
Polycyclic groups

Eamonn O’Brien

September 2010

Introduction
Let F be free group on a non-empty set X.

A group presentation is a set consisting of X and a set, R, of words in
X.

If R is the normal closure of R in F , the group G defined by the presen-
tation is F/R and is written 〈X : R〉.

Example 1.
G = 〈a, b|a4, b2, ab = a−1〉

H = 〈a, b|a4, b2 = a2, ab = a−1〉

What can we discover about the structure of G or H?
One area of substantial progress at algorithmic and computational level

is in the study of particular quotients of G.

Examples include abelian, p-quotient, soluble quotients.

May discover that G infinite, by examining the invariants of its largest
abelian quotient.

Can compute “useful” presentations for other quotients of the group:
those which have prime-power order, are nilpotent, or are soluble.

Central feature of these presentations is that they provide a solution to
the word problem:

Decide if two words in the generators X represent the same element of
G.

Outline of lecture series

� Abelian quotients.

� Polycyclic generating sequences: basic properties.

1

� Polycyclic presentations: consistency and collection.

� Constructing polycyclic presentations.

� Generating descriptions of p-groups.

� An application: SmallGroups.

� Constructing automorphism groups of p-groups.

� Deciding isomorphism of p-groups.

2

Abelian quotients

Lemma 2. G/N abelian if and only if N ≥ G′.

Largest abelian quotient of G is G/G′.

Structure of this abelian group can be determined fairly readily.

Definition 3. A is in Smith Normal Form if for some k ≥ 0 the entries
di = Ai,i for 1 ≤ i ≤ k are positive, A has no other non-zero entries, and
di|di+1 for 1 ≤ i ≤ k.

Determine the structure of G/G′

1. Abelianise the presentation ofG by adding relations to makeG abelian.

2. G/G′ ∼= Zn/B where B is a subgroup of Zn.

3. Describe B by a matrix S(B).

4. To obtain the structure of Zn/B, we apply row-and-column operations
to S(B) to convert it to Smith normal form S.

5. We read off abelian invariants of Zn/B from S.

Example 4. G = 〈x, y, z|(xyz−1)2, (x−1y2z)2, (xy−2z−1)2〉

Abelianise to obtain

G/G′ = 〈x, y, z|(xyz−1)2, (x−1y2z)2, (xy−2z−1)2,
xy = yx, xz = zx, yz = zy〉

Describe B by S(B) =

 2 2 −2
−2 4 2
2 −4 −2

Smith Normal form of S(B) is

2 0 0
0 6 0
0 0 0

Hence G/G′ ∼= Z2 × Z6 × Z and so it is infinite.

3

Polycyclic Groups

Definition 5. G is polycyclic if it has a descending chain of subgroups
G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1 in which Gi+1 CGi, and Gi/Gi+1 is cyclic.
Such a chain of subgroups is called a polycyclic series.

Polycyclic groups: solvable groups in which every subgroup is finitely
generated.

Example 6. G = Alt(4) = 〈(1, 3)(2, 4), (1, 2)(3, 4), (1, 2, 3)〉 where V = 〈(1, 3)(2, 4), (1, 2)(3, 4)〉C
G and Z2 = 〈(1, 3)(2, 4)〉C V .

So Alt(4)B V B Z2.

Polycyclic sequences
Let G be polycyclic with polycyclic series G = G1 ≥ G2 ≥ · · · ≥ Gn+1 =

1.

Since Gi/Gi+1 is cyclic, there exist xi ∈ G with 〈xiGi+1〉 = Gi/Gi+1 for
every i ∈ {1, . . . , n}.

Definition 7. A sequence of elementsX = [x1, . . . , xn] such that 〈xiGi+1〉 =
Gi/Gi+1 for 1 ≤ i ≤ n is a polycyclic sequence (PCGS) for G.

Definition 8. Let X be a PCGS sequence for G. The sequence R(X) :=
(r1, . . . , rn) defined by ri := |Gi :Gi+1| ∈ N∪{∞} is the sequence of relative
orders for X.

Let I(X) := {i ∈ {1 . . . n} | ri finite}.

Example 9. X := [(1, 2, 3), (1, 2)(3, 4), (1, 3)(2, 4)] is PCGS for Alt(4) where
R(X) = [3, 2, 2] and I(X) = [1, 2, 3].

Relative orders exhibit information about G.

G is finite iff every entry in R(X) is finite or, equivalently iff I(X) =
{1 . . . n}.

If G is finite, then |G| = r1 · · · rn, the product of the entries in R(X).

Example 10. Let G := 〈(1, 2, 3, 4), (1, 3)〉 ∼= D8.

a) Let G2 := 〈(1, 2, 3, 4)〉 ∼= C4.

Then G = G1 ≥ G2 ≥ G3 = 1 is polycyclic series for G.

X := [(1, 3), (1, 2, 3, 4)] and
Y := [(2, 4), (1, 4, 3, 2)] are PCGS defining this series. R(X) = R(Y) =
(2, 4) and I(X) = I(Y) = {1, 2}.

4

b) Let G2 := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ∼= V and G3 := 〈(1, 3)(2, 4)〉 ∼= C2.

So G = G1 ≥ G2 ≥ G3 ≥ G4 = 1.

X := [(2, 4), (1, 2)(3, 4), (1, 3)(2, 4)] and Y := [(1, 2, 3, 4), (1, 2)(3, 4), (1, 3)(2, 4)]
are polycyclic sequences defining this series.

R(X) = R(Y) = (2, 2, 2) and I(X) = I(Y) = {1, 2, 3}.

Example 11. Let G := 〈a, b〉 with

a :=
(
−1 0

0 1

)
and b :=

(
−1 −1

0 1

)
.

G ∼= D∞, the infinite dihedral group.

A polycyclic sequence for G is X := [a, ab] with relative orders R(X) =
(2,∞) and finite orders I(X) = {1}.

Lemma 12. Let X = [x1, . . . , xn] be a polycyclic sequence for G with the
relative orders R(X) = (r1, . . . , rn). For every g ∈ G there exists a sequence
(e1, . . . , en), with ei ∈ Z for 1 ≤ i ≤ n and 0 ≤ ei < ri if i ∈ I(X), such that
g = xe11 · · ·xen

n .

Proof. Since G1/G2 = 〈x1G2〉, we find that gG2 = xe11 G2 for some e1 ∈ Z.

If 1 ∈ I(X), then r1 <∞ and we can choose ei ∈ {0 . . . r1−1}.

Let h = x−e11 g ∈ G2.

By induction on the length of a polycyclic sequence, we can assume that
we know expression of the desired form for h; that is, h = xe22 · · ·xen

n .

Hence g = xe11 x
e2
2 · · ·xen

n as desired.

Example 13. G = Alt(4)

X := [x1 = (1, 2, 3), x2 = (1, 2)(3, 4), x3 = (1, 3)(2, 4)] is PCGS for G
where R(X) = [3, 2, 2] and I(X) = [1, 2, 3].

V = 〈x2, x3〉 and H = 〈x3〉.

g = (1, 2, 4).

gV = x2
1V so x−2

1 g = (1, 4)(2, 3) ∈ V .

Now v := (1, 4)(2, 3) satisfies vH = x2H, so x−1
2 v = (1, 3)(2, 4) ∈ H.

Hence x−1
2 v = x3 so v = x2x3.

Hence g = x2
1x2x3.

5

Normal form

Definition 14. The expression g = xe11 · · ·xen
n is the normal form of g ∈ G

with respect to X.

The sequence expX(g) := (e1, . . . , en) is the exponent vector of g with
respect to X.

Can define an injective map G → Zn : g 7→ expX(g) from G into the
additive group of Zn. This is not a group homomorphism!

Polycyclic group to presentation?
Exponent vectors of elements of G can be used to describe relations for

G in terms of X.

Lemma 15. Let X = [x1, . . . , xn] be a polycyclic sequence for G with relative
orders R(X) = (r1, . . . , rn).

a) Let i ∈ I(X). The normal form of a power xrii is xrii = x
ai,i+1

i+1 · · ·xai,n
n .

b) Let 1 ≤ j < i ≤ n. The normal form of a conjugate x−1
j xixj is

x−1
j xixj = x

bi,j,j+1

j+1 · · ·xbi,j,n
n .

c) Let 1 ≤ j < i ≤ n. The normal form of a conjugate xjxix
−1
j is

xjxix
−1
j = x

ci,j,j+1

j+1 · · ·xci,j,n
n .

