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Riemann surfaces provide plenty of interesting groups and problems asociated with
them: these include finite groups, since most compact Riemann surfaces have finite au-
tomorphism groups, and also finitely presented infinite groups, arising from the uniformi-
sation of Riemann surfaces by Fuchsian groups. In many cases, these problems can be
approached by using computational techniques.

Background reading. For an elementary introduction to Riemann surfaces and their
automorphisms,:

G. A. Jones and D. Singerman, Complex Functions, Cambridge University Press.

At a rather more advanced level, and very comprehensive:

H. M. Farkas and I. Kra, Riemann Surfaces, Springer.

For background on the combinatorial group theory aspects of Fuchsian and related groups:

H. Zieschang, E. Vogt and H-D. Coldewey, Surfaces and Planar Discontinuous Groups,
Springer LNM 835, 1980.

For useful techniques for studying automorphism groups, though some of the results have
now been overtaken:

R. D. M. Accola, Topics in the Theory of Riemann Surfaces, Springer LNM 1595, 1994.

For applications of character theory to Riemann surface automorphism groups:

T. Breuer, Characters and Automorphism Groups of Compact Riemann Surfaces, LMS
Lecture Notes 280, 2000.
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1 Riemann surfaces

1.1 Definitions

Informally, a Riemann surface X is a connected Hausdorff space which looks locally like
a subset of the complex plane. More precisely we require that every point p ∈ X has
an open neighbourhood U with a homeomorphism φ : U → V between U and an open
subset V ⊆ C. We call φ a chart, and the set of all such φ an atlas of charts. If we
have charts φ : U → V and φ′ : U ′ → V ′, with U ∩ U ′ 6= ∅, then on U ∩ U ′ we have
a coordinate transition function φ′ ◦ φ−1 : φ(U ∩ U ′) → φ′(U ∩ U ′), z 7→ z′; we require
that these function should be analytic (differentiable everywhere). Thus the charts give
complex local coordinates on X, allowing us to do analysis (differentiation, integration,
etc); conformality of the coordinate transition functions means that the choice of charts
around a point doesn’t significantly affect the analysis we do.

Two atlases of charts on X are compatible if the coordinate transition functions from
each to the other are analytic. This is an equivalence relation on atlases, and a complex
structure on X is an equivalence class of atlases on X. A Riemann surface is a pair
consisting of a connected Hausdorff space X and a complex structure on X. In general, a
given surface X may have many (in fact uncountably many) different complex structures.

Every Riemann surface X is orientable: indeed, the positive orientation of C is trans-
fered, via the charts, to an orientation of X. There is a similar but rather more general
theory of Klein surfaces, which can be non-orientable and with boundary, but I will re-
strict my attention to Riemann surfaces. Fortunately, I will rarely need to use all the above
formalism, and for most purposes the ‘definition’ in the first sentence will be adequate.

1.2 Examples

1. We can take X to be any open subset of C (including C itself), with a single chart
consisting of the identity map. Two important examples are the upper half plane

H = {z ∈ C | Im z > 0}

and the unit disc
D = {z ∈ C | |z| < 0}.

2. Let X be the unit 2-sphere S2 ⊂ E3. Identify the equatorial plane x3 = 0 in E3

with C by identifying (x1, x2, 0) with x1 + ix2. Stereographic projection from the
north pole n = (0, 0, 1) gives a homeomorphism φ from U = S2 \ {n} to V = C,
i.e. a chart; note that the south pole s = (0, 0,−1) is sent to 0. A second chart
φ′ : U ′ = S2 \ {s} → V ′ = C sends n to 0, and each other point p 6= s to 1/φ(p).
On U ∩ U ′ = S2 \ {n, s} the change of coordinates map z 7→ 1/z is conformal, since
z 6= 0. Thus S2 is a Riemann surface, called the Riemann sphere Σ. It is convenient
to use φ to identify S2 \ {n} with C, and to assign the coordinate ∞ to n, so that

Σ = C ∪ {∞} = P1(C),
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the complex projective line.

3. Let X = C/Λ, where Λ is a lattice in C, an additive subgroup generated by two
elements which are linear independent over R. Thus X is a topological group, with
topology and group structure inherited from C. Given any p ∈ X, a small enough
disc U around p lifts to a disjoint union of discs in C, each mapped homeomorphically
onto U by the natural projection π : C → X. Choosing one of these as V we get
a chart φ = π−1 : U → V . The change of coordinate maps are translations (by
elements of Λ), so they are conformal. A Riemann surface of this type is called a
torus.

4. As undergraduates, we learn how to construct the Riemann surface of a many-valued
function, such as

√
z or log z, by joining copies of C across cuts. If we define the

charts carefully, then the result is a Riemann surface as defined above, compact if
and only if we start with an algebraic function. For instance, the Riemann surface of√

(z − a)(z − b)(z − c), with cuts between a and b, and between c and ∞, is a torus.

1.3 Automorphisms

An isomorphism X → Y of Riemann surface is a bijection which transforms local coordi-
nates analytically. An automorphism of a Riemann surface X is an isomorphism X → X;
these form a group Aut X.

1. The automorphism group of Σ is

Aut Σ = PGL(2, C),

consisting of the Möbius transformations

f : z 7→ az + b

cz + d
(a, b, c, d ∈ C, ad− bc 6= 0),

where we define f(∞) = a/c, and f(z) = ∞ if cz + d = 0. These are composed like
2× 2 matrices, and scalar matrices λI (λ 6= 0) induce the identity automorphism, so
PGL(2, C) ∼= GL(2, C)/{λI}. Dividing the coefficients by

√
ad− bc, we may assume

that ad− bc = 1, so Aut Σ = PSL(2, C) = SL(2, C)/{±I}.
This group is sharply 3-transitive on Σ, meaning that, given two ordered triples of
distinct elements of Σ, there is a unique automorphism taking one to the other, in
the correct order. Firstly, if z1, z2, z3 are distinct elements of C then

f(z) =
(z − z1)(z2 − z3)

(z1 − z2)(z3 − z)

is an automorphism sending z1, z2, z3 to 0, 1,∞, and if some zi = ∞ we take the limit
of f as zi → ∞. This implies 3-transitivity, Sharpness follows from the fact that
only the identity automorphism fixes three points (just solve the three simultaneous
equations).
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2. The automorphism group of C is the subgroup of Aut Σ fixing ∞, i.e. the group

Aut C = AGL(1, C)

of affine transformations

f : z 7→ az + b (a, b ∈ C, a 6= 0)

of C. This group is sharply 2-transitive on C.

