textit{dy}^2}{\textit{v}^2} \text{ on upper half plane } \mathbb{H}^2. \end{array}$

Metric blows up as on approaches y = 0 (resp. z = 0). Geodesics are semicircles meeting the boundary at right angles.

Discrete subgroup G of group of Mobius transformations $Mob(\Delta) = Mob(\mathbb{H}^2)$ called Fuchsian Group, discovered by Poincare.

Fuchsian Groups

G – group of Mobius transformations $Mob(\widehat{\mathbb{H}})$ = $PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$ Metric = $ds^2 = \frac{dx^2 + dy^2}{y^2}$ on upper half plane \mathbb{H}^2 . Metric blows up as on approaches y = 0 (resp. z = 0). Geodesics are semicircles meeting the boundary at right angles. Discrete subgroup *G* of group of Mobius transformations $Mob(\Delta) = Mob(\mathbb{H}^2)$ called Fuchsian Group, discovered by

Poincare.

Fuchsian Groups

G – group of Mobius transformations $Mob(\widehat{\mathbb{H}})$ = $PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$ Metric = $ds^2 = \frac{dx^2 + dy^2}{y^2}$ on upper half plane \mathbb{H}^2 . Metric blows up as on approaches y = 0 (resp. z = 0). Geodesics are semicircles meeting the boundary at right angles.

Discrete subgroup G of group of Mobius transformations $Mob(\Delta) = Mob(\mathbb{H}^2)$ called Fuchsian Group, discovered by Poincare.

Fuchsian Groups

G – group of Mobius transformations $Mob(\widehat{\mathbb{H}})$ = $PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$ Metric = $ds^2 = \frac{dx^2 + dy^2}{y^2}$ on upper half plane \mathbb{H}^2 . Metric blows up as on approaches y = 0 (resp. z = 0). Geodesics are semicircles meeting the boundary at right angles.

Discrete subgroup *G* of group of Mobius transformations $Mob(\Delta) = Mob(\mathbb{H}^2)$ called Fuchsian Group, discovered by Poincare.

イロン イロン イヨン イヨン

Kleinian Groups: 3 Perspectives

Discrete subgroup *G* of group of Mobius transformations $Mob(\widehat{\mathbb{C}})$ Complex Analysis/Dynamics Discrete subgroup *G* of $PSL_2(\mathbb{C})$ – Lie group theoretic. Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$ Geometry

イロン イロン イヨン イヨン

Kleinian Groups: 3 Perspectives

Discrete subgroup *G* of group of Mobius transformations $Mob(\widehat{\mathbb{C}})$ Complex Analysis/Dynamics Discrete subgroup *G* of $PSL_2(\mathbb{C})$ – Lie group theoretic. Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$ Geometry

ヘロト ヘ戸ト ヘヨト ヘヨト

Kleinian Groups: 3 Perspectives

Discrete subgroup *G* of group of Mobius transformations $Mob(\widehat{\mathbb{C}})$ Complex Analysis/Dynamics Discrete subgroup *G* of $PSL_2(\mathbb{C})$ – Lie group theoretic. Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$ Geometry

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Kleinian Groups: 3 Perspectives

Discrete subgroup *G* of group of Mobius transformations $Mob(\widehat{\mathbb{C}})$ Complex Analysis/Dynamics Discrete subgroup *G* of $PSL_2(\mathbb{C})$ – Lie group theoretic. Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$ Geometry

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Kleinian Groups: 3 Perspectives

Discrete subgroup *G* of group of Mobius transformations $Mob(\widehat{\mathbb{C}})$ Complex Analysis/Dynamics Discrete subgroup *G* of $PSL_2(\mathbb{C})$ – Lie group theoretic. Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$ Geometry

Kleinian Groups: 3 Perspectives

Discrete subgroup *G* of group of Mobius transformations $Mob(\widehat{\mathbb{C}})$ Complex Analysis/Dynamics Discrete subgroup *G* of $PSL_2(\mathbb{C})$ – Lie group theoretic. Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$ Geometry

Kleinian Groups: 3 Perspectives

Discrete subgroup *G* of group of Mobius transformations $Mob(\widehat{\mathbb{C}})$ Complex Analysis/Dynamics Discrete subgroup *G* of $PSL_2(\mathbb{C})$ – Lie group theoretic. Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$ Geometry

$\widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 .