Polycyclic presentation

Definition 16. A presentation {x1, . . . , xn | R } is a polycyclic presentation
if there is a sequence S = (s1, . . . , sn) with si ∈ N ∪ {∞} and integers
ai,k, bi,j,k, ci,j,k such that R consists of the following relations:

xsi
i = x

ai,i+1

i+1 · · ·xai,n
n for 1 ≤ i ≤ n with si <∞,

x−1
j xixj = x

bi,j,j+1

j+1 · · ·xbi,j,n
n for 1 ≤ j < i ≤ n,

xjxix
−1
j = x

ci,j,j+1

j+1 · · ·xci,j,n
n for 1 ≤ j < i ≤ n.

We describe the presentation by Pc〈x1, . . . , xn | R 〉. If G is defined by such
a polycyclic presentation then G is a PC-group.

Theorem 17. Every polycyclic sequence determines a (unique) polycyclic
presentation. Thus every polycyclic group can be defined by a polycyclic
presentation.

6

Example 18. Let D8 := 〈(1, 3), (1, 2, 3, 4)〉 with polycyclic sequence X :=
[(1, 3), (1, 2, 3, 4)] and relative orders R(X) = (2, 4).

Polycyclic presentation defined by X has generators x1, x2, power expo-
nents s1 = 2 and s2 = 4. Relations are x2

1 = 1, x4
2 = 1, x1x2x

−1
1 = x3

2 and
x−1

1 x2x1 = x3
2.

Example 19. S4 has PCGS

X = [(3, 4), (2, 4, 3), (1, 3)(2, 4), (1, 2)(3, 4)]

where R(X) = [2, 3, 2, 2].

Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4 = 1, xx1
2 = x2

2,

xx1
3 = x3x4, x

x2
3 = x4, x

x2
4 = x3x4〉

Finite p-groups
Usually write power-commutator presentation.

Pc〈x1, . . . , xn| xpi =
n∏

k=i+1

x
α(i,k)
k , 0 ≤ α(i, k) < p , 1 ≤ i ≤ n ,

[xj , xi] =
n∏

k=j+1

x
β(i,j,k)
k , 0 ≤ β(i, j, k) < p, 1 ≤ i < j ≤ n .

An example
Let G be D16

Pc〈x1, x2, x3, x4 : x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1〉

Normal form for elements of G is

xα1
1 xα2

2 xα3
3 xα4

4

where 0 ≤ αi ≤ 1.

7

Presentation to group?
Every polycyclic presentation defines a polycyclic group.

Theorem 20. Let G be group defined by Pc〈x1, . . . , xn | R 〉 with power-
exponents S. Then G is polycyclic and X = [x1, . . . , xn] is a polycyclic

sequence for G. Its relative orders (r1, . . . , rn) satisfy ri ≤ si for 1 ≤ i ≤ n.

Proof. Define Gi := 〈xi, . . . , xn 〉 ≤ G. The conjugate relations in R enforce
that Gi+1 is normal in Gi for 1 ≤ i ≤ n. By construction, Gi/Gi+1 is
cyclic and hence G is polycyclic. Since Gi = 〈xiGi+1〉 by definition, X
is a polycyclic sequence for G. Finally, the power relations enforce that
ri = |Gi :Gi+1| ≤ si for 1 ≤ i ≤ n.

Example 21. Let G be defined by the following polycyclic presentation with
power exponents S = (3, 2,∞).

G := Pc〈x1, x2, x3 | x3
1 = x3, x

2
2 = x3,

x−1
1 x2x1 = x2x3, x1x2x

−1
1 = x2x3 〉.

Hence X = [x1, x2, x3] is a polycyclic sequence for G with relative orders
R(X) ≤ (3, 2,∞).

But coset enumeration for example shows that the precise relative orders
are R(X) = (3, 2, 1).

Hence the power exponents in a polycyclic presentation give an upper
bound for the relative orders only. Cannot read off from the power expo-
nents whether given group is finite or infinite.

Inconsistent presentations
Equivalently: polycyclic presentations in which two different normal

words represent the same element of the group.

Example 22.

Pc〈x1, x2, x3 : x2
1 = x2, x

2
2 = x3, x

2
3 = 1,

[x2, x1] = x3, [x3, x1] = 1, [x3, x2] = 1 〉

x1x2 = x1x
2
1 = x2

1x1 = x2x1 = x1x2x3.

Hence, not every element of the presented group has a unique normal
form.

8

Consistent presentations
A polycyclic presentation in which every element is represented by ex-

actly one normal word is consistent.

Equivalently: a polycyclic presentation Pc〈X | R 〉 with power exponents
S is consistent if R(X) = S.

Effective algorithm to convert an inconsistent presentation to a consis-
tent one.

Example 23. G := Pc〈x1, x2 | x3
1 = 1, x2

2 = 1, xx1
2 = x2〉 defines Z6.

Collection
A method to determine the normal form for an element in a group given

by a polycyclic presentation.

Lemma 24. Let G = Pc〈X | R 〉 be a polycyclic presentation with power
exponents S. For every g ∈ G there exists a word representing g of the form
xe11 · · ·xen

n with ei ∈ Z and 0 ≤ ei < si if si <∞.

Definition 25. Let G = Pc〈X | R 〉. Write word w in X as a string
w = xa1

i1
· · ·xar

ir
with aj ∈ Z. Assume that ij 6= ij+1 for 1 ≤ j ≤ r − 1 and

aj 6= 0 for 1 ≤ j ≤ r.

a) A word w is collected if w = xa1
i1
· · ·xar

ir
with i1 < i2 < · · · < ir and

aj ∈ {1 . . . sj−1} if sj <∞. Otherwise w is uncollected.

b) A word u in X is a minimal non-normal subword of the word w if u is
a subword of w and it has one of the following forms:

i) u = x
aj

ij
· xij+1 for ij > ij+1,

ii) u = x
aj

ij
· x−1

ij+1
for ij > ij+1,

iii) u = x
aj

ij
for rij 6=∞ and aj 6∈ {1 . . . sij−1}.

Word is collected if and only if it does not contain a minimal non-normal
subword.

Collected words

Example 26. G = S4 has PCGS

X = [(3, 4), (2, 4, 3), (1, 3)(2, 4), (1, 2)(3, 4)]

where R(X) = [2, 3, 2, 2] and

Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4 = 1, xx1
2 = x2

2,

xx1
3 = x3x4, x

x2
3 = x4, x

x2
4 = x3x4〉

9

x2x1 7→ x1x
2
2

x1x
−1
2 7→ x1x

2
2

x−1
2 x4x1 7→ x1x2x4

x4x3x2x1 7→ x1x
2
2x4

Collection in p-groups
Every element of a p-group presented by a power-commutator presenta-

tion on {x1, . . . , xn} can be written as normal word

xα1
1 xα2

2 . . . xαn
n

where 0 ≤ αi < p.

Collection: introduced by P. Hall (1934), in the context of nilpotent
groups.

Consider collection in context of all semigroup words on X. Inverses of
words may be ignored since they can be eliminated using the power relations.

The input to the process is a word, w.

� If w is normal the process terminates.

� If w is not normal, it has a minimal non-normal subword u, where

u = xpi or u = xjxi

and 1 ≤ i < j ≤ n.

Now replace u by
n∏

k=i+1

x
α(i,k)
k or xixj

n∏
k=j+1

x
β(i,j,k)
k ,

where 0 ≤ α(. . .), β(. . .) < p, respectively.

� Resulting word, w, is now input to the process.

Replacement of minimal non-normal subwords by their normal equiva-
lents results in the construction of a normal word from an arbitrary word.

Theorem 27. Collection terminates.

If w contains more than one minimal non-normal subword, a rule is used
to determine which of the subwords is replaced by its normal equivalent,
thereby ensuring that the process is well defined.

10

Collection strategies

� “Collection to the left” – all occurrences of x1 are moved left to the
beginning of the word. Next, all occurrences of x2 are moved left until
they are adjacent to the x1’s. etc.

P. Hall (1934).

� “Collection from the right” - the minimal non-normal subword occur-
ring nearest the end of a word is selected for replacement.

Havas & Nicholson (1976).

� “Collection from the left” - the minimal non-normal subword nearest
the beginning of a word is chosen for collection.

Leedham-Green & Soicher (1990); Vaughan-Lee (1990).

Efficiency of the collection process is affected by the rule.

“Collection from the left”: most efficient.

Example 28. A power-commutator presentation for D16 is:

{x1, x2, x3, x4 : x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1}

Suppose we collect x3x2x1.

“To the left”

{x1, x2, x3, x4 : x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1}

11

321 = 3123
= 13423
= 13243
= 12343
= 12334
= 1244
= 12

“From the right”

{x1, x2, x3, x4 : x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1}

321 = 3123
= 13423
= 13243
= 13234
= 12334
= 1244
= 12

“From the left”

{x1, x2, x3, x4 : x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x

2
4 = 1,

[x2, x1] = x3, [x3, x1] = x4,

[x3, x2] = 1, [x4, x1] = 1,
[x4, x2] = 1, [x4, x3] = 1}

12

321 = 231
= 2134
= 12334
= 1244
= 12

An exercise
G = S4

Pc〈x1, x2, x3, x4 | x2
1 = x3

2 = x2
3 = x2

4, x
x1
2 = x2

2,

xx1
3 = x3x4, x

x2
3 = x4, x

x2
4 = x3x4〉

x3x2x1 7→ x1x
2
2x3

� 11 steps using “To the left”.