3. A circle C in Σ is the intersection of Σ = S2 with a plane Π ⊂ E3 such that |Σ∩Π| > 1.
It corresponds to a Euclidean circle in C, or a set of the form L̂ = L∪ {∞} where L
is a Euclidean line in C. A disc in Σ is one of the two open sets bounded by a circle.
There is a unique circle through any three distinct points, so the 3-transitivity of
Aut Σ implies that it is transitive on circles; it easily follows that it is transitive on
discs, e.g. z 7→ 1/z transposes the two discs H and H (the lower half plane) bounded
by the circle R̂. Thus all discs are isomorphic as Riemann surfaces, and in particular
H ∼= D; in fact, the automorphism

f : z 7→ z − i

−iz + 1

of Σ, representing a quarter-turn of Σ about the axis through ±1, transforms H
to D. It follows that the automorphism groups of all discs are isomorphic. The
automorphism group of H is

Aut H = PSL(2, R),

the group of Möbius transformations

f : z 7→ az + b

cz + d
(a, b, c, d ∈ R, ad− bc = 1).

(Here one could write ad − bc > 0, but dividing coefficients by
√

ad− bc allows one
to assume that ad − bc = 1.) This group acts transitively on H, and 2-transitively
on the boundary circle ∂H = R̂. It is a subgroup of index 2 in PGL(2, R), which is
sharply 3-transitive on ∂H; here elements with ad − bc < 0 transpose H and H (see
the example z 7→ 1/z above).

2 Uniformisation

2.1 The fundamental group

The fundamental group π1T of a path-connected topopological space T measures how many
holes T has. Two continuous paths γ, γ′ : I = [0, 1] → T , with the same end-points a and
b, are homotopic if each can be continuously deformed into the other, entirely within T ,
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keeping the end-points fixed. This is an equivalence relation. If we take a = b, so that the
paths are all closed, then composing paths, and reversing the direction of a path induce
multiplication and inversion on these equivalence classes; these equivalence classes then
form a group, the fundamental group π1(T, a) of T based at a, with the identity element
representing the constant path γ(t) = a for all t ∈ I. Up to isomorphism, this group is
independent of a, so we often write simply π1T . We say that T is simply connected if π1T
is trivial, i.e. every closed path in T can be continuously deformed to a point.

Example 1. The spaces C, H, D and Σ are all simply connected.

Example 2. The space T = C \ {0} has π1T ∼= Z: two closed paths in T are homotopic
if and only if they go the same number n ∈ Z of times around the origin, where going
around in the clockwise direction counts as negative. More generally, if we make r holes in
C by removing r points or discs, the resulting fundmanetal group is a free group of rank r
generated by the equivalence classes of the paths going once around a single hole.

Example 3. The fundamental group π1T of a torus T is isomorphic to Z2: think of
an element (m, n) as representing how many time a closed path winds around T in two
different directions. More precisely, form T by identifying opposite sides of a parallelogram
F , and take a base-point formed from the four corners of F (which become a single point in
T ). A closed path γ going once around the boundary of F is represented as a commutator
a−1b−1ab, where a and b represent closed paths α and β following two successive sides, so
that a−1 and b−1 represent the reverse paths. This path γ can be continuously deformed
to a point within F , so it represents the identity element. Thus [a, b] = 1, that is, a and b
commute. Now a and b generate π1T , since any closed path is equivalent to a combination
of copies of α and β, and they have infinite order, so π1T ∼= Z2.

Example 4. A compact, connected, orientable surface T is homeomorphic to a sphere
with a finite number g ≥ 0 of handles attached; we call g the genus of T . One can show
that the fundamental group has a presentation

π1T = 〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg] = 1〉,

where ai and bi represent closed paths going in different directions around the ith handle.
In particular, this applies to every compact Riemann surface. The basic idea is similar
to Example 3 (which is just the case g = 1), except that now we use a 4g-gon with sides
identified in pairs to get the defining relation.

2.2 The Uniformisation Theorem

A group Γ acting by homeomorphisms on a topological space T acts discontinuously if every
p ∈ T has an open neighbourhood U such that U ∩g(U) = ∅ for all non-identity g ∈ Γ; this
implies that the action is fixed-point-free, i.e. only the identity element has fixed points.
Covering space theory tells us that every path-connected topological space T has a simply
connected universal covering space T̃ , and T ∼= T̃ /Γ where Γ is a discontinuous group
acting on T̃ , isomorphic to the fundamental group π1T . (Summarising the construction, T̃
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is the set of homotopy classes of paths from a chosen base point to an arbitrary point in T ,
the fundamental group π1T acts on this space by composition of paths, and the projection
T̃ → T is given by forgetting the paths but remembering where they end.)

This all applies if T is a Riemann surface X, in which case the universal covering space
X̃ has a natural complex structure, lifted from that of X, so that X̃ is a Riemann surface,
and Γ acts as a group of automorphisms of X̃. We then say that X is uniformised by Γ.

Example. If X is a torus C/Λ then X̃ = C and Γ = Λ, acting on C by translations and
isomorphic to π1X ∼= Z2.

This means that one can study all Riemann surfaces by studying the simply connected
Riemann surfaces and their automorphism groups. By a miracle, known as the Poincaré-
Koebe Uniformsiation Theorem, there are only three we need to study:

Theorem 2.1 Up to isomorphism, there are just three simply connected Riemann surfaces:
Σ, C and H (or equivalently D).

Note that these three Riemann surfaces are mutually non-isomorphic: Σ is compact,
whereas C and D are not; although C and D are homeomorphic, any Riemann surface
isomorphism would give a bounded analytic function C → D, which must be constant by
Liouville’s Theorem.

The automorphism groups of these three surfaces have already been described (see
Section 1.3), so it is sufficient to study the quotient spaces obtained from their discontinuous
subgroups. By an even greater miracle, the first two spaces Σ and C are rather easily dealt
with, and we can concentrate mainly on H, the really interesting and challenging case.
In particular, we will see that compact Riemann surfaces of genus 0 and 1 have universal
covering surfaces Σ and C, while those of genus g ≥ 2 have universal covering surface H.

3 Riemann surfaces of genus 0

Here we consider Riemann surfaces X with X̃ = Σ. Every element of Aut Σ has a fixed
point (the equation (az + b)/(cz +d) = z always has a solution!), so the only discontinuous
subgroup Γ is the trivial group, with quotient X ∼= Σ. We will see later that the compact
quotients obtained from the other simply connected Riemann surfaces C and H all have
genus g = 1 or g > 1 respectively. This shows that, up to isomorphism, the only compact
Riemann surface of genus 0 is the Riemann sphere Σ.

The rotation group SO(3, R) of S2 is embedded in Aut Σ as the projective special
unitary group PSU(2,C), consisting of the Möbius transformations with c = −b, d = a and
|a|2+|b|2 = 1. This is a compact group, homeomorphic to the quotient of S3 (= SU(2,C) =
the multiplicative group of unit quaternions) by its antipodal isometry. The fact that S3

is simply connected means that SO(3, R) has fundamental group C2, which ‘explains’
phenomena such as spin in particle physics.