Boundary = ideal end-points of geodesic rays. Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

Metric = $ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}$ on upper half space. Metric blows up as on approaches y = 0 (resp. z = 0).

$\widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 . Boundary = ideal end-points of geodesic rays.

Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

Metric = $ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}$ on upper half space. Metric blows up as on approaches y = 0 (resp. z = 0).

 $\widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 . Boundary = ideal end-points of geodesic rays. Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

Metric = $as^2 = \frac{1}{z^2}$ on upper nail space. Metric blows up as on approaches y = 0 (resp. z = 0).

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

 $\widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 . Boundary = ideal end-points of geodesic rays. Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

Metric = $ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}$ on upper half space. Metric blows up as on approaches y = 0 (resp. z = 0).

イロト 不得 とくほと くほとう

 $\widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 . Boundary = ideal end-points of geodesic rays. Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

Metric = $ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}$ on upper half space. Metric blows up as on approaches y = 0 (resp. z = 0).

くロト (過) (目) (日)

 $\widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 . Boundary = ideal end-points of geodesic rays. Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

Metric = $ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}$ on upper half space. Metric blows up as on approaches y = 0 (resp. z = 0).

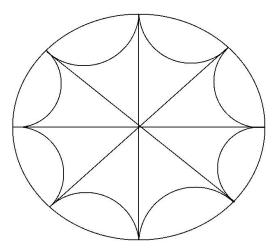
イロン イロン イヨン イヨン

 $\widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 . Boundary = ideal end-points of geodesic rays. Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

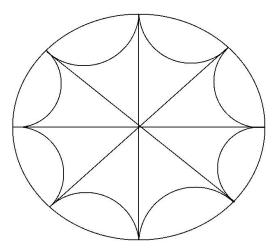
Metric = $ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}$ on upper half space. Metric blows up as on approaches y = 0 (resp. z = 0).

イロン イロン イヨン イヨン

Example



Example



One way to generalize Fuchsian groups:

Fuchsian Group as an example of a Kleinian group Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group of the kind described above, limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

< □ > < 同 > < 三 > <

One way to generalize Fuchsian groups: Fuchsian Group as an example of a Kleinian group

Limit set $\Lambda_G =$ Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group of the kind described above, limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

< □ > < 同 > < 三 > <

One way to generalize Fuchsian groups:

Fuchsian Group as an example of a Kleinian group Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group of the kind described above, limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

One way to generalize Fuchsian groups:

Fuchsian Group as an example of a Kleinian group

Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group of the kind described above, limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

< ロ > < 同 > < 三 > .

One way to generalize Fuchsian groups:

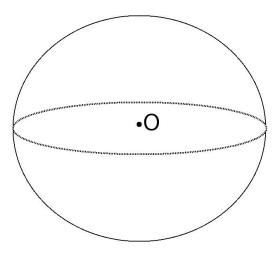
Fuchsian Group as an example of a Kleinian group

Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group of the kind described above, limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

< ロ > < 同 > < 三 >



Complement: Two round open discs.

On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.) $\widehat{\mathbb{C}} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* of *G*.

Complement: Two round open discs.

On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms.

Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.) $\widehat{\mathbb{C}} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* of *G*.

ヘロト 人間 とくほとく ほとう

Complement: Two round open discs. On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.)

Complement: Two round open discs.

On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.) $\widehat{\mathbb{C}}$

 $\widehat{\mathbb{C}} \setminus \Lambda_{G} = \Omega_{G}$ is called the *domain of discontinuity* of *G*.

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Quasifuchsian groups

Next set of examples of Kleinian groups come from trying to put different conformal structures on the two complementary pieces of the domain of discontinuity.

IMPORTANT NOTE: Conformal Structure on a 2 manifold is EQUIVALENT TO

Constant curvature metric (for us curvature = -1) which is EQUIVALENT TO structure as a non-singular algebraic curve.

Poincare-Koebe-Klein Uniformization Theorem.