� 5 steps using “From the left”.

Number of normal forms
Given a consistent power-commutator presentation, the set of elements

of G can be regarded as the set of normal words and the group multiplication
is defined by collection:

the product of two normal words is the word which results from collecting
their concatenation.

Order of G is the number of normal words.

13

Power-commutator presentations: Additional properties
Assume that G, a d-generator p-group of order pn, has a consistent

power-commutator presentation on n generators, a1, . . . , an.

For both mathematical and computational reasons, the power-commutator
presentation for G has additional structure:

1. {a1, . . . , ad} is a generating set for G.

2. For each ak in {ad+1, . . . , an}, there is at least one relation whose right
hand side is ak. Exactly one of these relations is taken as the definition
of ak. Either:

� api = ak where i < k and ai is a pth power of some generator or
i ≤ d,

� [aj , ai] = ak where i < j < k and i ≤ d.

3. The power-commutator presentation has a weight function defined on
it: a generator is assigned a weight corresponding to the stage at which
it is added.

A function, ω, is defined on the generators of the power-commutator
presentation according to the following rules:

(i) ω(ai) = 1 for i = 1, . . . , d;

(ii) if the definition of ak is api = ak, then ω(ak) = ω(ai) + 1;

(iii) if the definition of ak is [aj , ai] = ak, then ω(ak) = ω(aj) +ω(ai).

ω(an) is the class of G.

Example 29.

{a1, a2, a3, a4, a5 : a2
1 = a4, a

2
2 = a3,

a2
3 = a5, a

2
4 = a5,

[a2, a1] = a3, [a3, a1] = a5}

a3 has definition [a2, a1] and weight 2;

a4 has definition a2
1 and weight 2;

a5 has definition [a3, a1] and weight 3.

14

Why are such features desirable?

Because they permit more efficient algorithms to be developed, both at
construction and application stage.

For example, the weights of generators can be used to reduce the amount
of computation needed to decide whether or not a given power-commutator
presentation is consistent.

Why are such presentations useful?

� If we have a consistent power-commutator presentation for G, we can
solve the word problem for G.

Given two arbitrary words w1 and w2 in the generators of G, compute
normal forms for each of w1 and w2. If normal forms are identical,
then the two words are identical.

� Such a presentation exhibits a normal series {Gk} for G. Many of the
algorithms developed to compute properties of p-groups work down a
chain of factor groups.

General paradigm: Solve the problem for G/Gk.

Now extend to solve the problem for G/Gk+1.

Example: determine the number of conjugacy classes of G.

How do we compute such presentations?
Given a finitely-presented group, how can we compute a polycyclic pre-

sentation for a quotient?

A power-commutator presentation for a finite p-quotient may be con-
structed using a p-quotient algorithm.

First such algorithm described by Macdonald (1974).

Focus on an algorithm developed by Havas, Newman and O’Brien: H &
N (1980), N & O’B (1996).

The p-quotient algorithm: A top-level outline
Let G be a p-group.

Algorithm uses a chain of normal subgroups

G = G0 ≥ G1 ≥ . . . ≥ Gk ≥ Gk+1 . . . ≥ Gc = 1

15

Works down this chain, using the power-commutator presentation con-
structed for G/Gk to write down a presentation for G/Gk+1.

Write down a presentation for a group H∗ which is a downward extension
of H := G/Gk and has K := G/Gk+1 as a quotient.

Factor a normal subgroup from H∗ to obtain a presentation for K.

The central series

p-quotient algorithm uses a variation of the lower central series known
as the lower exponent-p central series.

G = P0(G) ≥ . . . ≥ Pi−1(G) ≥ Pi(G) ≥ . . .
where Pi(G) = [Pi−1(G), G]Pi−1(G)p for i ≥ 1.

If Pc(G) = 1 and c is the smallest such integer then G has exponent-p
class c.

Basic properties of the series

1. A group with exponent-p class c is nilpotent and has nilpotency class
at most c.

2. If θ is a homomorphism of G then Pi(G)θ = Pi(Gθ).

3. If N CG and the quotient G/N has class c then Pc(G) ≤ N .

4. If G is a finite p-group then P1(G) is the Frattini subgroup of G.

Example 30.

D16 = Pc〈a1, a2, a3, a4 : a2
1 = 1, a2

2 = a3a4,

a2
3 = a4, a

2
4 = 1,

[a2, a1] = a3, [a3, a1] = a4,

[a3, a2] = 1, [a4, a1] = 1,
[a4, a2] = 1, [a4, a3] = 1〉

Can read off terms of central series.

P0(G) = G

P1(G) = 〈a3, a4〉
P2(G) = 〈a4〉
P3(G) = 1

G has (nilpotency and exponent p-) class 3.

16

A summary

Given a description of a group G, a prime p, and a positive integer c, the
p-quotient algorithm constructs a weighted consistent power-commutator
presentation for the largest p-quotient of G having class c.

Description of G is usually a finite presentation.

The central series
p-quotient algorithm uses a variation of the lower central series known

as the lower exponent-p central series.

Let H be a p-group.

H = P0(H) ≥ . . . ≥ Pi−1(H) ≥ Pi(H) ≥ . . .

where Pi(H) = [Pi−1(H), H]Pi−1(H)p for i ≥ 1.

If Pc(H) = 1 and c is the smallest such integer then H has exponent-p
class c.

The initial step

First iteration of the p-quotient algorithm computes a consistent power-
commutator presentation for G/P1(G) and an epimorphism from G onto
G/P1(G).

Since P1(G) = [G,G]Gp = Φ(G), G/P1(G) is the Frattini quotient of G.

How do we compute G/P1(G)?

Fp-presentation is used to set up a homogeneous system of equations
over GF (p):

these equations are obtained by abelianising the relations, taking expo-
nents modulo p, and then writing the result additively.

Solve them to obtain rank of G/P1(G).

An example

Assume that the input presentation is:

{b1, . . . , b6 : b1b2 = b3, b2b3 = b4, b3b4 = b5,

b4b5 = b6, b5b6 = b1, b6b1 = b2}

and that p = 2.

Equations are the following:

b1 + b2 = b3 b2 + b3 = b4 b3 + b4 = b5

b4 + b5 = b6 b5 + b6 = b1 b1 + b6 = b2

17

Solve this system of equations by row-echelonisation to obtain the fol-
lowing solutions:

b3 = b1 + b2, b4 = b1, b5 = b2, b6 = b1 + b2 .

Solution space has dimension 2 and a consistent power-commutator pre-
sentation is

{ a1, a2 : a2
1 = 1, a2

2 = 1, [a2, a1] = 1 }

Mod P1(G), b1 = a1, b2 = a2, b3 = a1a2, b4 = a1, b5 = a2, b6 = a1a2.
In general, if d is the dimension of the solution space, then the output

from the first iteration is power-commutator presentation for G/P1(G):

{ a1, . . . , ad : api = 1, [aj , ai] = 1, 1 ≤ i < j ≤ d }

Mod P1(G), each bi can be expressed in terms of the aj .

{a1, . . . , ad} is a subset of {b1, . . . , bn}.

The general iteration

Takes as input:

1. the finite presentation {X,R} for G;

2. a consistent power-commutator presentation for the factor group H =
G/Pk(G);

3. an epimorphism θ : G 7→ H, specified by the images of the generators
of G.

The output of this iteration is:

1. a consistent power-commutator presentation for the factor group K =
G/Pk+1(G);

2. an epimorphism from G to K.

The general iteration
Can be divided into 4 distinct steps.

Step 1. Write down presentation for p-covering group

Assume we have constructed a consistent power-commutator presenta-
tion for H = G/Pk(G).

We now construct a groupH∗ which has the property thatK = G/Pk+1(G)
is a homomorphic image.

We want H∗ to satisfy the following:

18

(i) H∗/Pk(H∗) is isomorphic to H.

(ii) G/Pk+1(G) is a homomorphic image of H∗.

(iii) H∗ is a d-generator group;

(iv) H∗ has class at most k + 1;

(v) H∗ is the largest group satisfying (i) to (iv).

H∗ is the p-covering group of H = G/Pk(G).

Defining the p-covering group

Theorem 31. Let H be a d-generator p-group, let F be the free group of rank
d, and let F/R ∼= H. Then the p-covering group, H∗, of H is F/[R,F]Rp.

[R,F]Rp

F

R

R/[R,F]Rp is elementary abelian and can be viewed as a vector space
over GF (p).