Every finite subgroup of Aut Σ is conjugate to a subgroup of PSU(2,C), so it is
isomorphic to Cn, Dn, A4, S4 or A5; the last three are the rotation groups of the regular
solids. Lifting these to SU(2, C) we get their double covers, the binary polyhedral groups.
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4 Riemann surfaces of genus 1

4.1 Tori

Next we consider Riemann surfaces X with X̃ = C. A non-identity automorphism z 7→
az+b of C has a fixed point if and only if a 6= 1, so the discontinuous subgroups Γ of Aut C
consist of translations z 7→ z + b. Apart from the trivial group, they are either infinite
cyclic, generated by a single translation z 7→ z + b, or isomorphic to Z2, generated by two
translations z 7→ z + b1 and z 7→ z + b2, where b1 and b2 are linearly independent over R.

If Γ is an infinite cyclic translation group, then C/Γ is not compact. In fact, if Γ is
generated by z 7→ z + b then the Γ-invariant analytic function z 7→ exp(2πiz/b) induces an
isomorphism C/Γ → C \ {0} of Riemann surfaces. Note by Example 2 in Section 2.1 that
this surface X has fundamental group π1X ∼= Z ∼= Γ.

A group Γ of the second type is called a lattice, which I will denote by Λ, and the
generators z 7→ z+b1 and z 7→ z+b2 form a basis; by identifying each translation z 7→ z+b
with the element b ∈ C, we can regard Λ as an additive subgroup of C.

If a group Γ acts on a topological space T by homeomorphisms, then a subset F ⊆ T
is a fundamental region for Γ if

• F is connected;

• every element of T is equivalent under Γ to an element of F ;

• if two elements of F are equivalent under Γ they are both on the boundary of F .

Thus, apart from some possible duplication on the boundary, F is a connected set of
representatives for the orbits of Γ on T , so by identifying equivalent boundary points of F
we get the quotient space T/Γ as F/Γ. In the case of a lattice Λ acting on C, we can take
the parallelogram with vertices 0, b1, b2 and b1 + b2 as a fundamental region. Identifying
opposite sides (which are equivalent under Λ) we see that C/Λ is topologically a torus.

The images of a fundamental region F under Γ tessellate T , overlapping only at their
common boundaries; in the case of a lattice, we get a tessellation of C by parallelograms.

4.2 Isomorphisms of tori

One can show two tori C/Λ and C/Λ′ are isomorphic (as Riemann surfaces) if and only if
the lattices Λ and Λ′ are conjugate in Aut C = AGL(1, C), or equivalently Λ and Λ′ are
similar, that is, Λ′ = aΛ for some a ∈ C \ {0}. The modulus of a basis b1, b2 for Λ is
τ = b1/b2, where we choose the numbering so that Im τ > 0, that is, τ ∈ H. Similarity of
lattices leaves τ unchanged. The other bases for Λ have the form

b′1 = ab1 + bb2, b′2 = cb1 + db2 (a, b, c, d ∈ Z, ad− bc = 1)

(we need ad− bc = 1 rather than −1 to ensure that b′1/b
′
2 ∈ H), giving a modulus

τ ′ =
ab1 + bb2

cb1 + db2

=
aτ + b

cτ + d
.
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Thus moduli τ, τ ′ ∈ H correspond to similar lattices, and hence to isomorphic tori, if and
only if they are equivalent under the action of the modular group

PSL(2, Z) = SL(2, Z)/{±I}

consisting of the Möbius transformations

f : z 7→ az + b

cz + d
(a, b, c, d ∈ Z, ad− bc = 1).

As a fundamental region for the action of this group on H we can take

F = {z ∈ H | |z| ≥ 1, |Re z| ≤ 1/2}.

The element Z : z 7→ z + 1 pairs the sides Re z = −1/2 and Re z = 1/2 of F , and the
element X : z 7→ −1/z, fixing i, pairs the two halves of the side |z| = 1. Their product
Y = XZ : z 7→ −1/(z + 1), fixing ω = e2πi/3, has order 3, and one can show that

PSL(2, Z) = 〈X, Y | X2 = Y 3 = 1〉 ∼= C2 ∗ C3,

where ∗ denotes a free product.
To summarise: the isomorphism classes of tori correspond to the orbits of PSL(2, Z)

on H, or equivalently to the elements of F with the above boundary identifications; the
parameter τ indicates that the uniformising lattices are similar to that with basis {τ, 1}.

4.3 Automorphism groups of tori

One can show that the automorphisms of a torus X = C/Λ are induced by N(Λ), the
normaliser of Λ in Aut C = AGL(1, C), acting on C. The kernel of its action on X is Λ, so

Aut X ∼= N(Λ)/Λ.

Now N(Λ) consists of the affine transformations z 7→ az + b with a, b ∈ C and aΛ = Λ.
For most lattices Λ, the only such values of a are ±1, in which case Aut X is a semidirect
product of C/Λ ∼= S1 × S1 by C2, with the generator of C2 inverting C/Λ by conjugation.
The exceptions arise when Λ is a square lattice, with τ = i, or a triangular lattice, with τ =
ω (or equivalently ω + 1 = e2πi/6), in which cases the complement is C4 or C6 respectively.
Thus, like Σ, each torus has an uncountable automorphism group; in the case of Σ it is a
simple group, but here they are cyclic extensions of abelian groups, and thus solvable.

4.4 Elliptic curves

A major theorem, essentially due to Riemann, states that compact Riemann surfaces are
equivalent to complex algebraic curves (defined by polynomial equations with coefficients
in C), and vice versa. For instance, every torus C/Λ can be regarded as an elliptic curve
E, defined by an equation

y2 = p(x)
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where p is a cubic polynomial in C[x] with distinct roots.
To see this, given any lattice Λ we define the Weierstrass function

℘(z) = ℘Λ(z) =
1

z2
+

∑
λ∈Λ

′
( 1

(z − λ)2
− 1

λ2

)
,

where
∑′ denotes summation over all non-zero λ ∈ Λ. (Unfortunately, the more natural-

looking
∑

(z−λ)−2 doesn’t converge.) One can show that ℘(z) is an elliptic function with
respect to Λ, i.e. it is meromorphic (with poles of order 2 at the lattice points), and doubly
periodic (i.e. ℘(z + λ) = ℘(z) for all z ∈ C and λ ∈ Λ). Its derivative

℘′(z) = −2
∑
λ∈Λ

′ 1

(z − λ)3

is also an elliptic function. By comparing their Laurent series near 0 one can show that
these two functions satisfy a differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

where

g2 = g2(Λ) = 60
∑
λ∈Λ

′ 1

λ4
and g3 = g3(Λ) = 140

∑
λ∈Λ

′ 1

λ6
.

Parametrising E by putting x = ℘(z) and y = ℘′(z), we identify it with X = C/Λ; points
z ∈ Λ correspond to the ‘point at infinity’ (∞,∞) on E, which is a sign that to be precise
we should really regard E as a projective curve, rather than an affine curve.

(This process is analogous to parametrising the algebraic curve y2 = 1− x2 by using
the simply periodic functions x = sin z and y = sin′ z = cos z.)