ヘロト ヘアト ヘヨト ヘ

Quasifuchsian groups

Next set of examples of Kleinian groups come from trying to put different conformal structures on the two complementary pieces of the domain of discontinuity.

IMPORTANT NOTE: Conformal Structure on a 2 manifold is EQUIVALENT TO

Constant curvature metric (for us curvature = -1) which is EQUIVALENT TO structure as a non-singular algebraic curve.

Poincare-Koebe-Klein Uniformization Theorem.

イロト イヨト イヨト イ

Quasifuchsian groups

Next set of examples of Kleinian groups come from trying to put different conformal structures on the two complementary pieces of the domain of discontinuity.

IMPORTANT NOTE: Conformal Structure on a 2 manifold is EQUIVALENT TO

Constant curvature metric (for us curvature = -1)

which is EQUIVALENT TO structure as a non-singular algebraic curve.

Poincare-Koebe-Klein Uniformization Theorem.

イロト イヨト イヨト イ

Quasifuchsian groups

Next set of examples of Kleinian groups come from trying to put different conformal structures on the two complementary pieces of the domain of discontinuity.

IMPORTANT NOTE: Conformal Structure on a 2 manifold is EQUIVALENT TO

Constant curvature metric (for us curvature = -1) which is EQUIVALENT TO structure as a non-singular algebraic curve.

Poincare-Koebe-Klein Uniformization Theorem.

< □ > < 同 > < 三 > <

Quasifuchsian groups

Next set of examples of Kleinian groups come from trying to put different conformal structures on the two complementary pieces of the domain of discontinuity.

IMPORTANT NOTE: Conformal Structure on a 2 manifold is EQUIVALENT TO

Constant curvature metric (for us curvature = -1) which is EQUIVALENT TO structure as a non-singular algebraic curve.

Poincare-Koebe-Klein Uniformization Theorem.

< □ > < 同 > < 三 > <

Ahlfors-Bers simultaneous Uniformization Theorem:

Given any two conformal structures τ_1, τ_2 on a closed topological 2-manifold, there is a discrete subgroup *G* of $Mob(\widehat{\mathbb{C}})$ whose limit set is *topologically* a circle, and whose domain of discontinuity quotients to two Riemann surfaces

 $\tau_1, \tau_2.$

Limit set is the image under a quasiconformal map of the round circle.

イロト イポト イヨト イヨ

Ahlfors-Bers simultaneous Uniformization Theorem:

Given any two conformal structures τ_1, τ_2 on a closed

topological 2-manifold, there is a discrete subgroup G of

Mob(C) whose limit set is *topologically* a circle, and whose domain of discontinuity quotients to two Riemann surfaces

 $\tau_1, \tau_2.$

Limit set is the image under a quasiconformal map of the round circle.

イロト イポト イヨト イヨ

Ahlfors-Bers simultaneous Uniformization Theorem:

Given any two conformal structures τ_1, τ_2 on a closed topological 2-manifold, there is a discrete subgroup *G* of $Mob(\widehat{\mathbb{C}})$ whose limit set is *topologically* a circle, and whose domain of discontinuity quotients to two Riemann surfaces

 $\tau_1, \tau_2.$

Limit set is the image under a quasiconformal map of the round circle.

イロト イポト イヨト イヨ

Ahlfors-Bers simultaneous Uniformization Theorem:

Given any two conformal structures τ_1, τ_2 on a closed topological 2-manifold, there is a discrete subgroup *G* of $Mob(\widehat{\mathbb{C}})$ whose limit set is *topologically* a circle, and whose domain of discontinuity quotients to two Riemann surfaces

 $\tau_{1}, \tau_{2}.$

Limit set is the image under a quasiconformal map of the round circle.

イロト イポト イヨト イヨト

Ahlfors-Bers simultaneous Uniformization Theorem:

Given any two conformal structures τ_1, τ_2 on a closed topological 2-manifold, there is a discrete subgroup *G* of $Mob(\widehat{\mathbb{C}})$ whose limit set is *topologically* a circle, and whose domain of discontinuity quotients to two Riemann surfaces

 $\tau_{1}, \tau_{2}.$

Limit set is the image under a quasiconformal map of the round circle.