Construct pcp for p-covering group of G/Pk(G)
Look at output of k th stage of the algorithm.

This is a consistent power-commutator presentation, say {a1, . . . , an :
. . .}, for H := G/Pk(G).

Each of the n − d generators, ad+1, . . . , an, is defined by one of the
relations – it occurs as the right hand side of one of the relations.

Thus, there are n− d definitions that define the generators ad+1, . . . , an.
The remaining q relations are non-defining and have general form:

[aj , ai] = a
αj+1

j+1 . . . aαn
n , 1 ≤ i < j ≤ n

or api = a
αi+1

i+1 . . . aαn
n ,

where 1 ≤ i ≤ n and 0 ≤ αk < p.
To obtain presentation for H∗, we transform the power-commutator pre-

sentation for H := G/Pk(G) as follows.

19

1. New generators an+1, . . . , an+q are introduced, one for each non-defining
relation.

2. Each of the remaining (non-definition) relations is modified by insert-
ing one of these generators to its right hand side.

3. Relations making these new generators central and of order p are
added.

Example 32. G := C2 × C2:

{ a1, a2 : [a2, a1] = 1,
a2

1 = 1
a2

2 = 1}

Add new generators or tails corresponding to a generating set forR/[R,F]Rp

and relations to make these central and of order p.

{ a1, a2, a3, a4, a5 : [a2, a1] = a3,

a2
1 = a4,

a2
2 = a5,

a2
j = 1, [aj , ai] = 1, 3 ≤ i < j ≤ 5}

Example 33. Let H = D8.

{a1, a2, a3 : [a2, a1] = a3,

[a3, a1] = 1, [a3, a2] = 1,
a2

1 = 1, a2
2 = a3, a

2
3 = 1}

{a1, a2, a3, a4, . . . , a8 : [a2, a1] = a3,

[a3, a1] = a4,

[a3, a2] = a5

a2
1 = a6,

a2
2 = a3a7,

a2
3 = a8,

a2
j = 1, 4 ≤ j ≤ 8, [aj , ai] = 1, 4 ≤ i < j ≤ 8}

20

Step 2. Make the presentation for H∗ consistent
The presentation forH∗ obtained in this way on {a1, . . . , an, an+1, . . . , an+q}

is usually not consistent.

How do we make it consistent?

Wamsley (1974) and Vaughan-Lee (1984):

Certain associativity conditions suffice to ensure that a power-commutator
presentation is consistent.

Consistency Theorem

Theorem 34. A power-commutator presentation on {a1, . . . , an} is consis-
tent if the following are satisfied:

(akaj)ai = ak(ajai), 1 ≤ i < j < k ≤ n , i ≤ d;

(ap−1
j aj)ai = ap−1

j (ajai), 1 ≤ i < j ≤ n , i ≤ d;

(ajai)a
p−1
i = aj(aia

p−1
i), 1 ≤ i < j ≤ n ;

(aia
p−1
i)ai = ai(a

p−1
i ai), 1 ≤ i ≤ n .

How do we interpret this theorem? The words on each side of a condition
are collected, where the brackets indicate the subwords to be replaced first
in the collection.

The consistency algorithm
This theorem provides the basis of an algorithm which takes as input a

power-commutator presentation for a p-group and modifies it to produce a
consistent one.

Consider the list of words obtained from these conditions: if each pair of
words collects to the same normal word, then the presentation is consistent.

Otherwise, the quotient of the two different words obtained from one of
these conditions is formed and equated to the identity word.

This procedure gives a new relation which holds in the group.

Since the presentation for G/Pk(G) was consistent, this relation only
involves the new generators introduced.

We deduce that one of an+1, . . . , an+q is redundant.

Applying the tests
Consider the inconsistent presentation for G:

{ a1, a2, a3 : a2
1 = a2, a

2
2 = a3, a

2
3 = 1,

[a2, a1] = a3, [a3, a1] = 1, [a3, a2] = 1 } .

21

Apply the 4th of the tests to a3
1:

a3
1 = (a1a1)a1 = a2a1 = a1a2a3

but
a3

1 = a1(a1a1) = a1a2 .

Deduce the relation that a3 = 1 and, therefore, a power-commutator
presentation for G is

{ a1, a2 : a2
1 = a2, a

2
2 = 1, [a2, a1] = 1 } .

If we apply our consistency algorithm, it is now consistent.

The p-covering group of D8

{a1, a2, a3, a4, . . . , a8 : [a2, a1] = a3, [a3, a1] = a4, [a3, a2] = a5

a2
1 = a6, a

2
2 = a3a7,

a2
3 = a8, a

2
j = 1, 4 ≤ j ≤ 8

[aj , ai] = 1, 4 ≤ i < j ≤ 8}

a3
2 = a2(a2a2) = a2a3a7

a3
2 = (a2a2)a2 = a3a7a2 = a3a2a7 = a2a3a5a7.

Hence a5 is trivial.

a2(a2a1) = a1a3a5a7a8

(a2
2)a1 = a1a3a4a7

Hence a4 = a5a8. Conclude a2
3 = a4a5.

A consistent power-commutator presentation for the 2-covering group of
D8 is

{a1, a2, a3, a4, a6, a7 : [a2, a1] = a3,

[a3, a1] = a4,

[a3, a2] = 1
a2

1 = a6,

a2
2 = a3a7,

a2
3 = a4,

a2
j = 1, 4 ≤ j ≤ 7

[aj , ai] = 1, 4 ≤ j ≤ 7}

22

Application of this algorithm provides us with a homogeneous system of
equations over GF (p).

Each equation is obtained by collecting each of the relevant test words in
the two ways indicated, equating the resulting normal words, and reducing
resulting relation as much as possible.

Step 3. Enforce defining relations
Know that K = G/Pk+1(G) is a homomorphic image of H∗.

We have as input an epimorphism θ : G 7→ H, specified by the images
of the generators of G.

Define a map
τ : G 7→ K : g 7→ gθug

where ug is an unknown element of Pk(G)/Pk+1(G).

Hence ug is central and of order p in K.

τ is a homomorphism and the images of the generators of G under τ
satisfy relators of G.

θ : G 7→ H and τ : G 7→ K : g 7→ gθug
Let r be a relator of G.

Evaluate r in the images of the generators of G under τ .

Collect the result to give normal word in the generators an+1, . . . , an+q

of H∗.

The image rτ has form rθur where ur is a word in the ug.

Since r is a relator of G, and rθ = 1, deduce the relation ur = 1.

Hence, the images of the relations are collected to yield a homogeneous
system of equations over GF (p).

Step 4. Elimination
Final step eliminates the redundancies which arise among the new gen-

erators from consistency and imposition of defining relations.

Suppose that t new generators are added and that r independent rela-
tions are found between them.

Then a consistent power-commutator presentation for the largest class
k + 1 quotient has t − r more generators than one for the largest class k
quotient.

All relations involve only an+1, . . . , an+t.

23

Eliminating r of these generators using the relations amounts to solving
a system of r linear equations in t unknowns over GF (p).

Let M = 〈an+1, . . . , an+q〉. Let N be kernel of natural homomorphism
from K onto H; so N is homomorphic image of M .

To obtain pcp for K, compute the kernel of map from M to N .

Theorem 35. The result of collecting the set of words in {a1, . . . , an} listed
in Consistency Theorem in the power-commutator presentation for H∗ is a
set S contained in M .

The result of evaluating the relators of G in the images of the genera-
tors of G under θ in the power-commutator presentation for H∗ is a set T
contained in M .

Then N is isomorphic to M/〈S ∪ T 〉.

Since we have a vector space defined over GF (p), use Gaussian Elimina-
tion to obtain a basis for N . If all the new generators are eliminated, deduce
that G/Pk(G) is the largest p-quotient of G.

Summary of procedure for one class

1. Add new generators (tails) to the presentation for H – corresponding
to a generating set for R/[R,F]Rp.

Add relevant relations to make these central and of order p. So obtain
presentation for H∗.

2. Make the resulting presentation consistent.

3. Impose the relations in R.

4. Eliminate the redundancies among the new generators from resulting
presentation.

A sample calculation
Calculate the largest 2-quotient of G having presentation:

{ b1, b2, b3 : b1b2 = b3, b2b3 = b1, b3b1 = b2 } .

The solution space for G/P1(G) has dimension 2; b3 is eliminated at the
first stage, so a consistent power-commutator presentation for G/P1(G) is

{ a1, a2 : a2
1 = 1, a2

2 = 1, [a2, a1] = 1 }

24

Mod P1(G), b1 = a1, b2 = a2, b3 = a1a2.