One can show that the discriminant g3
2−27g2

3 of the cubic polynomial on the right-hand
side of the differential equation is non-zero, so it has distinct roots. Conversely, given any
cubic polynomial with distinct roots, one can use an affine transformation of the variables
to put it into Weierstrass normal form

p(x) = 4x3 − c2x− c3,

and one can then show that there is a lattice Λ for which g2 = c2 and g3 = c3. It follows
that the elliptic curve y2 = p(x) corresponds to the torus X = C/Λ.

Remarks. 1. A more elementary way of seeing that an elliptic curve has genus 1 is to
construct the Riemann surface of the 2-valued function y =

√
p(x). If p(x) has distinct

roots a, b and c in C, then we take two copies of the Riemann sphere, one for each branch
of the function, cut them between a and b and between c and ∞, and join them across the
cuts to produce a surface of genus 1.

2. Several of the preceding arguments depend on the properties of a certain analytic
function J : H → C, defined by

J(τ) =
g3
2

g3
2 − 27g2

3
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where gi = gi(Λ) for a lattice Λ with modulus τ . This is a modular function, i.e. it
is invariant under the action of the modular group PSL(2, Z) on H. In particular it is
periodic with respect to Z, so it has a Fourier series expansion, as a Laurent series in
q = e2πiτ . John Mackay observed that some of the coefficients in this expansion are closely
associated with the degrees of the irreducible representations of the Monster simple group.
This was the starting point of the theory known as ‘monstrous moonshine’.

3. Every elliptic curve y2 = p(x) has an automorphism (x, y) 7→ (x,−y) of order 2, corre-
sponding to the automorphism z 7→ −z possessed by every torus. In special cases, one can
see automorphisms of other orders: for instance y2 = 4x3 − 1 has obvious automorphisms
of order 2 and 3, with product of order 6; this elliptic curve corresponds to the triangular
lattice, which also has such automorphisms.

4. Elliptic curves, being identified with tori C/Λ, have an abelian group structure inherited
from C. Whereas it is easy to perform group operations using the complex parameter z, it
is much harder to do so using the original variables x and y. For this reason, elliptic curves
(over finite fields) are currently used in some of the most powerful cryptographic systems.

5. Elliptic curves play a central role in several other areas of mathematics: for instance
Andrew Wiles proved Fermat’s Last Theorem by proving part of the related Taniyama-
Shimura Conjecture (subsequently the Modularity Theorem of Breuil, Conrad, Diamond
and Taylor), which establishes a connection between elliptic curves defined over Q and
modular forms.

5 Groups acting on H
Here we develop the ideas needed to consider Riemann surfaces X with universal covering
surface X̃ = H, i.e. those uniformised by groups acting discontinuously on H. We shall see
that the compact surfaces of this type all have genus g ≥ 2.

5.1 Automorphisms of H
It is useful to divide the non-identity elements f ∈ Aut H = PSL(2, R) into three classes,
according to their fixed points. Let

f(z) =
az + b

cz + d
(a, b, c, d ∈ R, ad− bc = 1).

Solving f(z) = z gives a quadratic equation cz2 + (d− a)z − b = 0, with real coefficients,
and discriminant D = (d− a)2 + 4bc = (a + d)2 − 4. There are three possibilities:

• If D < 0, i.e. |a+ d| < 2, there are two complex conjugate roots, giving a single fixed
point in H. We call f an elliptic element. Example: z 7→ −1/z, fixing i ∈ H.

• If D = 0, i.e. |a + d| = 2, there is a single root in ∂H = R̂ and so no fixed points in
H. We call f a parabolic element. Example: z 7→ z + λ (λ ∈ R), fixing ∞ ∈ ∂H.
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• If D > 0, i.e. |a+d| > 2, there are two distinct real roots, and so no fixed points in H.
We call f a hyperbolic element. Example: z 7→ λz (1 6= λ > 0), with a =

√
λ = 1/d,

fixing 0,∞ ∈ ∂H.

Note that the matrices ±A ∈ SL(2, R) reprsenting f have trace ±(a + d), so we say
that f has trace tr(f) = ±(a + d), or that tr2(f) = (a + d)2.

One can use this classification to show that two non-identity elements of PSL(2, R)
commute if and only if they have the same fixed points in H ∪ ∂H.

5.2 Fuchsian groups

Riemann surfaces X with X̃ = H are uniformised by discontinuous subgroups K of
PSL(2, R) (the analogues of the lattices in C). These must act without fixed points on H.
As in the case of tori, the automorphisms of X are induced by the normaliser

N(K) = {g ∈ PSL(2, R) | g−1Kg = K}

of K in PSL(2, R):

Theorem 5.1 If a Riemann surface X is uniformised by a subgroup K ≤ PSL(2, R), then
Aut X ∼= N(K)/K.

Elements of N(K) may have fixed points in H, in which case this group does not
act discontinuously; we therefore need a weaker concept than discontinuity to cover such
groups. A subgroup Γ of PSL(2, R) acts properly discontinuously on H if each point p ∈ H
has an open neighbourhood U such that if U∩g(U) 6= ∅ for some g ∈ Γ then g(p) = p. Thus
fixed points are allowed, but orbits cannot accumulate. Discontinuous implies properly
discontinuous, but not conversely (consider the group generated by z 7→ −1/z, fixing i).

Theorem 5.2 A subgroup Γ of PSL(2,R) acts properly discontinuously on H if and only
if it is discrete.

Here the topology on PSL(2, R) is that inherited from SL(2, R), regarded as a subset
of R4. Groups Γ satisfying these equivalent conditions are called Fuchsian groups.

Example. The modular group Γ = PSL(2, Z) is a discrete subgroup of PSL(2, R), since
Z is a discrete subring of R. It acts properly discontinously, but not discontinuously since
it contains z 7→ −1/z.

Theorem 5.3 If K is a non-abelian Fuchsian group, then its normaliser N(K) is also a
Fuchsian group.

Non-identity commuting elements of PSL(2, R) have the same fixed points, so an
abelian subgroup of PSL(2, R) must fix a point in H∪∂H; considering the point-stabiliaers
shows that if it acts properly discontinuously on H then it is cyclic. In particular, it cannot
be isomorphic to the fundamental group Z2 of a compact surface of genus 1. We therefore
have:
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Theorem 5.4 If X is a compact Riemann surface which is uniformised by a subgroup
K ≤ PSL(2, R), then X has genus g ≥ 2 and N(K) is a Fuchsian group.

This, together with Theorem 5.1, means that we can study the automorphism groups
of compact Riemann surfaces of genus g ≥ 2 by considering Fuchsian groups Γ and their
quotients Γ/K by discontinuous normal subgroups K.

5.3 Hyperbolic geometry

In constructing examples of Fuchsian groups, it is useful to regard H as a model of the
hyperbolic plane, with metric dz/y for z = x + iy, so that the length of a curve γ : I =
[0, 1] → H, t 7→ z = γ(t) is ∫ 1

0

1

y

∣∣∣dz

dt

∣∣∣dt.