イロト イポト イヨト イヨト

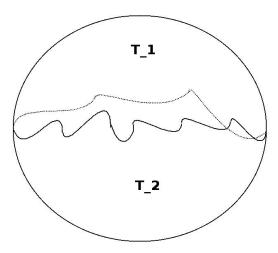
Ahlfors-Bers simultaneous Uniformization Theorem:

Given any two conformal structures τ_1, τ_2 on a closed topological 2-manifold, there is a discrete subgroup *G* of $Mob(\widehat{\mathbb{C}})$ whose limit set is *topologically* a circle, and whose domain of discontinuity quotients to two Riemann surfaces

 $\tau_{1}, \tau_{2}.$

Limit set is the image under a quasiconformal map of the round circle.

イロト イポト イヨト イヨト



Complexity of quasi Fuchsian group measured in terms of Hausdorff dimension.

How about geometric picture of these groups?

Convex hull CH_G of limit set Λ_G = smallest closed convex subset of \mathbb{H}^3 invariant under G.

Can be constructed by joining all pairs of points on limit set by bi-infinite geodesics and iterating this construction.

Quotient of CH_G by G is homeomorphic to $S \times I$, where $\pi_1(S)$ is isomorphic to G.

Called *Convex core* CC(M) of $M = \mathbb{H}^3/G$.

Complexity of quasi Fuchsian group measured in terms of Hausdorff dimension.

How about geometric picture of these groups?

Convex hull CH_G of limit set Λ_G = smallest closed convex subset of \mathbb{H}^3 invariant under G.

Can be constructed by joining all pairs of points on limit set by bi-infinite geodesics and iterating this construction.

Quotient of CH_G by G is homeomorphic to $S \times I$, where $\pi_1(S)$ is isomorphic to G.

Called *Convex core* CC(M) of $M = \mathbb{H}^3/G$.

Complexity of quasi Fuchsian group measured in terms of Hausdorff dimension.

How about geometric picture of these groups? Convex hull CH_G of limit set Λ_G = smallest closed convex subset of \mathbb{H}^3 invariant under *G*.

Can be constructed by joining all pairs of points on limit set by bi-infinite geodesics and iterating this construction.

Quotient of CH_G by G is homeomorphic to $S \times I$, where $\pi_1(S)$ is isomorphic to G.

Called *Convex core* CC(M) of $M = \mathbb{H}^3/G$.

Complexity of quasi Fuchsian group measured in terms of Hausdorff dimension.

How about geometric picture of these groups?

Convex hull CH_G of limit set Λ_G = smallest closed convex subset of \mathbb{H}^3 invariant under *G*.

Can be constructed by joining all pairs of points on limit set by bi-infinite geodesics and iterating this construction.

Quotient of CH_G by G is homeomorphic to $S \times I$, where $\pi_1(S)$ is isomorphic to G.

イロン イロン イヨン イヨン

Called *Convex core CC*(*M*) of $M = \mathbb{H}^3/G$.

Thickness (= 'length' of the *I* direction) of CH_G/G is a

eometric measure of the complexity of the group G

Complexity of quasi Fuchsian group measured in terms of Hausdorff dimension.

How about geometric picture of these groups?

Convex hull CH_G of limit set Λ_G = smallest closed convex subset of \mathbb{H}^3 invariant under *G*.

Can be constructed by joining all pairs of points on limit set by bi-infinite geodesics and iterating this construction.

Quotient of CH_G by *G* is homeomorphic to $S \times I$, where $\pi_1(S)$ is isomorphic to *G*.

イロン イロン イヨン イヨン

Called *Convex core CC(M)* of $M = \mathbb{H}^3/G$. Thickness (= 'length' of the *I* direction) of CH_G/G is a geometric measure of the complexity of the group *G*.

Complexity of quasi Fuchsian group measured in terms of Hausdorff dimension.

How about geometric picture of these groups?

Convex hull CH_G of limit set Λ_G = smallest closed convex subset of \mathbb{H}^3 invariant under *G*.

Can be constructed by joining all pairs of points on limit set by bi-infinite geodesics and iterating this construction.

Quotient of CH_G by *G* is homeomorphic to $S \times I$, where $\pi_1(S)$ is isomorphic to *G*.