Now construct G/P2(G).
A consistent power-commutator presentation for 2-covering group of C2×

C2 is:

{ a1, a2, a3, a4, a5 : [a2, a1] = a3,

a2
1 = a4,

a2
2 = a5,

a2
j = 1, [aj , ai] = 1, 3 ≤ i < j ≤ 5}

Now impose relations where

θ : b1 7→ a1,

b2 7→ a2,

b3 7→ a1a2

Collect the relations to get the equations

a1a2 = a1a2, a1a3a5 = a1, a2a3a4 = a2

Deduce that a3 = a4 = a5.
Hence consistent power-commutator presentation for class 2 quotient is

{ a1, a2, a3 : a2
1 = a3, a

2
2 = a3, [a2, a1] = a3 } .

G has Q8 as a quotient.

If we now seek to construct G/P3(G), all new generators introduced are
later eliminated.

Therefore, largest 2-quotient of G is Q8.

The Burnside Problem
One motivation for the development of a p-quotient algorithm came from

study of long-standing Burnside Problem.

Burnside (1902) posed two questions:

(i) Given a finitely-generated group in which every element has finite or-
der, is the group necessarily finite?

(ii) Let B(d, n) denote the largest d-generator group in which every ele-
ment has exponent dividing n: that is, gn = 1 for all g ∈ G. Is B(d, n)
finite? If so, what is its order?

25

Burnside: B(d, 2) is finite, abelian, and has order 2d.

Golod (1964): using work with Šafarevič, answer to (i) is “no”.
Levi & van der Waerden (1933): the order of B(d, 3) is 3d+(d

2)+(d
3).

Tobin (1954): order of B(2, 4) is 212.

Sanov (1940) and M. Hall (1958): all groups of exponent 4 and 6 are
finite.

Adian & Novikov (1968): “no” for all odd n ≥ 4381.

Other improvements.

Grün (1940) posed related problem, now known as Restricted Burnside
Problem:

Problem 36. Is there a largest finite quotient, R(d, n), of B(d, n) and, if
so, what is its order?

Zel’manov (1991): There is always a largest finite quotient.
Implementations of the p-quotient algorithm have been used to deter-

mine the order and compute power-commutator presentations for various of
these groups.

Group Order Authors
B(3, 4) 269 Bayes, Kautsky & Wamsley (1974)
R(2, 5) 534 Havas, Wall & Wamsley (1974)
B(4, 4) 2422 Alford, Havas & Newman (1975)
R(3, 5) 52282 Vaughan-Lee (1988); N & O’B (1996)
B(5, 4) 22728 Newman & O’B (1996)
R(2, 7) 720416 O’B & Vaughan-Lee (2002)

Survey article on the (Restricted) Burnside problem: Vaughan-Lee &
Zel’manov (1999).

26

Proving groups infinite
Golod-Šafarevič: ifH is a non-trivial finite p-group, then r(H) > d(H)2/4.

Let G be a group and p an odd prime. Let P1(G) = [G,G]Gp and
P2(G) = [P1(G), G]Gp. Then G/P1(G) and P1(G)/P2(G) are elementary
abelian, of ranks dp(G) and ep(G) respectively.

Newman (1990) proved the following.

Theorem 37. Let G be a group with a finite presentation on b generators
and r relators. For some odd prime p, let d = dp(G) and e = ep(G). If any
of the following conditions hold

(i) r − b ≤ d2/4− d;

(ii) r − b < d2/2 + (−1)pd/2− d− e;

(iii) r − b ≤ d2/2 + (−1)pd/2− d− e+ (e− (−1)pd/2− d2/4)d/2;

then G has arbitrarily large finite p-quotients and, in particular, G is infinite.

The generalised Fibonacci groups

Gn(m, k) = 〈x1, . . . , xn : xixi+m = xi+k (i = 1, . . . , n) 〉

where the subscripts are taken modulo n.

Fibonacci groups where m = 1, k = 2: introduced by Conway (1965).

For n ≥ 10, all such groups infinite.

Newman (1990) proved G9(1, 2) infinite using previous theorem.

Remaining cases: G9(1, 3) and G9(1, 4)

Cavicchiolli, O’B and Spaggiari (2008) study these; also state the p = 2
criterion.

27

Nickel (1994): A nilpotent quotient algorithm

Assume we know pcp for H := G/γk(G) on {a1, . . . , an}.

Want one for L := G/γk+1(G)

Analogous covering group, H∗, of H is F/[F,R].

Modify the power-commutator presentation for H to obtain a pcp on
{a1, . . . , an, an+1, . . . , an+q} for H∗.

Central components: “tails” procedure, developed by Nickel. Sims (1994):
consistency theorem.

Let M = 〈an+1, . . . , an+q〉 and let N be kernel of natural homomorphism
from L onto H. N is a homomorphic image of M .

Require a basis for the kernel of the map from M to N .

In the p-quotient algorithm: system of linear equations over GF(p).

In nilpotent quotient case: system of linear equations is over Z. Again
use Gaussian Elimination to obtain a basis.

28

Soluble quotients
Various algorithms to construct soluble quotients of finitely-presented

groups have been proposed.

Wamsley (1977)

Leedham-Green (1984)

Niemeyer (1994): implementation available; further developed by Eick
and Niemeyer (2000s).

Plesken (1987): Significant further development of Plesken’s algorithm
by Brückner 1990s. Implementation available.

Lo (1990s): algorithm to construct infinite polycyclic quotients

29

The p-group generation algorithm

Description of the algorithm: O’Brien (1990), Newman (1977).

The p-group generation algorithm calculates (presentations for) partic-
ular extensions, immediate descendants, of a finite p-group.

Let G be a d-generator finite p-group of class c.

H is a descendant of G if H has generator number d and H/Pc(H) ∼= G.

A group is an immediate descendant of G if it is a descendant of G and
has class c+ 1.

Example 38. D8 = Pc〈 a1, a2, a3 | [a2, a1] = a3 〉 is immediate descendant of
C2 × C2. D16 is descendant of C2 × C2.

Specification of input and output
Algorithm takes as input a d-generator p-group, G, and a description of

the automorphism group of G.

It produces as output a complete and irredundant list of the immediate
descendants of G together with a description of their automorphism groups.

G is a p-quotient of F/R and is described by a power-commutator pre-
sentation.

A consistent power-commutator presentation is written down for the p-
covering group, F/R∗, of G, where R∗ = [R,F]Rp.

Theorem 39. Every immediate descendant of G is isomorphic to a factor
group of F/R∗. �

R/R∗ is elementary abelian and is the p-multiplicator of G.

The nucleus of G is Pc(G∗).

An allowable subgroup is a subgroup of R/R∗ which is the kernel of a
homomorphism from G∗ onto an immediate descendant of G.

The allowable subgroups are characterised as follows.

Lemma 40. A subgroup is allowable if and only if it is a proper subgroup
of the p-multiplicator of G which supplements the nucleus.

R∗ = [R,F]Rp

U ∩N

N U

F

R

30

Example 41. The 2-covering group of D16 has power-commutator presenta-
tion

Pc〈 a1, . . . , a4, a5, a6, a7 | a2
1 = a6, a

2
2 = a3a4a7,

a2
3 = a4a5, a

2
4 = a5, [a2, a1] = a3,

[a3, a1] = a4, [a4, a1] = a5〉.

The 2-multiplicator is 〈a5, a6, a7〉 and the nucleus is 〈a5〉.

The subgroups 〈a6, a7〉, 〈a5a6, a7〉, 〈a6, a5a7〉 are allowable and the cor-
responding immediate descendants have order 32.

The subgroup 〈a5a6, a5a7〉 is also allowable, but the resulting quotient is
isomorphic to the quotient of G∗ by 〈a6, a5a7〉.

On taking factor groups of G∗ by all allowable subgroups a complete list
of immediate descendants is obtained.

This list usually contains redundancies.

To eliminate these redundancies, an obvious equivalence relation is de-
fined on the allowable subgroups.

Definition 42. Two allowable subgroups U1/R
∗ and U2/R

∗ are equivalent
if and only if their quotients F/U1 and F/U2 are isomorphic.

A complete and irredundant set of immediate descendants of G can be
obtained by factoring G∗ by one representative of each equivalence class.

Definition is useful only because the equivalence relation can be given a
different characterisation by using the automorphism group of G.

Action of automorphisms of G
An extension of each automorphism, α, of G to an automorphism, α∗,

of G∗ is defined.

Aut(G) induces a linear action on R/R∗.
For α ∈ Aut(G), extend it to automorphism α∗ of G∗.

If G is generated by a1, a2, . . . , ad then we choose preimages x1, x2, . . . , xd
inG∗ for a1, a2, . . . , ad, and preimages y1, y2, . . . , yd inG∗ for a1α, a2α, . . . , adα.

Then x1, x2, . . . , xd generate G∗.

Define α∗ by setting xiα∗ = yi for i = 1, 2, . . . , d.