The geodesics are the intersections of H with Euclidean semicircles and straight lines
perpendicular to R. Then we have

Theorem 5.5 PSL(2, R) is the group of orientation-preserving isometries of H.

(Composing its elements with the reflection z 7→ −z gives the orientation-reversing
isometries; the whole isometry group is isomorphic to PGL(2, R), but note that the action
of elements of PGL(2, R) \ PSL(2, R) is ‘twisted’ by complex conjugation.)

Lemma 5.6 In a Fuchsian group Γ, every elliptic element has finite order.

Proof. An elliptic element f ∈ Γ has a fixed point p ∈ H, and is a hyperbolic rotation by
an angle θ around p. If f has infinite order then θ is an irrational multiple of π, so the
orbits of 〈f〉 are dense subsets of hyperbolic circles centred at p, and hence Γ does not act
properly discontinuously. Thus f must have finite order. �

Using the disc model D, it is easy to see that there are elliptic transformations of all
orders. However, parabolic and hyperbolic transformations all have infinite order.

We define the measure µ(Γ) of a Fuchsian group Γ to be the hyperbolic area of H/Γ,
or equivalently of a fundamental region for Γ. If ∆ is a subgroup of Γ, then a fundamental
region for ∆ is a union of |Γ : ∆| copies of a fundamental region for Γ, one for each coset.
These meet only at their boundaries, so we have the very useful Riemann-Hurwitz Formula:

µ(∆) = |Γ : ∆|µ(Γ).

12



6 Constructing Fuchsian groups

We are now ready to construct some specific examples of Fuchsian groups, and to consider
their presentations.

6.1 Triangle groups

Let T be a hyperbolic triangle in H, with internal angle π/l, π/m, π/n at vertices v1, v2, v3

for integers l,m, n ≥ 2. Since the sum of the internal angles is less than π, we must have

1

l
+

1

m
+

1

n
< 1.

Conversely, if this inequality is satisfied then there is, up to isometries, a unique such
triangle. The reflections ri of H in the sides of T opposite vi generate a group ∆[l,m, n] of
isometries of H, called an extended triangle group; the triangle T is a fundamental region
for this group, so the images of T tessellate H. This tessellation can be used to show that
the group acts properly discontinuously on H, and also, using the fact that H is simply
connected, that it has a presentation

∆[l,m, n] = 〈r1, r2, r3 | (r2r3)
l = (r3r1)

m = (r1r2)
n = 1〉.

One can see these are defining relations by considering the dual tessellation of H, which
embeds a Cayley graph for this group: any word w = 1 represents a closed path from 1 to
1 in the graph, and since H is simply connected this can be reduced to a constant path
by successively using the relations to reduce w. Similar remarks apply to triangle groups
acting on C or Σ, with l−1 +m−1 +n−1 ≥ 1,. More generally, Poincaré described a method
of obtaining a presentation of a properly discontinuous group acting on simply connected
surface by considering how a fundamental region meets its neighbours (see Zieschang, Vogt
and Coldewey, Surfaces and Planar Discontinuous Groups).

The orientation-preserving subgroup of index 2 in ∆[l,m, n] is the triangle group
∆ = ∆(l,m, n). It acts properly discontinuously as a group of automorphisms of H, so it
is a Fuchsian group. It consists of the elements of even length in the generators ri, so it is
generated by elliptic elements x1 = r2r3, x2 = r3r1 and x3 = r1r2 which rotate H around
v1, v2 and v3 through angles 2π/l, 2π/m, 2π/n. It has a presentation

∆(l,m, n) = 〈x1, x2, x3 | xl
1 = xm

2 = xn
3 = x1x2x3 = 1〉.

The triangle T and any of the three adjacent triangles ri(T ) form a fundamental region
F for ∆. By the Gauss-Bonnet Theorem, T has hyperbolic area

µ(T ) = π
(
1− 1

l
− 1

m
− 1

n

)
,

so

µ(∆) = µ(F ) = 2π
(
1− 1

l
− 1

m
− 1

n

)
.
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One can generalise this construction by allowing T to have ideal vertices with internal
angle 0 on ∂H. In this case the corresponding generator xi of ∆ is parabolic, of order l,m
or n = ∞, the relation x∞i = 1 is omitted, and in the area formula we regard 1/∞ as 0.

Example. Let T have vertices i, ω = e2πi/3 and c = ∞, with internal abgles π/2, π/3
and 0. The resulting extended triangle group ∆[2, 3,∞] is the extended modular group
PGL(2, Z), and the orientation-preserving triangle group ∆(2, 3,∞) is the modular group
Γ = PSL(2, Z), generated by rotations x1 of order 2 about i, x2 of order 3 about b, and
a parabolic element x3 fixing ∞. The ideal triangle with vertices ω, ω + 1 and ∞ is a
fundamental region F for Γ. It is not compact, but it has finite area:

µ(Γ) = µ(F ) = 2π
(
1− 1

2
− 1

3
− 1

∞

)
=

π

3
.

There is also a natural generalisation to polygonal groups, where the triangle T is
replaced with a hyperbolic polygon having internal angles π/mi for integers m1 ≥ 2 or
mi = ∞. In this case the presentation is

∆(m1, . . . ,mr) = 〈x1, . . . , xr | xm1
i = . . . = xmr

r = x1 . . . xr = 1〉.

6.2 Surface groups

Just as each Riemann surface X of genus 1 is uniformised by a lattice, with a Euclidean
parallelogram as a fundamental region, its sides paired by generators, there is a similar
situation when X has genus g ≥ 2, except that now we obtain a hyperbolic polygon, with
4g sides, as a fundamental region.

A subgroup K of PSL(2, R) is cocompact if it has a compact quotient space X = H/K.
If a discontinuous subgroup K of PSL(2, R) is cocompact, then it has a fundamental region
F consisting of a hyperbolic polygon with 4g sides A′

1, B
′
1, A1, B1, . . . A

′
g, B

′
g, Ag, Bg in that

cyclic order, with hyperbolic elements ai, bi pairing A′
i with Ai, and B′

i with Bi. Then K
has a presentation

K = 〈a1, b1, . . . , ag, bg |
g∏

i=1

[ai, bi] = 1〉,

where [ai, bi] is the commutator a−1
i b−1

i aibi. Thus K ∼= π1X, so we call K a surface group
(see Example 4 of Section 2,1). By decomposing F into triangles, and adding their areas,
one can show that

µ(K) = µ(F ) = 4π(g − 1).