Called *Convex core* CC(M) of $M = \mathbb{H}^3/G$.

Thickness (= 'length' of the *I* direction) of CH_G/G is a geometric measure of the complexity of the group *G*.

ヘロト ヘワト ヘビト ヘビト

Complexity of quasi Fuchsian group measured in terms of Hausdorff dimension.

How about geometric picture of these groups?

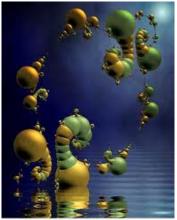
Convex hull CH_G of limit set Λ_G = smallest closed convex subset of \mathbb{H}^3 invariant under *G*.

Can be constructed by joining all pairs of points on limit set by bi-infinite geodesics and iterating this construction.

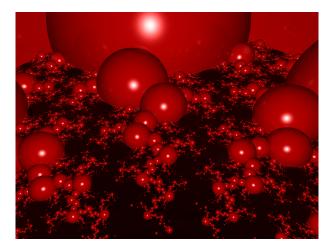
Quotient of CH_G by *G* is homeomorphic to $S \times I$, where $\pi_1(S)$ is isomorphic to *G*.

イロト イポト イヨト イヨト

Called *Convex core* CC(M) of $M = \mathbb{H}^3/G$.



"Indra Family," by Jos Leys



Limits of quasiFuchsian groups:

Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

Lipman Bers:

- Examples exist.
- "The debris of the degenerating Riemann surface is lost in the limit set."

ヘロト 人間 とくほとくほとう

Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity.

2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

Lipman Bers:

- Examples exist.
- "The debris of the degenerating Riemann surface is lost in the limit set."

ヘロン 人間 とくほ とくほ とう

Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

Examples exist

 "The debris of the degenerating Riemann surface is lost in the limit set."

・ロン ・聞と ・ ほと ・ ほとう

Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate)

OR $I \to (-\infty, \infty)$ (doubly degenerate).

Lipman Bers:

Examples exist.

 "The debris of the degenerating Riemann surface is lost in the limit set."

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

Lipman Bers:

- Examples exist.
- "The debris of the degenerating Riemann surface is lost in the limit set."

ヘロン 人間 とくほ とくほ とう

Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

Lipman Bers:

• Examples exist.

 "The debris of the degenerating Riemann surface is lost in the limit set."

ヘロン 人間 とくほ とくほ とう

Limits of quasiFuchsian groups:

Thickness of Convex core CC(M) tends to infinity.

2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 .

i.e. $\textit{I} \rightarrow [0,\infty)$ (simply degenerate)

OR $I \to (-\infty,\infty)$ (doubly degenerate).

Lipman Bers:

• Examples exist.

• "The debris of the degenerating Riemann surface is lost in the limit set."

くロト (過) (目) (日)

Limits of quasiFuchsian groups:

Thickness of Convex core CC(M) tends to infinity.

2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 .

i.e. $\textit{I} \rightarrow [0,\infty)$ (simply degenerate)

OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

Lipman Bers:

- Examples exist.
- "The debris of the degenerating Riemann surface is lost in the limit set."

くロト (過) (目) (日)

• Thurston's Double Limit Theorem: Limits always Exist.

 Question (Thurston): What does limit set go to? In doubly degenerate case limit set of limiting group is all of C.

イロト イポト イヨト イヨト

• Problem (Thurston): Understand these limits.

- Thurston's Double Limit Theorem: Limits always Exist.
- Question (Thurston): What does limit set go to? In doubly degenerate case limit set of limiting group is all of C.

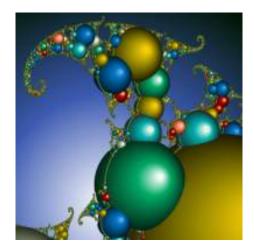
イロト イポト イヨト イヨト

• Problem (Thurston): Understand these limits.

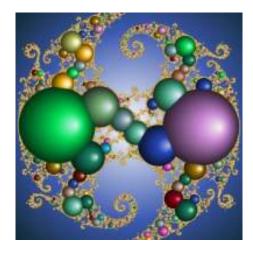
- Thurston's Double Limit Theorem: Limits always Exist.
- Question (Thurston): What does limit set go to? In doubly degenerate case limit set of limiting group is all of C.