Lemma 43. The action of α∗ when restricted to R/R∗ is uniquely deter-
mined by α, and α∗ induces a permutation of the allowable subgroups.

31

Theorem 44. The equivalence classes of allowable subgroups are exactly
the orbits of the allowable subgroups under the action of these permutations.

Hence, to solve the isomorphism problem, we determine orbits of sup-
plements to N/R∗ in R/R∗ under the induced action of Aut(G).

Designate one element of each orbit as its representative and factor G∗

by each representative in turn to obtain a complete and irredundant list of
immediate descendants of G.

An example
We construct the immediate descendants of G := C2 × C2

Pc〈 a1, a2 | a2
1 = 1, a2

2 = 1, [a2, a1] = 1 〉.

Its 2-covering group G∗ is

Pc〈 a1, . . . , a5 | a2
1 = a4, a

2
2 = a5, [a2, a1] = a3 〉.

The 2-multiplicator 〈a3, a4, a5〉 is elementary abelian and it coincides
with the nucleus.

Hence every proper subgroup of the 2-multiplicator supplements the nu-
cleus and so is allowable.

The automorphism group of G is isomorphic to GL(2, 2).

Choose as its generators

α1 : a1 7−→ a1a2 , α2 : a1 7−→ a2

a2 7−→ a2 a2 7−→ a1 .

The extensions of these automorphisms to G∗ are:

α∗1 : a3 7−→ a3 , α∗2 : a3 7−→ a3

a4 7−→ a3a4a5 a4 7−→ a5

a5 7−→ a5 a5 7−→ a4 .

Construct the immediate descendants of order 8.

The 7 allowable subgroups of rank 2 are

〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉, 〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉, 〈a3a4, a3a5〉

The orbits of the allowable subgroups induced by α∗1 and α∗2 are

{〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉}, {〈a3a4, a3a5〉}, {〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉}.

32

Choose one rep from each orbit and factor it from G∗ to obtain as im-
mediate descendants:

Pc〈 a1, a2, a3 | [a2, a1] = a3 〉
Pc〈 a1, a2, a3 | a2

1 = a3, a
2
2 = a3, [a2, a1] = a3 〉

Pc〈 a1, a2, a3 | a2
1 = a3 〉.

These are: D8, Q8 and C2 × C4, respectively.
Now construct immediate descendants of C2 × C2 having order 16.

Generators for the seven cyclic allowable subgroups are

a3, a
δ
3a
γ
4a5, a

ζ
3a4,

where each of δ, γ, ζ is 0 or 1.

The orbits of the allowable subgroups induced by α∗1 and α∗2 are

{〈a3〉}, {〈a5〉, 〈a3a4a5〉, 〈a4〉}, {〈a4a5〉, 〈a3a5〉, 〈a3a4〉}.

We choose 1 rep from each orbit to obtain 3 immediate descendants of
order 16.

For example, factor G∗ by a3 to obtain C4 × C4:

Pc〈 a1, a2, a3, a4 | a2
1 = a3, a

2
2 = a4 〉

C2 × C2 has 1 immediate descendant of order 25: factor G∗ by trivial
allowable subgroup.

Practical issues

Central limitation: # of allowable subspaces and consequent size of or-
bits.

Let’s focus on p-class 2 for a moment.

G = Zdp. M := R/R∗ has rank m :=
(
d+1
2

)
as vector space.

Aim: Construct all immediate descendants of order p(d+k).

All subspaces of dimension m− k are allowable.

of such subspaces is O(p(m−k)k), precisely
Qk−1

i=0 (pm−pi)Qk−1
i=0 (pk−pi)

Example 45. Let G = Z6
2, elementary abelian of order 26. M has dimension

21.

To construct immediate descendants of order 28, must construct orbits
on 733006703275 19-dimensional subspaces.

33

Exploit characteristic structure
G = Zdp acting on V , d-dimensional space.

A = Aut(G) ∼= GL(d, p) and acts on M .

Since M is a vector space of degree m over GF(p), it is an A-module.

In fact M = V1 ⊕ V2, where V1 has dimension
(
d
2

)
and V2 has dimension

d.

Action of A on V1 is the alternating square representation Λ2(V) for
V = GF(p)d.

Action on V2 is as GL(V).

� We consider orbits for action of A on V1.

� For each orbit rep U , compute its stabiliser S in A.

� Now compute orbits of M/U under S.

More generally given G p-group, A := Aut(G). M is a A-module. Apply
Meataxe to M to identify submodules. Process chain of submodules.

Example 46. Let G = Z6
2, elementary abelian of order 26. V1 has dimension

15.

First step: construct orbits on 178940587 13-dimensional subspaces.

Second step: consider orbits of 10795 2-dimensional spaces in 8-dimensional
space.

A requirement
We need to know the automorphism group of G, the input group to the

algorithm.

A description of the aut gp of an immediate descendant is also returned
by the algorithm.

34

The SmallGroups project
Classification: a topic of long-standing interest.

Cayley (1850s): initiated classification of groups.

Hölder (1890s): groups of square-free order, etc.

Most classifications: by hand, case-by-case, prone to error.

Besche, Eick, and O’B (2000): The “millennium project”.

Classification of groups of order up to 2000 [now 2047] and of “small”
composition length.

Output available as SmallGroups

Most algorithms part of “grpconst”

Asymptotics
Let gnu(n) be number of groups of order n.

Pyber (1993)
gnu(n) ≤ n(2/27+o(1))µ(n)2

where µ(n) is the largest exponent in the prime-power factorisation of n.

Higman (1960): lower bound for p-class 2 groups of order pn is p2n3/27.

Sims (1965): upper bound for groups of order pn

gnu(pn) is p2n3/27+O(n8/3).

Newman and Seeley: 8/3 can be reduced to 5/2.

The problem: “Almost all” groups are p-groups of class 2

Orders < 2048:

Order #
210 49 487 365 422
class 2 48 803 495 722
others 423 171 191

Higman (1960): lower bound for p-class 2 groups of order pn is p2n3/27

Sims (1965): gnu(pn) is p2n3/27+O(n8/3).

Higman: Lower bound for # of orbits of subspaces in Λ2(V)⊕ V under
action of GL(V).

35

ClassTwo
Eick & O’Brien (1999): precise version of this for given d and p.

Consequence: can count these groups using Cauchy-Frobenius Theorem
to count fixed-points for GL(d, p) conjugacy class reps, so deduce # of orbits.

Record log10 of the # for p = 2, 3, 5.

p = 2 p = 3 p = 5
p8 4 5 7
p9 6 9 13
p10 10 15 22
p11 15 22 33
p12 21 32 −

Groups of order p6 and p7 recently completed for odd p.

Newman, O’B, Vaughan-Lee (2004)

O’B, Vaughan-Lee (2005)

p6: various earlier classifications including Easterfield (1940), James
(1980).

Classifications available in GAP and Magma as part of SmallGroups

Groups of order pk for k = 1, 2, . . . , 6

p = 2 p = 3 p ≥ 5
p 1 1 1
p2 2 2 2
p3 5 5 5
p4 14 15 15
p5 51 67 u

p6 267 504 v

u = 2p+ 61 + 2 gcd(p− 1, 3) + gcd(p− 1, 4)

v = 3p2 + 39p+ 344 + 24 gcd(p− 1, 3) + 11 gcd(p− 1, 4) + 2 gcd(p− 1, 5)

Order p7

p = 2 p = 3 p = 5
2328 9310 34297

36

For p > 5 the number of groups of order p7 is

3p5 + 12p4 + 44p3 + 170p2 + 707p+ 2455
+(4p2 + 44p+ 291) gcd(p− 1, 3)
+(p2 + 19p+ 135) gcd(p− 1, 4)
+(3p+ 31) gcd(p− 1, 5)
+4 gcd(p− 1, 7) + 5 gcd(p− 1, 8)
+ gcd(p− 1, 9)

Classification of p-groups for arbitrary p
Classify groups of order pn for n = 6, 7 and p > 5 by classifying corre-

sponding nilpotent Lie rings of order pn.

Lazard correspondence: isomorphism between the category of nilpotent
Lie rings with order pn and the category of finite p-groups with order pn

provided p ≥ n.

Use analogue of p-group generation algorithm to classify the Lie rings.

Use the Baker-Campbell-Hausdorff formula to translate Lie ring presen-
tations into group presentations.

Higman’s 1960 PORC conjecture

Conjecture 47. Fix n. The number of groups of order pn is Polynomial
On Residue Classes.

Higman (1960): the number of groups of order pn whose Frattini sub-
group is elementary abelian and central is PORC.

Eseev (2008): the number of isomorphism classes of groups of order pn

whose Frattini subgroup is central, considered as a function of the prime p,
is PORC.

37

Automorphism group of a p-group
Eick, Leedham-Green, and O’Brien (2002).