6.3 Presentations of Fuchsian groups

A Fuchsian group Γ is cofinite if its quotient space H/Γ has finite area. In such a case, and
in particular if it is cocompact, then Γ has a fundamental region with finitely many sides,
and the corresponding side-pairing elements generate the group. By choosing a suitable
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fundamental region, one can use Poincaré’s method to find a standard presentation for Γ,
generalising those given earlier for triangle groups and surface groups. There are generators

a1, b1, . . . , ag, bg (hyperbolic), x1, . . . , xr (elliptic), y1, . . . , ys (parabolic),

and defining relations

xm1
1 = · · · = xmr

r = [a1, b1] . . . [ag, bg]x1 . . . xry1 . . . ys = 1,

with integers mi ≥ 2 (their order is irrelevant). We summarise this by saying that Γ has
signature (g; m1, . . . ,mr; s). Thus a cocompact triangle group ∆(l,m, n) has signature
(0; l,m, n; 0), while PSL(2, Z) has signature (0; 2, 3; 1), and a surface group of genus g has
signature (g;−; 0). Here the subgroups 〈xi〉, each of order mi, are representatives of the
conjugacy classes of maximal elliptic subgroups of Γ, while the subgroups 〈yi〉, each of
infinite order, are representatives of the conjugacy classes of maximal parabolic subgroups.
The quotient space H/Γ is a surface of genus g with s points removed, so it is compact if
and only if s = 0, that is, Γ contains no parabolic elements.

Using the Gauss-Bonnet Theorem, one can prove the following generalisation of several
earlier formulae:

Theorem 6.1 If Γ is a Fuchsian group with signature (g; m1, . . . ,mr; s), then

µ(Γ) = 2π
(
2g − 2 +

r∑
i=1

(
1− 1

mi

)
+ s

)
.

For such a group Γ to exist, it is clearly necessary that the right-hand side should be
positive. This is also sufficient:

Theorem 6.2 There exists a Fuchsian group Γ with signature (g; m1, . . . ,mr; s) if and
only if

2g − 2 +
r∑

i=1

(
1− 1

mi

)
+ s > 0.

This is proved by constructing a fundamental region with appropriate side-pairing
elements, and letting Γ be the group they generate.

Theorem 6.3 If X is a compact Riemann surface of genus g ≥ 2 then Aut X is finite.

Proof. Since g ≥ 2, the Uniformisation Theorem tells us that X ∼= H/K for some surface
group K. Now Aut X ∼= N(K)/K by Theorem 5.1, and N(K) is a Fuchsian group by
Theorem 5.4. Since N(K) contains K, and µ(K) is finite, µ(N(K)) is also finite, and is
non-zero by Theorem 6.2. Thus

|Aut X| = |N(K) : K| = µ(K)

µ(N(K))

by the Riemann-Hurwitz Formula, and this is finite. �

Schwarz’s original proof used analytic methods involving Weierstrass points on X. We
will give an upper bound for |Aut X|, due to Hurwitz, in Section 7.4.
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7 Riemann surfaces of genus greater than 1

Motivated by Theorem 6.3, we now look for interesting finite groups acting on compact
Riemann surfaces of genus g ≥ 2. In a certain sense (which can be made precise using
Teichmüller theory), such surfaces are exceptional: most Riemann surfaces of genus g = 2
or g > 2 have automorphisms groups of order 2 or 1 respectively. On the other hand,
Accola and Maclachlan independently proved that for each g ≥ 2 there is a Riemann
surface of genus g with at least 8(g + 1) automorphisms.

7.1 Smooth epimorphisms

Suppose that a finite group G acts as a group of automorphisms of a compact Riemann
surface X of genus g ≥ 2. Then X is uniformisied by a surface subgroup K of PSL(2, R),
and there is a Fuchsian group Γ ≤ N(K) such that Γ/K ∼= G. Being cocompact, K has no
parabolic elements, and hence neither has Γ, for otherwise a suitable power of one would be
a parabolic element of K. Thus Γ has signature (g′; m1, . . . ,mr; 0) where g′ is the genus of
H/Γ. Similarly, since K contains no elliptic elements, the natural epimorphism θ : Γ → G,
with kernel K, must send each elliptic generator xi to an element of order mi in G. We call
such an epimorphism smooth, or a surface kernel epimorphism. Conversely, if θ : Γ → G
is a smooth epimorphism, then K = ker θ is a normal surface subgroup of Γ, so G acts as
a group of automorphisms of the Riemann surface H/K.

7.2 Modular surfaces

For each prome p, the group G = L2(p) = PSL(2, Zp) has generators g1, g2, g3 of orders
2, 3 and p with g1g2g3 = 1; these are the images of the generators xi of orders 2, 3 and
∞ of PSL(2, Z) = ∆(2, 3,∞) under reduction mod (p). It follows that there is a smooth
epimorphism θ : ∆ = ∆(2, 3, p) → G. Now ∆ is a Fuchsian group provided p ≥ 7, in
which case we obtain a surface group K = ker θ, uniformising a compact Riemann surface
X with G ≤ Aut X. (In fact, a theorem of Singerman [J. London Math. Soc. 1972] shows
that ∆ is maximal among Fuchsian groups, so ∆ = N(K) and hence G = Aut X.) Now

|∆ : K| = |G| = 1

2
p(p2 − 1),

and

µ(∆) = 2π
(
1− 1

2
− 1

3
− 1

p

)
=

(p− 6)π

3p
,

so the Riemann-Hurwitz Formula gives

µ(K) =
(p2 − 1)(p− 6)π

6p
.

If X has genus g then µ(K) = 4π(g − 1), so we have

g =
(p + 2)(p− 3)(p− 5)

24
.
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These surfaces X are called modular surfaces. The first example, with p = 7, has genus
g = 3, with the simple group L2(7) of order 168 as its automorphism group. It is knon as
Klein’s quartic curve, since it is given as a projective algebraic curve by the equation

x3y + y3z + z3x = 0.

(There is a wonderful book, The Eightfold Way: the Beauty of Klein’s Quartic Curve,
edited by Silvio Levy, on the mathematical, historical and aesthetic aspects of this surface.)

It is not essential that g3 should have prime order here. One can apply the same
construction with G = PSL(2, Zn) for any integer n ≥ 7, though now G, which need not
be simple, has order

n3

2

∏
p|n

(
1− 1

p2

)
,

where p ranges over the distinct primes dividing n.

7.3 Counting smooth epimorphisms

Finding a smooth epimorphism from a triangle group ∆(l,m, n) onto a finite group G is
equivalent to finding a generating triple g1, g2, g3 of orders l,m and n in G, with g1g2g3 = 1.
One can count solutions of this last equation by using character theory.

If A1, . . . , Ar are conjugacy classes in a finite group G, then the number of r-tuples
(g1, . . . , gr) ∈ A1 × · · · × Ar such that g1 . . . gr = 1 in G is given by the expression

|A1|. . . . .|Ar|
|G|

∑
χ

χ(g1) . . . χ(gr)

χ(1)r−2
,

where gi ∈ Ai and χ ranges over the irreducible complex characters of G. (For a proof, see
Theorem 7.2.1 in Topics in Galois Theory by J-P. Serre; heuristically, one might expect
the formula to be

∏
i |Ai|/|G|, the number of r-tuples divided by the number of possible

values for their product; the extra factor, involving characters, tells us that finite groups
do not behave quite as uniformly as we might like, and it also saves us from the possible
embarassment of producing a number which is not an integer.) In the particular case r = 3
the number of triples is

|A1|.|A2|.|Ar|
|G|

∑
χ

χ(g1)χ(g2)χ(gr)

χ(1)
.