イロト イポト イヨト イヨト

• Problem (Thurston): Understand these limits.



Mahan Mj



Mahan Mj

Definition: *M* is a 3-manifold homeomorphic to $S \times \mathbb{R}$. *E* is a geometrically infinite end, i.e. non-compact part of CC(M). σ_i

is a sequence of simple closed geodesics **on** *S* whose geodesic realizations in *M* exit *E*. "Hausdorff limit" of σ_i is the **ending lamination** \mathcal{L}_E .

Here, Lamination is a foliation of a compact subset of S by geodesics on S.

イロト イポト イヨト イヨト

Definition: *M* is a 3-manifold homeomorphic to $S \times \mathbb{R}$. *E* is a geometrically infinite end, i.e. non-compact part of CC(M). σ_i is a sequence of simple closed geodesics on *S* whose geodesic realizations in *M* exit *E*. "Hausdorff limit" of σ_i is the ending lamination \mathcal{L}_E . Here, Lamination is a foliation of a compact subset of *S* by geodesics on *S*.

イロト イポト イヨト イヨト

Definition: *M* is a 3-manifold homeomorphic to $S \times \mathbb{R}$. *E* is a geometrically infinite end, i.e. non-compact part of CC(M). σ_i is a sequence of simple closed geodesics **on** *S* whose geodesic realizations in *M* exit *E*. "Hausdorff limit" of σ_i is the **ending lamination** \mathcal{L}_E . Here, Lamination is a foliation of a compact subset of *S* by geodesics on *S*.

イロト イポト イヨト イヨト

Definition: *M* is a 3-manifold homeomorphic to $S \times \mathbb{R}$. *E* is a geometrically infinite end, i.e. non-compact part of CC(M). σ_i is a sequence of simple closed geodesics **on** *S* whose geodesic realizations in *M* exit *E*. "Hausdorff limit" of σ_i is the **ending lamination** \mathcal{L}_E . Here, Lamination is a foliation of a compact subset of *S* by geodesics on *S*.

(日) (四) (日) (日) (日)

Definition: *M* is a 3-manifold homeomorphic to $S \times \mathbb{R}$. *E* is a geometrically infinite end, i.e. non-compact part of CC(M). σ_i is a sequence of simple closed geodesics **on** *S* whose geodesic realizations in *M* exit *E*. "Hausdorff limit" of σ_i is the **ending lamination** \mathcal{L}_E .

Here, Lamination is a foliation of a compact subset of S by geodesics on S.

(日) (四) (日) (日) (日)

Definition: *M* is a 3-manifold homeomorphic to $S \times \mathbb{R}$. *E* is a geometrically infinite end, i.e. non-compact part of CC(M). σ_i is a sequence of simple closed geodesics **on** *S* whose geodesic realizations in *M* exit *E*. "Hausdorff limit" of σ_i is the **ending lamination** \mathcal{L}_E .

Here, Lamination is a foliation of a compact subset of S by geodesics on S.

Thurston's Conjectures:

1) Ending Lamination Conjecture (Proved by Minsky,

Brock-Canary-Minsky): Ending laminations (pair of these in the doubly degenerate case) along with conformal structure on quotient of domain of discontinuity (in the simply degenerate case) is a complete invariant of the isometry type of *M*.

In the general framework of

Rigidity = Topology Implies Geometry

Perhaps the only real case of rigidity in infinite volume manifolds

Thurston's Conjectures:

1) Ending Lamination Conjecture (Proved by Minsky, Brock-Canary-Minsky): Ending laminations (pair of these in the doubly degenerate case) along with conformal structure on quotient of domain of discontinuity (in the simply degenerate case) is a complete invariant of the isometry type of *M*. In the general framework of **Rigidity = Topology Implies Geometry** Perhaps the only real case of rigidity in infinite volume manifolds

ヘロト ヘ戸ト ヘヨト ヘヨト

Thurston's Conjectures:

 Ending Lamination Conjecture (Proved by Minsky, Brock-Canary-Minsky): Ending laminations (pair of these in the doubly degenerate case) along with conformal structure on quotient of domain of discontinuity (in the simply degenerate case) is a complete invariant of the isometry type of *M*.
 In the general framework of **Rigidity = Topology Implies Geometry** Perhaps the only real case of rigidity in infinite volume manifolds

<ロト <回 > < 注 > < 注 > 、

Thurston's Conjectures:

1) Ending Lamination Conjecture (Proved by Minsky, Brock-Canary-Minsky): Ending laminations (pair of these in the doubly degenerate case) along with conformal structure on quotient of domain of discontinuity (in the simply degenerate case) is a complete invariant of the isometry type of M.

In the general framework of **Rigidity = Topology Implies Geometry** Perhaps the only real case of rigidity in infinite volume manifolds

Thurston's Conjectures:

1) Ending Lamination Conjecture (Proved by Minsky, Brock-Canary-Minsky): Ending laminations (pair of these in the doubly degenerate case) along with conformal structure on quotient of domain of discontinuity (in the simply degenerate case) is a complete invariant of the isometry type of M.

In the general framework of

Rigidity = Topology Implies Geometry Perhaps the only real case of rigidity in infinite volume manifolds

Thurston's Conjectures:

1) Ending Lamination Conjecture (Proved by Minsky, Brock-Canary-Minsky): Ending laminations (pair of these in the doubly degenerate case) along with conformal structure on quotient of domain of discontinuity (in the simply degenerate case) is a complete invariant of the isometry type of M.

In the general framework of

Rigidity = Topology Implies Geometry

Perhaps the only real case of rigidity in infinite volume manifolds

Thurston's Conjectures:

1) Ending Lamination Conjecture (Proved by Minsky, Brock-Canary-Minsky): Ending laminations (pair of these in the doubly degenerate case) along with conformal structure on quotient of domain of discontinuity (in the simply degenerate case) is a complete invariant of the isometry type of M.

In the general framework of

Rigidity = Topology Implies Geometry

Perhaps the only real case of rigidity in infinite volume manifolds

Thurston's Conjectures (Contd.):

2) Structure of limit set Conjecture (proved: M–): Limit set = quotient of $S^1 = \partial \mathbb{H}^2 = \partial \widetilde{S}$ by relation identifying end-points of bi-infinite leaves of ending laminations.

In the general framework of Dynamics on Boundary = Geometry Inside

Thurston's Conjectures (Contd.): 2) **Structure of limit set Conjecture** (proved: M–):

Limit set = quotient of $S^1 = \partial \mathbb{H}^2 = \partial \widetilde{S}$ by relation identifying end-points of bi-infinite leaves of ending laminations.

In the general framework of Dynamics on Boundary = Geometry Inside

Thurston's Conjectures (Contd.): 2) **Structure of limit set Conjecture** (proved: M–): Limit set = quotient of $S^1 = \partial \mathbb{H}^2 = \partial \widetilde{S}$ by relation identifying end-points of bi-infinite leaves of ending laminations.

In the general framework of Dynamics on Boundary = Geometry Inside

Thurston's Conjectures (Contd.): 2) **Structure of limit set Conjecture** (proved: M–): Limit set = quotient of $S^1 = \partial \mathbb{H}^2 = \partial \widetilde{S}$ by relation identifying end-points of bi-infinite leaves of ending laminations.

In the general framework of Dynamics on Boundary = Geometry Inside

ヘロト ヘ戸ト ヘヨト ヘヨト

Thurston's Conjectures (Contd.): 2) **Structure of limit set Conjecture** (proved: M–): Limit set = quotient of $S^1 = \partial \mathbb{H}^2 = \partial \widetilde{S}$ by relation identifying end-points of bi-infinite leaves of ending laminations.

In the general framework of Dynamics on Boundary = Geometry Inside

Thurston's Conjectures (Contd.):

2) Structure of limit set Conjecture (proved: M–): Limit set = quotient of $S^1 = \partial \mathbb{H}^2 = \partial \widetilde{S}$ by relation identifying end-points of bi-infinite leaves of ending laminations.