Let G be a d-generator finite p-group.

Description of Aut(G) constructed by working down successive terms of
the lower exponent-p central series of the group.

Recall P0(G) = G and Pi(G) = [G,Pi−1(G)] · Pi−1(G)p. Then

G = P0(G) ≥ P1(G) ≥ . . . ≥ Pc(G) = {1}

is the lower exponent-p central series of G and c is the p-class of G.

P1(G) = Φ(G).

Factors of the p-central series are elementary abelian p-groups.

An outline
We want to compute Aut(G).

Let Gi = G/Pi(G).

Proceed by induction over the lower p-central series.

Inductive step is to compute Aut(Gi+1) from Aut(Gi).

Eventually compute Aut(Gc) = Aut(G).

Initial step: G1 = G/P1(G) is elementary abelian of order pd, soAut(G1) =
GL(d, p).

The inductive step
Compute Aut(Gi+1) from Aut(Gi).

Recall: H = F/R, where F is free group of rank d. Define R∗ to be
[R,F]Rp. Then F/[R,F]Rp is the p-covering group of H and M := R/R∗ is
the p-multiplicator.

Start by computing the p-covering group G∗i of Gi.

Theorem 48. G∗i is a finite p-group which contains a central, elementary
abelian subgroup M with G∗i /M

∼= Gi and M ≤ Φ(G∗i). Further G∗i is the
largest such extension containing a subgroup U ≤M with G∗i /U ∼= Gi+1.

Each automorphism of Gi lifts to an automorphism of G∗i via natural
homomorphism G∗i → G with kernel M .

The induced automorphisms leave M invariant.

Let S be the stabiliser of U in Aut(Gi).

38

Then every automorphism in S induces an automorphism of G∗i /U and
hence of Gi+1.

Let Ai+1 be the subgroup of Aut(Gi+1) induced by S.

Gi+1/Pi(Gi+1) ∼= Gi.
Let Ti+1 be the subgroup of Aut(Gi+1) consisting of those automor-

phisms which fix both Gi = Gi+1/Pi(Gi+1) and Pi(Gi+1). Then Ti+1 is a
normal, elementary abelian subgroup of Aut(Gi+1).

Lemma 49. Let H be a p-group with Pc+1(H) = 1 and c ≥ 2. Let a1, . . . , ad
and x1, . . . , x` be minimal generating sets for H and Pc(H), respectively.
Define

βi,j : H → H :
{
ai 7→ aixj
ak 7→ ak for k 6= i.

Then {βi,j | 1 ≤ i ≤ d and 1 ≤ j ≤ `} is a polycyclic generating se-
quence for the elementary abelian p-group of automorphisms of H centralis-
ing H/Pc(H).

Theorem 50. Aut(Gi+1) = 〈Inn(Gi+1), Ai+1, Ti+1〉.

An example
Consider the group:

〈 a1, . . . , a4 : [a2, a1] = a3, a
5
1 = a4 〉.

The class one quotient, H = G/P1(G), has the power-commutator pre-
sentation:

{ a1, a2 : a5
1 = 1, a5

2 = 1, [a2, a1] = 1 }.

1. First write down a presentation for H∗.

{ a1, . . . , a5 : [a2, a1] = a3, a
5
1 = a4, a

5
2 = a5 }.

2. The allowable subgroup, U , which must be factored from H∗ to give
presentation for the class 2 5-quotient is 〈a5〉.

3. Generating set for the automorphism group of H is

α1 : a1 7−→ a2
1 , α2 : a1 7−→ a4

1a2

a2 7−→ a2 a2 7−→ a4
1 .

The automorphism matrices representing the action of α∗i on the 5-

39

multiplicator of H are, respectively: 2 0 0
0 2 0
0 0 1

 ,

 1 0 0
0 4 1
0 4 0

 .

4. The stabiliser A of U is generated by the extensions of(
2 0
0 1

)
,

(
1 4
0 2

)
.

5. Four generators of T : θ14, θ24 and

θ13 : a1 7−→ a1a3 , θ23 : a1 7−→ a1

a2 7−→ a2 a2 7−→ a2a3 .

Where’s the problem?
How difficult is the inductive step?
We can very easily write down a generating set for both Inn(Gi+1) and

Ti+1.
Only computation necessary is the computation of stabiliser S.

We have to compute the stabiliser of U in Aut(Gi), where Aut(Gi) acts
as a group of automorphisms on M .

The p-multiplicator M = R/[R,F]Rp is an elementary abelian p-group,
M is a vector space over GF (p).

Then U corresponds to some subspace of M and Aut(Gi) acts as a matrix
group on M .

The stabiliser problem

Problem 51. Compute stabiliser of subspace under the action of matrix
group.

Simple approach: Construct the orbit of U under action of Ai and use
standard orbit-stabiliser algorithm to write down generators for the stabiliser
of U . Use Schreier’s Theorem.

Consequence: We need to construct the full orbit of U under Aut(Gi)
and the number of generators for the stabiliser depends on the orbit length.

Central problem: Orbit is frequently too large to construct or store –
and generating set is too large.

So study more closely techniques to find a generating set of the stabiliser
S.

40

Computing the stabiliser
Let A be the automorphism group of a p-group G.

A acts as a matrix group on a vector space M over GF(p).

Compute the stabiliser in A of a given subspace U of M .

Use various reductions to make this task feasible.

1. Use the internal structure of M
Recall G∗ is p-covering group of G, and M is the p-multiplicator, ele-

mentary abelian.

Exploit the action on A on M . Observe M is an A-module, so construct
a composition series for M as A-module.

Recall N := Pi+1(G∗) is the nucleus of P .

Lemma 52. N is a characteristic subgroup of G∗ and N ≤M . Further, U
is a supplement to N in M .

Vector space context: N is a subspace of M , invariant under action of
A and N supplements U .

Use this invariant subspace to split the orbit stabiliser computation in
two steps.

1. Compute the orbit of U ∩N as subspace of N .

2. Compute the orbit of U/U ∩N as a subspace of M/U ∩N .

In each case, we can refine each step significantly.

(i) Use the Meataxe to compute a composition series of N as an A-
module. Then use this series to compute the orbit and stabiliser of
U ∩N stepwise.

(ii) U/U ∩ N is a complement to N/U ∩ N in M/U ∩ N and, further,
N/U ∩ N is invariant under action of A. Now compute composition
series of M/N and N/U ∩ N under action of A. Then use these two
series to break the orbit stabiliser computation up in a number of small
steps.

41

2. Stabiliser under unipotent subgroup

A := Aut(G) has a normal p-subgroup P , namely the centraliser in A
of V ∼= G/P1(G) – those automorphism which induce trivial action on the
Frattini quotient.

Aut(G)B S B P B 1

where S is soluble radical.

The action of P on M is as a unipotent subgroup of GL(M).

Costi, Schwingel (2000, 2009): UnipotentStabiliser algorithm to con-
struct a canonical representative U of the P -orbit of a subspace U of M .

Simultaneously, it constructs a generating set for the stabiliser in P of
U and t ∈ N such that U t = U .

Use this algorithm to construct the stabiliser of U in P without explicitly
constructing its orbit.

3. Exploit the structure of A

Aut(G)B S B P B 1

where S is soluble radical.

Since S is soluble, it has an normal series whose factors are cyclic of
prime order.

So we obtain a subnormal series of S of the form

S = C1 B C2 B . . .B Cn = P

We compute the orbit of U under S by stepping up this series and com-
puting in sequence orbits and stabilisers under subgroups in the series.

Advantage? We can use the following well-known result.

Lemma 53. Let H be a group which acts on a set Ω and let N CH. Let
ω ∈ Ω. Then the orbit ωN is a block for H on Ω. The point stabiliser H(ω)
is a supplement to N in the block stabiliser G(ωN).

Consequence of easy observation: Let h ∈ H(ωN). Then ωh = ωn for
some n ∈ N . Hence hn−1 ∈ H(ω).

How do we apply this? Assume we have computed the orbit UCi and
the stabiliser Ci(U) for some i. We compute the block stabiliser Ci−1(UCi).
Now extend each generator of this block stabiliser to an element in the point
stabiliser Ci−1(U).

42

Advantage? Reduce the number of generators for stabiliser of U sub-
stantially. Index Ci−1 : Ci is a prime; obtain from Ci to Ci−1 at most one
new generator for the stabiliser.

4. Preprocessing

We attempt to compute Aut(G) by induction on the lower p-central
series.

Initial step: we start with Aut(G1) ∼= GL(d, p).

We could start with L ≤ Aut(G1) such that the subgroup K of Aut(G1)
induced by Aut(G) is contained in L?

If we find such L ≤ GL(d, p) such that L : K is small, then we make the
computation easier.

Can we bound the image in Aut(G1) of Aut(G)?