In order to have a smooth homomorphism, we choose the conjugacy classes Ai to
consist of elements gi of the same orders as the corresponding elliptic generators xi of
∆. If one can show that some r-tuple (gi) generates G (for instance, by showing that no
maximal subgroup contains all the elements gi), then we have an epimorphism ∆ → G. A
more sophisticated approach to this, due to P. Hall, uses Möbius inversion in the lattice of
subgroups of G; see [Jones, Quarterly J. Math. 1995] for some applications.
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For any pair of groups ∆ and G, two epimorphisms ∆ → G have the same kernel if
and only if they differ by an automorphism of G; since Aut G acts fixed-point-freely on
generating sets, it has orbits of length |Aut G| on thse epimorphisms, so one can count
kernels K by dividing the number of epimorphisms by |Aut G|.

Example 1. Let G = L2(7) with ∆ = ∆(2, 3, 7), as in Section 7.2 with p = 7. The
character table of G is shown below, with each column headed by the order of the elements
and the number of them in the corresponding conjugacy class; the entries α and β denote
(−1± i

√
7)/2.

1 2 3 4 7 7
1 21 56 42 24 24

χ1 1 1 1 1 1 1
χ2 3 -1 0 1 α β
χ3 3 -1 0 1 β α
χ4 6 2 0 0 -1 -1
χ5 7 -1 1 -1 0 0
χ6 8 0 -1 0 1 1

Character table of L2(7)

We see that there is one conjugacy class A1 of 21 involutions g1, one conjugacy class
A2 of 56 elements g2 of order 3, and there are two conjugacy classes A3 each containing
24 elements g3 of order 7. For either choice of A3, each irreducible character χ 6= χ1 of G
vanishes on at least one class Ai, so the summation in the formula is equal to 1, and the
number of triples is

21.56.24

168
= 168.

Counting both choices for A3 we therefore obtain 336 triples. No proper subgroup of G
has order divisible by 2, 3 and 7, so these triples all generate G. Each triple therefore
determines a smooth epimorphism θ : ∆ → G, xi 7→ gi. Since Aut G = PGL(2, 7) has
order 336, it has a single orbit on these triples, so there is a single kernel K. Thus ∆
provides a single Riemann surface X with Aut X ∼= L2(7): this is Klein’s quartic curve of
genus 3, as found in Section 7.2.

Example 2. In some cases, we get more than one kernel K. If we take the same group
∆ = ∆(2, 3, 7) as before, but now with G = L2(13), a similar calculation using the character
table of G (see the ATLAS) shows that there are three normal surface groups K with
∆/K ∼= G, one for each of the three conjugacy classes A3 of elements g3 of order 7 in G,
and hence we obtain three non-isomorphic Riemann surfaces X with Aut X ∼= L2(13). By
the Riemann-Hurwitz Formula they have genus g = 14.

Example 3. Not all triangle groups are maximal. Let ∆ = ∆(3, 5, 5), and let G = A5
∼=

L2(5). In the character table below, α and β denote (−1±
√

5)/2
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1 2 3 5 5
1 15 20 12 12

χ1 1 1 1 1 1
χ2 3 -1 0 α β
χ3 3 -1 0 β α
χ4 4 0 1 -1 -1
χ5 5 1 -1 0 0

Character table of A5

We see that G has one conjugacy class of 20 elements of order 3, and two conjugacy
classes of 12 elements of order 5; these are transposed by squaring and by conjugacy
in Aut G = S5. The above method shows that there are two normal surface subgroups
K1, K2 in ∆ with ∆/Ki

∼= G, uniformising two Riemann surfaces Xi of genus 9. They are
distinguished by the elliptic generators of ∆ of order 5 being mapped to conjugate elements
in ∆/K1, and to non-conjugate elements in ∆/K2. However, G is not the full automophism
group of either surface: Singerman’s 1972 paper shows that ∆ is a subgroup of index 2 in
Γ = ∆(2, 5, 6), which is maximal. One can show that Γ normalises each Ki, so Γ = N(Ki)
for i = 1, 2. We find that Aut X1 = Γ/K1

∼= S5, while Aut X2
∼= Γ/K2

∼= A5 × C2.

7.4 Hurwitz groups and surfaces

A simple but tedious argument based on the formula in Theorem 6.1 shows that each
cofinite Fuchsian group Γ has µ(Γ) ≥ π/21, and that the only groups attaining this bound
are those with signature (0; 2, 3, 7; 0); these are the triangle groups ∆ = ∆(2, 3, 7). The
following result is due to Hurwitz:

Theorem 7.1 If X is a compact Riemann surface of genus g ≥ 2, then

|Aut X| ≤ 84(g − 1).

Proof. As in the proof of Theorem 6.3 we have

|Aut X| = |N(K) : K| = µ(K)

µ(N(K))
.

Now µ(K) = 4π(g − 1), and µ(N(K)) ≥ π/21, so |Aut S| ≤ 84(g − 1). �

The Riemann surfaces X attaining this bound are known as Hurwitz surfaces, and
their automorphism groups G are Hurwitz groups. The following is now straightforward:

Theorem 7.2 If G is a finite group, then the following are equivalent:

1. G is a Hurwitz group,

2. G is a nontrivial quotient of ∆(2, 3, 7),
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3. G has generators g1, g2, g3 of orders 2, 3 and 7 with g1g2g3 = 1.

Notice that ∆ is perfect, and hence so is every Hurwitz group. It therefore makes sense
to look first among the nonabelian finite simple groups for Hurwitz groups. The easiest
to study are the groups L2(q). We have already seen that L2(7) and L2(13) are Hurwitz
groups. Macbeath has generalised this:

Theorem 7.3 If q is a power of a prime p then the group L2(q) is a Hurwitz group if and
only if

1. q = 7, or

2. q = p ≡ ±1 mod (7), or

3. q = p3 where p ≡ ±2 or ±3 mod (7).

In cases (1) and (3) there is a unique Hurwitz surface, but in case (2) there are three.

Conder has shown that the alternating group An is a Hurwitz group for all sufficiently
large n, and R. A. Wilson has used massive computing power to show that the Monster
simple group is a Hurwitz group.