In the general framework of **Dynamics on Boundary = Geometry Inside**

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions:
 If Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point 0 ∈ ℝ³) the natural map i : Γ → ℝ³ extends continuously to a map i : Γ → ℝ³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

ヘロン 人間 とくほ とくほ とう

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions: If Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point 0 ∈ H³) the natural map i : Γ → H³ extends continuously to a map î : Γ̂ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

ヘロト ヘ戸ト ヘヨト ヘヨト

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions: If Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point 0 ∈ H³) the natural map i : Γ → H³ extends continuously to a map î : Γ̂ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

ヘロト ヘ戸ト ヘヨト ヘヨト

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions: If Γ is the Cayley graph of a f.g. Kleinian group *G*, then (fixing a base point 0 ∈ H³) the natural map *i* : Γ → H³ extends continuously to a map *î* : Γ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

くロト (過) (目) (日)

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions: If Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point 0 ∈ H³) the natural map i : Γ → H³ extends continuously to a map î : Γ̂ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

ヘロト 人間 ト ヘヨト ヘヨト

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions:
 If Γ is the Cayley graph of a f.g. Kleinian group *G*, then (fixing a base point 0 ∈ H³) the natural map *i* : Γ → H³ extends continuously to a map *i* : Γ → H³ between the compactifications
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions: If Γ is the Cayley graph of a f.g. Kleinian group *G*, then (fixing a base point 0 ∈ H³) the natural map *i* : Γ → H³ extends continuously to a map *î* : Γ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions: If Γ is the Cayley graph of a f.g. Kleinian group *G*, then (fixing a base point 0 ∈ H³) the natural map *i* : Γ → H³ extends continuously to a map *î* : Γ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

ヘロト 人間 ト ヘヨト ヘヨト

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions:
 If Γ is the Cayley graph of a f.g. Kleinian group *G*, then (fixing a base point 0 ∈ H³) the natural map *i* : Γ → H³ extends continuously to a map *î* : Γ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions:
 If Γ is the Cayley graph of a f.g. Kleinian group *G*, then (fixing a base point 0 ∈ H³) the natural map *i* : Γ → H³ extends continuously to a map *î* : Γ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions:
 If Γ is the Cayley graph of a f.g. Kleinian group *G*, then (fixing a base point 0 ∈ H³) the natural map *i* : Γ → H³ extends continuously to a map *î* : Γ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Totally Degenerate Surface Groups

Consequences:

- Connected limit sets of f.g. (3d) Kleinian groups are locally connected
- There exist continuous boundary extensions:
 If Γ is the Cayley graph of a f.g. Kleinian group *G*, then (fixing a base point 0 ∈ H³) the natural map *i* : Γ → H³ extends continuously to a map *î* : Γ → H³ between the compactifications.
- Point pre-images = end-points of leaves of ending lamination: explicit parametrization of limit set = locus of chaotic dynamics.

Question: (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group *L*, is Comm(Γ) discrete?

Answer: (M–) Yes, if a) The limit set $\Lambda_{\Gamma} \subset \partial_{F}G$ (=Furstenberg boundary) is not invariant under a simple factor, OR b) Γ is finitely generated and $G = PSL_2(\mathbb{C})$.

Question: (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group *L*, is Comm(Γ) discrete?

Answer: (M-) Yes, if

a) The limit set $\Lambda_{\Gamma} \subset \partial_{F}G$ (=Furstenberg boundary) is not invariant under a simple factor, OR b) Γ is finitely generated and $G = PSL_2(\mathbb{C})$.

Question: (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group *L*, is Comm(Γ) discrete?

Answer: (M-) Yes, if

a) The limit set $\Lambda_{\Gamma} \subset \partial_{F}G$ (=Furstenberg boundary) is not invariant under a simple factor, OR

b) Γ is finitely generated and $G = \mathsf{PSL}_2(\mathbb{C})$.

Question: (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group *L*, is Comm(Γ) discrete?

Answer: (M-) Yes, if

a) The limit set $\Lambda_{\Gamma} \subset \partial_{F}G$ (=Furstenberg boundary) is not invariant under a simple factor, OR

h) E is finitely generated and C DEL

b) Γ is finitely generated and $G = \mathsf{PSL}_2(\mathbb{C})$.