Use characteristic subgroups of G

Identify characteristic subgroups of G. Include: centre, derived group,
agemo, omega, 2-step centralisers.

Restrict this collection to G1 = G/Φ(G).

Hence obtain a list of subspaces of V which are invariant.

Schwingel (2000): describes algorithm to construct the subgroup of GL(V)
that stabilises a lattice of subspaces of V .

Obtained as the group of units of algebra stabilising the lattice.

In summary: construct a system of equations which must be satisfied by
the stabiliser, solve this system to obtain subgroup.

Brooksbank & O’B (2007): effective algorithm to construct the group of
units of a matrix algebra defined over a finite field.

Outcome
A practical algorithm which works well for moderate Frattini quotient

rank d.

If class of p-group G is at least 3, then it usually has “lots” of character-
istic subgroups – frequently reduce to small subgroup of GL(d, p) as initial
group.

Hard case: G has class 2.

Task: compute stabiliser of U ≤ Λ2(V) under action of GL(d, p).

43

Isomorphism testing
The isomorphism problem of determining whether two given presenta-

tions present the same group was introduced by Tietze (1908) and formu-
lated by Dehn (1911).

Adian (1957) and Rabin (1958): show the isomorphism problem for
finitely presented groups is unsolvable by exhibiting its unsolvability for
a particular class of examples.

Segal (1990): there is an algorithm to decide the isomorphism of two
polycyclic-by-finite groups given by finite presentations.

Holt & Rees (1992): seek to establish isomorphism by running a Knuth-
Bendix procedure on the supplied group presentations, in an attempt to
generate a normal form algorithm for words in the generators.

Concurrently, they attempt to establish non-isomorphism of the two
groups by finding the number of finite quotients each has of a particular
order.

Standard presentation for p-group
O’Brien (1994): an algorithm which answers the problem for finite p-

groups.

Defines a standard presentation for each p-group and provides an algo-
rithm for its construction.

Given two p-groups presented by arbitrary finite presentations, deter-
mination of their isomorphism is essentially the same problem as the con-
struction of their canonical presentations and the easy comparison of these
presentations.

The basic approach
The p-group generation algorithm: constructs a particular isomorphic

copy of a given p-group, G.

Assume G is d-generator and has exponent-p class c.

Then G/P1(G) is the elementary abelian group of order pd.

It follows that G is a descendant of this elementary abelian group and
G/Pi+1(G) is an immediate descendant of G/Pi(G) for i < c.

Assume we construct the immediate descendants of G/P1(G). One of
these, say H, is isomorphic to the class 2 quotient, G/P2(G), of G.

G/P1(G)

D2 HNow calculate the immediate descendants of H ∼= G/P2(G). Among
these is a group K ∼= G/P3(G).

44

G/P1

D2 H

D3 K
We iterate this construction until we construct a group isomorphic to

(the class c quotient of) G.

So construct Q ∼= G by iterating algorithm to calculate immediate de-
scendants, starting with the elementary abelian group of rank d.

We designate the power-commutator presentation of Q obtained using
the p-group generation algorithm in this way as the standard presentation
for G.

In more detail . . .
Recall: G = F/R, and G∗ = F/[R,F]Rp.

Induced action of Aut(G) on R/R∗ acts on allowable subgroups.

Two allowable subgroups U1 and U2 are in the same orbit under induced
action of Aut(G) iff the factor groups G∗/U1 and G∗/U2 are isomorphic.

The choice of orbit representative determines the presentation obtained.

Two elements from the same orbit determine different power-commutator
presentations for isomorphic groups.

How do we choose the orbit representative?

We associate with each allowable subgroup a label – a unique positive
integer which runs from one to the number of allowable subgroups.

The element with the smallest label is chosen as the orbit representative.

An example
Let Q be the class 3 3-quotient of

G = 〈x, y : (xyx)3〉

Q has order 37.

Task: Compute a standard presentation for Q.
Call the supplied set of defining relations S1.

Initial step: The class one 3-quotient, H = G/P1(G), has power-
commutator presentation:

{ a1, a2 : a3
1 = 1, a3

2 = 1, [a2, a1] = 1 }.

It is standard.

45

1. We use the p-quotient algorithm to write down a presentation for H∗

the 3-covering group of H:

{ a1, . . . , a5 : [a2, a1] = a3, a
3
1 = a4, a

3
2 = a5 }.

The nucleus is 〈 a3, a4, a5 〉.

2. We use S1 as input to the p-quotient algorithm to write down a pre-
sentation for the class two 3-quotient of G:

{ a1, . . . , a4 : [a2, a1] = a3, a
3
1 = a4, a

3
2 = a4 }.

3. The allowable subgroup, U/R∗, factored from H∗ to give this presen-
tation for the class 2 3-quotient is 〈a2

4a5〉.

4. A generating set for the automorphism group of H is

α1 : a1 7−→ a1a
2
2, α2 : a1 7−→ a1, α3 : a1 7−→ a2

1

a2 7−→ a2
1a

2
2 a2 7−→ a2

1a2 a2 7−→ a2

The automorphism matrices representing the action of α∗i on the 3-
multiplicator of H are, respectively: 1 0 0

0 1 2
0 2 2

 ,

 1 0 0
0 1 0
0 2 1

 ,

 2 0 0
0 2 0
0 0 1

 .

5. The orbit containing U/R∗ is

〈a5〉, 〈a4a5〉, 〈a2
4a5〉, 〈a4〉.

The orbit representative, Ū/R∗, is 〈a5〉. We factor H∗ by 〈a5〉 to
obtain the standard presentation S for the class 2 3-quotient:

{ a1, . . . , a4 : [a2, a1] = a3, a
3
1 = a4 }.

6. A standard automorphism whose extension maps U/R∗ to Ū/R∗ is the
following:

δ : a1 7−→ a1a2a3a4

a2 7−→ a1a
2
2 .

7. We modify the relations of S1 by applying the standard automorphism
to each. Hence S2 is

{(xy[y, x]x3xy2xy[y, x]x3)3}.

Now 〈x, y|S2〉 and S are input to the next iteration to construct the
standard presentation for Q, the class 3 3-quotient of G.

46

Practical issues
Central limitation: construct complete orbit of space to identify the lead-

ing term, hence limited by size of orbit.

As in other cases: exploit characteristic structure of p-multiplicator.

47

Current implementations
ANU p-Quotient Program: 22 000 lines of C code; implements p-quotient

algorithm, p-group generation algorithm, isomorphism testing, aut gp.

Program is available

� as a share package with GAP;

� as part of Magma;

� as part of Quotpic.

A discussion of implementation aspects of the p-quotient algorithm in
the GAP language: Celler, Newman, Nickel & Niemeyer (1993); also NNN
(1997).

Implementation is also in GAP language.

Some of the algorithms also implemented in Magma language.

48

Computing conjugacy classes in a finite p-group
Felsch & Neubüser (1980)

Let G be a finite p-group, and let N = 〈n〉 be a minimal normal subgroup
of G.

Assume we know conjugacy classes in G/N and want to determine those
in G.

Let x be preimage in G of a class rep of G/N . Let C be preimage in G
of the corresponding centraliser.

1. If x is central in C, then [x · ni : i ∈ [0, . . . , p− 1]] are conjugacy class
reps in G, and each class rep has centraliser C.

2. If x is not central in C, then x is a class rep in G and xN is a class in
G.

So each class of G/N splits into p classes in G of the same size, or a class
in G is larger by a factor of p.

Special PC-presentations
Algorithms to modify PC-presentation to construct special PC-presentations

(Cannon, Eick & Leedham-Green, 2003).

Maximal subgroups, centres, Sylow systems, Carter subgroups: can now
be read off directly from the special presentation.

Other algorithms for polycyclic groups

� Automorphism groups of finite soluble groups: Michael Smith (1994).
Available as GAP package.

� Isomorphism algorithms for arbitrary finite groups: Cannon & Holt
(1998); these work well for finite soluble groups.

� Conjugacy classes for soluble groups: Felsch & Neubüser (1980); Celler,
Neubüser and Wright (1988).

� Normalisers, intersections: Glasby & Slattery (1990).

� Characters: Slattery (1986), Conlon (1990).

� Special series: e.g. Jennings series.

49

� First and second (co)homology groups: Holt, Eick.

Algorithms for (infinite) polycyclic groups: Eick. Intersections, nor-
malisers, stabilisers etc.

50

References
Lecture notes available as www.math.auckland.ac.nz/˜obrien/GAC-lectures.pdf

Papers available from www.math.auckland.ac.nz/˜obrien

Derek F. Holt, Bettina Eick and E.A. O’Brien, Handbook of Computa-
tional Group Theory, 2005.

Charles C. Sims, Computing with finitely-presented groups, 1994.

51