7.5 Fermat curves

Let Γ = ∆(2, 3, 2n) for some integer n ≥ 2. There is an obvious epimorphism Γ →
∆(2, 3, 2) ∼= S3, and the kernel ∆ is a triangle group ∆(n, n, n): one can see this by
barycentrically subdividing an equilateral triangle with internal angles π/n into six trian-
gles with internal angles π/2, π/3 and π/n, so that these are fundamental regions for the
corrresponding extended triangle groups. Now let K be the commutator subgroup ∆′ of
∆; this is a characteristic subgroup of ∆, and ∆ is normal in Γ, so K is normal in Γ. Now
∆ab = ∆/∆′ ∼= Cn × Cn, and the three elliptic generators of order n in ∆ are mapped to
elements of order n in this group, so K is a surface group, uniformising a Riemann surface
X. If n ≥ 4 then Γ is a Fuchsian group, and Singerman has shown that it is a maximal
Fuchsian group, so Γ = N(K). Thus G := Aut X ∼= Γ/K, an extension of ∆/K ∼= Cn×Cn

by Γ/∆ ∼= S3.
We have µ(∆) = 2π(1− 3

n
), and |∆ : K| = n2, so µ(K) = 2πn2(1− 3

n
) = 2πn(n− 3).

If X has genus g then µ(K) = 4π(g − 1), so we deduce that

g =
(n− 1)(n− 2)

2
.

We will show that X is the Fermat curve Xn ⊂ P1(C) of exponent n, given by

xn + yn + zn = 0.

The transformations a and b which multiply x and y respectively by ζ = e2πi/n generate
a subgroup N ∼= Cn × Cn of Aut Xn. There is also a subgroup S ∼= S3, permuting the
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variables, and one easily checks that the subgroup Gn := 〈N, S〉 of Aut Xn is a semidirect
product of N by S. .We can choose generators u and v of S, of orders 2 and 3, so that
u transposes a and b, while v send a to b and b to a−1b−1. Then the elements u, bv and
(ubv)−1 = abv2u generate Gn, have product 1, and have orders 2, 3 and 2n, so G∗ is a
smooth quotient Γ/Kn of Γ = ∆(2, 3, 2n) for some surface group Kn uniformising Xn. One
easily checks that Γ has a unique normal subgroup with quotient S3, namely ∆, and that
∆ has a unique normal subgroup with quotient Cn×Cn, namely K, so K = Kn and hence
X = Xn. This also shows that G = Gn, so G is a split extension of Cn × Cn by S3.

8 Action on homology

If a Riemann surface is uniformised by a surface group K, then K ∼= π1X, so the first
integer homology group H1 := H1(X; Z) is isomorphic to (π1X)ab ∼= Kab = K/K ′.

There is a natural action of G := Aut X on H1, induced by its action on X. We can
also see this action group-theoretically. The normaliser Γ = N(K) of K acts by conjugation
on K, leaving K ′ invariant, so it has an induced action on Kab. By definition of K ′, K is
in the kernel of this action, so there is an induced action of Γ/K on Kab, and hence of G
on H1. This is the natural action on homology.

If R is any commutative ring, then H1(X,R) ∼= H1⊗Z R as a G-module, with G acting
trivially on R. Taking R = C we can apply ordinary representation theory to this action
of G. Alternatively, taking R = Zp, i.e. reducing coefficients mod (p) and considering the
action of G on K/K ′Kp, we can apply modular representation theory. This technique is
particularly useful in studying regular abelian coverings of Riemann surfaces.

Example. Let G = L2(7), acting on Klein’s quartic X of genus g = 3. Then H1 has
dimension 2g = 6, and over C the representation of G splits as the sum of its two irre-
ducible representations ρ2 and ρ3 of degree 3. These are complex conjugates of each other,
and correspond to the actions of G on the spaces of holomorphic and anti-holomorphic
differentials on X.

If we reduce mod (2), we find that H1(X; Z2) also affords the direct sum of two
absolutely irreducible representations of degree 3. One is the natural representation of G
as L3(2) = GL(3, 2) on a vector space V = C3

2 , and the other is the dual representation on
V ∗. These two representations are transposed by the outer automorphism of G, induced by
conjugation in PGL(2, 7). This shows that, between K and K ′K2, there are two normal
subgroups K1 and K2 of Γ, with |K : Ki| = |Ki : K ′K2| = 8, giving a pair of Hurwitz
surfaces X1 and X2 which are 8-sheeted coverings of X. These subgroups Ki are conjugate
in the extended triangle group ∆[2, 3, 7], so X1 and X2 are complex conjugates of each
other; in particular, they are not defined over a real field.

If we reduce mod (3), however, we find that H1(X; Z3) is an irreducible G-module,
so we obtain a single Hurwitz surface, a 36-sheeted covering of X. There is a similar
phenomenon if we reduce mod (5), whereas H1(X; Z7) is a reducible but indecomposable
G-module: there is a single G-invariant proper submodule, of dimension 3, so we obtain
two Hurwitz surfaces, 73- and 76-sheeted coverings of X.
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9 Riemann surfaces and algebraic number fields

Compact Riemann surfaces are equivalent to algebraic curves defined over C, i.e. defined
by polynomial equations with complex coefficients. Which compact Riemann surfaces X
are (or rather can be) defined over the subfield Q of algebraic numbers (the algebraic
closure of Q in C? Bely̆ı’s Theorem (1979) states these these are the Riemann surfaces
uniformised by subgroups of finite index in triangle groups. For instance, all the examples
of compact Riemann surfaces discussed in Section 7 satisfy this condition. Now a triangle
group induces a tessellation of the space H or C it acts on, and this induces a tessellation
of X. For instance, Klein’s quartic curve, which is defined over Q and hence certainly over
Q, is tessellated by 24 7-gons, or dually by 56 triangles. These tessellations, or various
maps on surfaces equivalent to them, were called dessins d’enfants (children’s drawing)
by Grothendieck, because that is what many of them resemble. He pointed out that the
absolute Galois group Gal Q/Q acts on these, by acting on the coefficients of the defining
polynomials, and that this action is faithful. This is surprising, because Gal Q/Q is a
very complicated profinite group (the projective limit of the finite Galois groups of all the
algebraic number fields), and yet one can (at least in theory) see all of it through its action
on these rather simple combinatorial objects.

A more recent development has been the use of these quotients of triangle groups by
algebraic geometers, such as Beauville, Catanese and others, to construct complex surfaces
(i.e. 2-dimensional varieties over C, so 4-dimensional as real manifolds), with interesting
geometric properties, such as rigidity (absence of deformations). One takes two compact
Riemann surfaces (i.e. algebraic curves) Xi (i = 1, 2) of genus gi ≥ 2, uniformised by
normal subgroups Ki of triangle groups ∆i such that ∆1/K1

∼= ∆2/K2, and such that this
finite group G ∼= ∆i/Ki acts fixed-point-freely on X1×X2, i.e. no non-identity element has
a fixed point on both Riemann surfaces. Then (X1 ×X2)/G is a complex surface, called a
Beauville surface. There is a conjecture that every non-abelian finite simple group except
A5 has such a pair of actions, and several teams involving Lubotzky, Magaard and others
seem to be close to a proof of it.
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